Weakly Coupled Systems of Semi-Linear Fractional σ–Evolution Equations with Different Power Nonlinearities
Abstract
:1. Introduction
- For , the solutions exist globally.
- For , the solutions blow up.
2. Main Results
2.1. The Case
2.2. The Case
2.3. The Case
3. Some Preliminaries
Philosophy of the Approach and Proofs
4. Proof of Main Results
4.1. Proof of Main Results fo the Case
4.1.1. Proof of Theorem 1
4.1.2. Proof of Theorem 2
4.2. Proof Main Results for the Case
4.2.1. Proof of Theorem 3
4.2.2. Proof of Theorem 4
4.3. Proof Main Results for the Case
4.3.1. Proof of Theorem 5
4.3.2. Proofof Theorem 6
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kulish, V.V.; Lage, J.L. Application of fractional calculus to fluid mechanics. J. Fluids Eng. 2002, 124, 803–806. [Google Scholar] [CrossRef]
- Magin, R. Modeling the cardiac tissue electrode interface using fractional calculus. J. Vib. Control. 2008, 14, 1431–1442. [Google Scholar] [CrossRef]
- Li, P.; Shi, S.; Xu, C.; Rahman, M.U. Bifurcations, chaotic behavior, sensitivity analysis and new optical solitons solutions of Sasa-Satsuma equation. Nonlinear Dyn. 2024, 112, 7405–7415. [Google Scholar] [CrossRef]
- Xu, C.; Ou, W.; Cui, Q.; Pang, Y.; Liao, M.; Shen, J.; Ghosh, U. Theoretical exploration and controller design of bifurcation in a plankton population dynamical system accompanying delay. Discret. Contin. Dyn. Syst. Ser. 2024. [Google Scholar] [CrossRef]
- Strauss, W.A. Nonlinear scattering theory at low energy. J. Funct. Anal. 1981, 41, 110–133. [Google Scholar] [CrossRef]
- D’Abbicco, M.; Ebert, M.R.; Picon, T. Global Existence of Small Data Solutions to the Semilinear Fractional Wave Equation. In Trends in Mathematics, 1st ed.; Springer: Boston, MA, USA, 2017; pp. 465–471. [Google Scholar]
- D’Abbicco, M.; Ebert, M.R.; Picon, T.H. The Critical Exponent(s) for the Semilinear Fractional Diffusive Equation. J. Fourier Anal. Appl. 2019, 25, 696–731. [Google Scholar] [CrossRef]
- Kainane Mezadek, A.; Reissig, M. Semi-linear fractional σ–evolution equations with mass or power non-linearity. Differ. Equ. Appl. 2018, 25, 42. [Google Scholar] [CrossRef]
- Kainane Mezadek, A. Global Existence of Small Data Solutions to Semi-linear Fractional σ–Evolution Equations with Mass and Nonlinear Memory. Mediterr. J. Math 2020, 17, 159. [Google Scholar] [CrossRef]
- D’Abbicco, M. Critical Exponents for Differential Inequalities with Riemann-Liouville and Caputo Fractional Derivatives. In New Tools for Nonlinear PDEs and Application; Trends in Mathematics; D’Abbicco, M., Ebert, M.R., Georgiev, V., Ozawa, T., Eds.; Birkhauser: Basel, Switzerland, 2019; pp. 49–95. [Google Scholar]
- D’Abbicco, M.; Girardi, G. Asymptotic profile for a two-terms time fractional diffusion problem. Fract. Calc. Appl. Anal. 2022, 25, 1199–1228. [Google Scholar] [CrossRef]
- D’Abbicco, M.; Girardi, G. Decay estimates for a perturbed two-terms space-time fractional diffusive problem. Evol. Eq. Control. Theory 2023, 12, 1056–1082. [Google Scholar] [CrossRef]
- Escobedo, M.; Herrero, A. Boundedness and blow up for a semilinear reaction-diffusion system. Differ. Eq. 1991, 89, 176–202. [Google Scholar] [CrossRef]
- Andreucci, D.; Herrero, M.A.; Velázquez, J.L. Liouville theorems and blow up behaviour in semilinear reaction diffusion systems. Ann. Inst. Poincaré Anal. Non LinéAire 1997, 14, 1–53. [Google Scholar] [CrossRef]
- Escobedo, M.; Levine, H.A. Critical blowup and global existence numbers for a weakly coupled system of reaction-diffusion equations. Arch. Rational Mech. Anal. 1995, 129, 47–100. [Google Scholar] [CrossRef]
- Rencławowicz, J. Blow up, global existence and growth rate estimates in nonlinear parabolic systems. Colloq. Math. 2000, 86, 43–66. [Google Scholar] [CrossRef]
- Snoussi, S.; Tayachi, S. Global existence, asymptotic behavior and self-similar solutions for a class of semilinear parabolic systems. Nonlinear Anal. 2002, 48, 13–35. [Google Scholar] [CrossRef]
- Narazaki, T. Global solutions to the Cauchy problem for the weakly coupled of damped wave equations. Discret. Contin. Dyn. Syst. 2009, 2009, 592–601. [Google Scholar]
- Sun, F.; Wang, M. Existence and nonexistence of global solutions for a non-linear hyperbolic system with damping. Nonlinear Anal. 2007, 66, 2889–2910. [Google Scholar] [CrossRef]
- Nishihara, K.; Wakasugi, Y. Critical exponant for the Cauchy problem to the weakly coupled wave system. Nonlinear Anal. 2014, 108, 249–259. [Google Scholar] [CrossRef]
- Mohammed Djaouti, A.; Reissig, M. Weakly Coupled Systems of Semilinear Effectively Damped Waves with Different Time-Dependent Coefficients in the Dissipation Terms and Different Power Nonlinearities. In New Tools for Nonlinear PDEs and Application; D’Abbicco, M., Ebert, M., Georgiev, V., Ozawa, T., Eds.; Trends in Mathematics; Birkhäuser: Basel, Switzerland, 2019; pp. 209–409. [Google Scholar]
- Mohammed Djaouti, A. Semilinear Systems of Weakly Coupled Damped Waves. Ph.D. Thesis, TU Bergakademie Freiberg, Freiberg, Germany, 2018. [Google Scholar]
- Mohammed Djaouti, A. Modified different nonlinearities for weakly coupled systems of semilinear effectively damped waves with different time-dependent coefficients in the dissipation terms. Adv. Differ. Equ. 2021, 2021, 66. [Google Scholar] [CrossRef]
- Mohammed Djaouti, A. Weakly coupled system of semi-linear fractional θ–evolution equations with special Cauchy conditions. Symmetry 2023, 15, 1341. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Cui, S. Local and global existence of solutions to semilinear parabolic initial value problems. Nonlinear Anal. 2001, 43, 293–323. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saiah, S.A.; Kainane Mezadek, A.; Kainane Mezadek, M.; Mohammed Djaouti, A.; Al-Quran, A.; Bany Awad, A.M.A. Weakly Coupled Systems of Semi-Linear Fractional σ–Evolution Equations with Different Power Nonlinearities. Symmetry 2024, 16, 884. https://doi.org/10.3390/sym16070884
Saiah SA, Kainane Mezadek A, Kainane Mezadek M, Mohammed Djaouti A, Al-Quran A, Bany Awad AMA. Weakly Coupled Systems of Semi-Linear Fractional σ–Evolution Equations with Different Power Nonlinearities. Symmetry. 2024; 16(7):884. https://doi.org/10.3390/sym16070884
Chicago/Turabian StyleSaiah, Seyyid Ali, Abdelatif Kainane Mezadek, Mohamed Kainane Mezadek, Abdelhamid Mohammed Djaouti, Ashraf Al-Quran, and Ali M. A. Bany Awad. 2024. "Weakly Coupled Systems of Semi-Linear Fractional σ–Evolution Equations with Different Power Nonlinearities" Symmetry 16, no. 7: 884. https://doi.org/10.3390/sym16070884
APA StyleSaiah, S. A., Kainane Mezadek, A., Kainane Mezadek, M., Mohammed Djaouti, A., Al-Quran, A., & Bany Awad, A. M. A. (2024). Weakly Coupled Systems of Semi-Linear Fractional σ–Evolution Equations with Different Power Nonlinearities. Symmetry, 16(7), 884. https://doi.org/10.3390/sym16070884