Hp-Adaptive Dynamic Trust Region Sequential Convex Programming: An Enhanced Strategy for Trajectory Optimization
Abstract
1. Introduction
- Compared to traditional SCP in existing literature, this paper proposes an improved SCP method based on hp-adaptive dynamic trust region adjustment. This method overcomes the limitations of traditional approaches that employ fixed discretization step sizes and uniform polynomial orders.
- In contrast to the globally uniform trust region strategy commonly adopted in existing SCP, this paper constructs a locally adaptive trust region adjustment mechanism that cooperates with the hp-adaptive method. By configuring independent trust region radii for each time subinterval and dynamically adjusting constraint widths according to local dynamic characteristics and linearization errors, it effectively avoids the problems of excessive conservatism or constraint failure caused by globally uniform radii. Through establishing trust region adjustment criteria based on the ratio of actual descent to predicted descent, combined with the coupling effects of hp-adaptive parameter variations, it achieves collaborative optimization between trust region radius and numerical strategy.
- A posterior error estimation mechanism is designed and integrated with the hp-adaptive strategy and dynamic trust region adjustment into a unified SCP framework. The method handles linearization infeasibility by introducing virtual control inputs and dynamically selects optimal numerical strategies by combining local error indicators and smoothness indicators, thereby effectively suppressing the problems of linearization error accumulation and constraint violations in traditional methods. Under the condition of establishing a global error balance mechanism, it ensures coordination between time subintervals and overall consistency of the solution.
2. Problem Statement
2.1. Aircraft Dynamics Model
2.2. Constraints and Objective Function
2.3. Trajectory Planning Problem Description
3. Sequential Convex Optimization Method Based on Hp-Adaptive Trust Region
3.1. Convexification and Discretization of Trajectory Planning Problem
3.2. Hp-Adaptive Trust Region
3.3. Sequential Convex Optimization Implementation Process
4. Numerical Simulation
4.1. Simulation Conditions
4.2. Effectiveness Verification
4.3. Comparison with Other Methods
5. Conclusions and Prospect
5.1. Conclusions
5.2. Prospects for Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HV | Hypersonic Vehicles |
SCP | Sequential Convex Programming |
GPOPS-II | General Pseudospectral Optimal Control Software, Version II |
Fixed SCP | Fixed trust region-based Sequential Convex Programming |
Hp-adaptive SCP | Hp-adaptive trust region-based Sequential Convex Programming |
Appendix A
References
- Ye, H.; Kang, X.; Joung, J.; Liang, Y. Optimization for Wireless-Powered IoT Networks Enabled by an Energy-Limited UAV Under Practical Energy Consumption Model. IEEE Wirel. Commun. Lett. 2021, 10, 567–571. [Google Scholar] [CrossRef]
- Scharf, P.; Açıkmeşe, B.; Dueri, D.; Benito, J.; Casoliva, J. Implementation and Experimental Demonstration of Onboard Powered-Descent Guidance. J. Guid. Control Dyn. 2017, 40, 213–229. [Google Scholar] [CrossRef]
- Yu, J.; Ge, X. Optimal Route Planning of Parking Lot Based on Dijkstra Algorithm. In Proceedings of the 2017 International Conference on Robots & Intelligent System (ICRIS), Huai’an City, China, 15–16 October 2017; pp. 221–224. [Google Scholar] [CrossRef]
- Braga, M.d.L.; Santos, A.d.J.d.; Pedroza, A.C.; Costa, L.H.M.; de Amorim, M.D.; Ghamri-Doudane, Y. Anytime route planning with constrained devices. Comput. Electr. Eng. 2016, 54, 53–67. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, S.; Xiong, F. Rapid Ascent Trajectory Optimization for Guided Rockets via Sequential Convex Programming. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2019, 233, 4800–4809. [Google Scholar] [CrossRef]
- Wang, J.; Cui, N.; Wei, C. Optimal Rocket Landing Guidance Using Convex Optimization and Model Predictive Control. J. Guid. Control Dyn. 2019, 42, 1078–1092. [Google Scholar] [CrossRef]
- Rao, A.V. A survey of numerical methods for optimal control. In Proceedings of the Astrodynamics 2009: Proceedings of the AAS/AIAA Astrodynamics Specialist , Pittsburgh, PA, USA, 9–13 August 2009; pp. 497–528. [Google Scholar]
- Betts, J.T. Survey of Numerical Methods for Trajectory Optimization. J. Guid. Control Dyn. 1998, 21, 193–207. [Google Scholar] [CrossRef]
- Danylo, M.; Taylor, R.; Michael, S. Discretization Performance and Accuracy Analysis for the Rocket Powered Descent Guidance Problem. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019. [Google Scholar] [CrossRef]
- Liang, Z.; Duan, G.; Ren, Z. Mars entry guidance based on an adaptive reference drag profile. Adv. Space Res. 2017, 60, 692–701. [Google Scholar] [CrossRef]
- Patterson, M.A.; Rao, A.V. GPOPS-II: A MATLAB Software for Solving Multiple-Phase Optimal Control Problems Using hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming. ACM Trans. Math. Softw. 2014, 41, 1–37. [Google Scholar] [CrossRef]
- Chai, D.; Fang, Y.; Wu, Y.; Xu, S. Boost-skipping trajectory optimization for air-breathing hypersonic missile. Aerosp. Sci. Technol. 2015, 46, 506–513. [Google Scholar] [CrossRef]
- An, K.; Guo, Z.; Xu, X.; Huang, W. A framework of trajectory design and optimization for the hypersonic gliding vehicle. Aerosp. Sci. Technol. 2020, 106, 106110. [Google Scholar] [CrossRef]
- Lu, P.; Liu, X.F. Autonomous trajectory planning for rendezvous and proximity operations by conic optimization. J. Guid. Control Dyn. 2013, 36, 375–389. [Google Scholar] [CrossRef]
- Liu, X.; Lu, P.; Pan, B. Survey of convex optimization for aerospace applications. Astrodynamics 2017, 1, 23–40. [Google Scholar] [CrossRef]
- Acikmese, B.; Ploen, S.R. Convex Programming Approach to Powered Descent Guidance for Mars Landing. J. Guid. Control Dyn. 2007, 30, 1353–1366. [Google Scholar] [CrossRef]
- Dong, C.J.; Yang, H.W.; Li, S.; Li, B. Convex optimization of asteroid landing trajectories driven by solar radiation pressure. Chin. J. Aeronaut. 2022, 35, 200–211. [Google Scholar] [CrossRef]
- Liu, X.F.; Shen, Z.J.; Lu, P. Entry Trajectory Optimization by Second-Order Cone Programming. J. Guid. Control Dyn. 2015, 39, 227–241. [Google Scholar] [CrossRef]
- Wang, Z.B. Maximum-Normal-Load Entry Trajectory Optimization for Hypersonic Glide Vehicles. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019. [Google Scholar]
- Zhang, Y.L.; Chen, K.J.; Liu, L.H. Entry Trajectory Planning Based on Three-dimensional Acceleration Profile Guidance. Aerosp. Sci. Technol. 2016, 48, 131–139. [Google Scholar] [CrossRef]
- Benedikter, B.; Zavoli, A.; Colasurdo, G.; Pizzurro, S.; Cavallini, E. Convex Approach to Three-Dimensional Launch Vehicle Ascent Trajectory Optimization. J. Guid. Control Dyn. 2021, 44, 1116–1131. [Google Scholar] [CrossRef]
- Zhang, P.; Li, W.; Gong, S. Ascent Trajectory Optimization for Boost-Glide Vehicle Using Homotopy Approximation Function Sequential Convex Programming. IEEE Trans. Aerosp. Electron. Syst. 2025, 61, 7576–7596. [Google Scholar] [CrossRef]
- Shirazi, A. Minimum-Fuel Low-Thrust Trajectory Optimization via a Direct Adaptive Evolutionary Approach. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 1319–1333. [Google Scholar] [CrossRef]
- Zhao, J.S.; Li, S. Mars Atmospheric Entry Trajectory Optimization with Maximum Parachute Deployment Altitude Using Adaptive Mesh Refinement. Acta Astronaut. 2019, 160, 401–413. [Google Scholar] [CrossRef]
- Song, Y.; Miao, X.Y.; Gong, S.P. Adaptive Powered Descent Guidance based on Multi-Phase Pseudospectral Convex Optimization. Acta Astronaut. 2021, 180, 386–397. [Google Scholar] [CrossRef]
- Simplicio, P.; Marcos, A.; Bennani, S. Guidance of reusable launchers: Improving descent and landing performance. J. Guid. Control Dyn. 2019, 42, 2206–2219. [Google Scholar] [CrossRef]
- Simplicio, P.; Marcos, A.; Bennani, S. Reusable Launchers: Development of a Coupled Flight Mechanics, Guidance, and Control Benchmark. J. Spacecr. Rocket. 2019, 57, 74–89. [Google Scholar] [CrossRef]
- Wang, Z.B.; Grant, M.J. Hypersonic Trajectory Optimization by Sequential Semidefinite Programming. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar]
- Jain, S.; Tsiotras, P. Multiresolution based Direct Trajectory Optimization. In Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 12–14 December 2007. [Google Scholar]
- Mao, Y.; Szmuk, M.; Acikmese, B. Successive Convexification of Non-Convex Optimal Control Problems and Its Convergence Properties. In Proceedings of the IEEE 55th Conference on Decision and Control, Las Vegas, NV, USA, 12–14 December 2016. [Google Scholar]
- Zhao, J.S.; Li, S. Modified Multiresolution Technique for Mesh Refinement in Numerical Optimal Control. J. Guid. Control Dyn. 2017, 40, 3328–3338. [Google Scholar] [CrossRef]
- Zhou, X.; He, R.Z.; Zhang, H.B.; Tang, G.J.; Bao, W.M. Sequential convex programming method using adaptive mesh refinement for entry trajectory planning problem. Aerosp. Sci. Technol. 2021, 109, 106374. [Google Scholar] [CrossRef]
- Zhang, Y.L. Research on Reentry Guidance Method Based on Three-Dimensional Profile. Master’s Thesis, National University of Defense Technology, Changsha, China, 2014. [Google Scholar] [CrossRef]
- Phillips, T.H. A Common Aero Vehicle Model, Description, and Employment Guide. Available online: https://www.doc88.com/p-501932383682.html (accessed on 31 December 2013).
Key Parameters of HV | Value | Constraint | Minimum Value | Maximum Value |
---|---|---|---|---|
Radius of Intercept of the Earth R0 (km) | 6378 | Altitude (km) | 1 | |
Acceleration of Gravity g0 (m/s2) | 9.81 | Longitude (deg) | ||
Mass m (kg) | 104,000 | Latitude (deg) | ||
(m2) | 390 | Flight Path Angle (deg) | −15° | 15° |
Thermal Density Coefficient kQ | 1.65 × 10−4 | Azimuth Angle (deg) | −180° | 180° |
(rad/s) | 7.292 × 10−5 | Bank Angle (deg) | −85° | 85° |
Density Scale Height hs (m) | 7254 | Bank Angle Rate (deg/s) |
Altitude (km) | Longitude (deg) | Latitude (deg) | Velocity (m/s2) | Flight Path Angle (deg) | Azimuth Angle (deg) | Bank Angle (deg) | |
---|---|---|---|---|---|---|---|
Initial State | 90 | 0 | 0 | 7500 | -0.5 | 0 | 0 |
Terminal State | 25 | 12 | 70 | 2000 | -10 | 90 | / |
Trust Region Constraint | 20 | 20 | 20 | 500 | 20 | 20 | 20 |
Convergence Domain Value | 0.2 | 0.1 | 0.1 | 1 | 0.1 | 0.1 | 1 |
Hp-Adaptive SCP | Fixed SCP | GPOPS | |
---|---|---|---|
Iteration number | 9 | 16 | 15 |
Global error | 0.044 | 0.052 | 0.387 |
Average time of single subproblem (s) | 0.42 | 0.48 | 12.62 |
Total time (s) | 3.89 | 5.37 | 192.47 |
Average Total Time | Average Number of Iterations | Convergence Success Rate | |
---|---|---|---|
−15% of Initial and terminal state nominal values | 1.63 | 6 | 98.2% |
15% of Initial and terminal state nominal values | 7.37 | 10 | 95.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; An, Z.; Ming, C.; Wang, X.; Wen, G. Hp-Adaptive Dynamic Trust Region Sequential Convex Programming: An Enhanced Strategy for Trajectory Optimization. Symmetry 2025, 17, 1607. https://doi.org/10.3390/sym17101607
Yang Z, An Z, Ming C, Wang X, Wen G. Hp-Adaptive Dynamic Trust Region Sequential Convex Programming: An Enhanced Strategy for Trajectory Optimization. Symmetry. 2025; 17(10):1607. https://doi.org/10.3390/sym17101607
Chicago/Turabian StyleYang, Zhengpeng, Zhichao An, Chao Ming, Xiaoming Wang, and Guangbao Wen. 2025. "Hp-Adaptive Dynamic Trust Region Sequential Convex Programming: An Enhanced Strategy for Trajectory Optimization" Symmetry 17, no. 10: 1607. https://doi.org/10.3390/sym17101607
APA StyleYang, Z., An, Z., Ming, C., Wang, X., & Wen, G. (2025). Hp-Adaptive Dynamic Trust Region Sequential Convex Programming: An Enhanced Strategy for Trajectory Optimization. Symmetry, 17(10), 1607. https://doi.org/10.3390/sym17101607