A Note on Nonlinear Mappings Preserving the Bi-Skew Jordan-Type Product on Factor von Neumann Algebras
Abstract
1. Introduction
2. Main Result
- ;
- .
- Case (I): when is even, then .
- Case (II): when is odd, then or −. □
- Case (I): If , then is either a conjugate linear ∗-isomorphism or a linear ∗-isomorphism.
- ;
- ϑ is an additive on
- Case (II): If , then is either the negative of a conjugate linear ∗-isomorphism or the negative of a linear ∗- isomorphism.
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martindale, W.S. When are multiplicative mappings additive. Proc. Am. Math. Soc. 1969, 21, 695–698. [Google Scholar] [CrossRef]
- Ali, A.; Naz, T.; Tasleem, M. Nonlinear maps preserving mixed bi-skew Jordan N-product on factor von Neumann algebras. Asian-Eur. J. Math. 2025; to appear. [Google Scholar] [CrossRef]
- Dai, L.; Lu, F. Nonlinear maps preserving Jordan ∗-products. J. Math. Anal. Appl. 2014, 409, 180–188. [Google Scholar] [CrossRef]
- Jing, W.; Lu, F. Additivity of Jordan (triple) derivations on rings. Commun. Algebra 2012, 40, 2700–2719. [Google Scholar] [CrossRef]
- Li, C.; Lu, F.; Fang, X. Nonlinear mappings preserving product XY+YX* on factor von Neumann algebras. Linear Algebra Appl. 2013, 438, 2339–2345. [Google Scholar] [CrossRef]
- Li, C.; Lu, F. Nonlinear Maps Preserving the Jordan Triple 1-∗-Product on von Neumann Algebras. Complex Anal. Oper. Theory 2017, 11, 109–117. [Google Scholar] [CrossRef]
- Lu, F. Additivity of Jordan maps on standard operator algebras. Linear Algebra Appl. 2002, 357, 123–131. [Google Scholar] [CrossRef]
- Li, C.; Lu, F.; Wang, T. Nonlinear maps preserving the Jordan triple ∗-product on von Neumann algebras. Ann. Funct. Anal. 2016, 7, 496–507. [Google Scholar] [CrossRef]
- Taghavi, A.; Tavakoli, E. Additivity of maps preserving Jordan triple products on prime C*-algebras. Ann. Funct. Anal. 2020, 11, 391–405. [Google Scholar] [CrossRef]
- Wang, M.; Ji, G. Maps preserving-Lie product on factor von Neumann algebras. Linear Multilinear Algebra 2016, 64, 2159–2168. [Google Scholar] [CrossRef]
- Zhao, F.; Li, C. Nonlinear maps preserving the Jordan triple ∗-product between factors. Indag. Math. 2018, 29, 619–627. [Google Scholar] [CrossRef]
- Bai, Z.; Du, S. Maps preserving products XY-YX* on von Neumann algebras. J. Math. Anal. Appl. 2012, 386, 103–109. [Google Scholar] [CrossRef]
- Liu, L.; Ji, G.X. Maps preserving product X*Y + YX* on factor von Neumann algebras. Linear Multilinear Algebra 2011, 59, 951–955. [Google Scholar] [CrossRef]
- Li, C.; Zhao, F.; Chen, Q. Nonlinear maps preserving product X*Y+Y*X on von Neumann algebras. Bull. Iran. Math. Soc. 2018, 44, 729–738. [Google Scholar] [CrossRef]
- Taghavi, A.; Gholampoor, S. Maps Preserving Product A*B+B*A on C*-Algebras. Bull. Iran. Math. Soc. 2021, 48, 757–767. [Google Scholar] [CrossRef]
- Zhang, D.; Li, C.; Zhao, Y. Nonlinear maps preserving bi-skew Jordan triple product on factor von Neumann algebras. Period. Math. Hung. 2023, 86, 578–586. [Google Scholar] [CrossRef]
- Taghavi, A. Additive mappings on C∗-algebras preserving absolute values. Linear Multilinear Algebra 2012, 60, 33–38. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almubark, M.; Ali, A.; Naz, T.; Nisar, J. A Note on Nonlinear Mappings Preserving the Bi-Skew Jordan-Type Product on Factor von Neumann Algebras. Symmetry 2025, 17, 1596. https://doi.org/10.3390/sym17101596
Almubark M, Ali A, Naz T, Nisar J. A Note on Nonlinear Mappings Preserving the Bi-Skew Jordan-Type Product on Factor von Neumann Algebras. Symmetry. 2025; 17(10):1596. https://doi.org/10.3390/sym17101596
Chicago/Turabian StyleAlmubark, Majed, Asma Ali, Tooba Naz, and Junaid Nisar. 2025. "A Note on Nonlinear Mappings Preserving the Bi-Skew Jordan-Type Product on Factor von Neumann Algebras" Symmetry 17, no. 10: 1596. https://doi.org/10.3390/sym17101596
APA StyleAlmubark, M., Ali, A., Naz, T., & Nisar, J. (2025). A Note on Nonlinear Mappings Preserving the Bi-Skew Jordan-Type Product on Factor von Neumann Algebras. Symmetry, 17(10), 1596. https://doi.org/10.3390/sym17101596