A Robust-Fitted-Mesh-Based Finite Difference Approach for Solving a System of Singularly Perturbed Convection–Diffusion Delay Differential Equations with Two Parameters
Abstract
:1. Introduction
2. Formulation of the Problem
3. Analytical Results
4. Shishkin Decomposition of the Solution
5. Bounds on the Regular Component and Its Derivatives
6. Layer Functions
7. Bounds on the Singular Component and Its Derivatives
8. Sharper Bounds for and
9. Numerical Method
10. The Discrete Problem
11. Numerical Results
Error Estimate
12. Numerical Illustration
Example
13. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhatti, M.M.; Alamri, S.Z.; Ellahi, R.; Abdelsalam, S.I. Intra-uterine particle-fluid motion through a compliant asymmetric tapered channel with heat transfer. J. Therm. Anal. Calorim. 2021, 144, 2259–2267. [Google Scholar] [CrossRef]
- Glizer, V. Asymptotic analysis and solution of a finite-horizon H∞ control problem for singularly-perturbed linear systems with small state delay. J. Optim. Theory Appl. 2003, 117, 295–325. [Google Scholar] [CrossRef]
- Miller, J.J.H.; O’Riordan, E.; Shishkin, G.I. Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions; World Scientific: Singapore, 2012. [Google Scholar]
- Doolan, E.P.; Miller, J.J.H.; Schilders, W.H.A. Uniform Numerical Methods for Problems with Initial and Boundary Layers; Boole Press: Dublin, Ireland, 1980. [Google Scholar]
- Cen, Z. Parameter-uniform finite difference scheme for a system of coupled singularly perturbed convection-diffusion equations. Int. J. Comput. Math. 2005, 82, 177–192. [Google Scholar] [CrossRef]
- Gracia, J.L.; O’Riordan, E.; Pickett, M.L. A parameter robust second order numerical method for a singularly perturbed two-parameter problem. Appl. Numer. Math. 2006, 56, 962–980. [Google Scholar] [CrossRef]
- O’Riordan, E.; Pickett, M.; Shishkin, G.I. Parameter-uniform finite difference schemes for singularly perturbed parabolic diffusion-convection-reaction problems. Math. Comput. 2006, 75, 1135–1154. [Google Scholar] [CrossRef]
- Nagarajan, S. A parameter robust fitted mesh finite difference method for a system of two reaction-convection-diffusion equations. Appl. Numer. Math. 2022, 179, 87–104. [Google Scholar] [CrossRef]
- Kalaiselvan, S.S.; Miller, J.J.H.; Sigamani, V. A parameter uniform numerical method for a singularly perturbed two-parameter delay differential equation. Appl. Numer. Math. 2019, 145, 90–110. [Google Scholar] [CrossRef]
- O’Malley, R.E. Two-parameter singular perturbation problems for second-order equations. J. Math. Mech. 1967, 16, 1143–1164. [Google Scholar]
- Nagarajan, S.; Narasimhan, R.; Miller, J.J.H.; Sigamani, V. A parameter uniform method for an initial value problem for a system of singularly perturbed delay differential equations. Adv. Appl. Math. 2014, 87, 127–138. [Google Scholar]
- Cesarano, C.; Pinelas, S.; Al-Showaikh, F.; Bazighifan, O. Asymptotic properties of solutions of fourth-order delay differential equations. Symmetry 2019, 11, 628. [Google Scholar] [CrossRef]
- Mathiyazhagan, P.; Sigamani, V.; Miller, J.J.H. Second order parameter-uniform convergence for a finite difference method for a singularly perturbed linear reaction-diffusion system. Math. Commun. 2010, 15, 587–612. [Google Scholar]
- O’Riordan, E.; Pickett, M.L.; Shishkin, G.I. Singularly perturbed problems modeling reaction-convection-diffusion processes. Comput. Methods Appl. Math. 2003, 3, 424–442. [Google Scholar] [CrossRef]
- Farrell, P.; Hegarty, A.; Miller, J.M.; O’Riordan, E.; Shishkin, G.I. Robust Computational Techniques for Boundary Layers, 1st ed.; Chapman and Hall/CRC: New York, NY, USA, 2000. [Google Scholar] [CrossRef]
Number of Mesh Points | ||||
---|---|---|---|---|
64 | 128 | 256 | 512 | |
0.250 | ||||
The order of convergence | ||||
Computed error constant, |
Number of Mesh Points | ||||
---|---|---|---|---|
64 | 128 | 256 | 512 | |
The order of convergence | ||||
Computed error constant, |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arthur, J.; Chatzarakis, G.E.; Panetsos, S.L.; Mathiyazhagan, J.P. A Robust-Fitted-Mesh-Based Finite Difference Approach for Solving a System of Singularly Perturbed Convection–Diffusion Delay Differential Equations with Two Parameters. Symmetry 2025, 17, 68. https://doi.org/10.3390/sym17010068
Arthur J, Chatzarakis GE, Panetsos SL, Mathiyazhagan JP. A Robust-Fitted-Mesh-Based Finite Difference Approach for Solving a System of Singularly Perturbed Convection–Diffusion Delay Differential Equations with Two Parameters. Symmetry. 2025; 17(1):68. https://doi.org/10.3390/sym17010068
Chicago/Turabian StyleArthur, Jenolin, George E. Chatzarakis, S. L. Panetsos, and Joseph Paramasivam Mathiyazhagan. 2025. "A Robust-Fitted-Mesh-Based Finite Difference Approach for Solving a System of Singularly Perturbed Convection–Diffusion Delay Differential Equations with Two Parameters" Symmetry 17, no. 1: 68. https://doi.org/10.3390/sym17010068
APA StyleArthur, J., Chatzarakis, G. E., Panetsos, S. L., & Mathiyazhagan, J. P. (2025). A Robust-Fitted-Mesh-Based Finite Difference Approach for Solving a System of Singularly Perturbed Convection–Diffusion Delay Differential Equations with Two Parameters. Symmetry, 17(1), 68. https://doi.org/10.3390/sym17010068