Design and Optimization of a Mid-Field Wireless Power Transfer System for Enhanced Energy Transfer Efficiency
Abstract
1. Introduction
2. Methods
2.1. Implantable Rx Design
2.2. Tx Design
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Naser, M.; Al Bazar, H.; Abdel-Jaber, H. Investigational Study for Overcoming Security Challenges in Implantable Medical Devices. Int. J. Comput. Digit. Syst. 2024, 16, 1–10. [Google Scholar]
- Mahmud, S.; Nezaratizadeh, A.; Satriya, A.B.; Yoon, Y.K.; Ho, J.S.; Khalifa, A. Harnessing metamaterials for efficient wireless power transfer for implantable medical devices. Bioelectron. Med. 2024, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Moradi, F.; Heidari, H. Biointegrated and wirelessly powered implantable brain devices: A review. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Ahire, D.; Gond, V.J.; Chopade, J.J. Compensation topologies for wireless power transmission system in medical implant applications: A review. Biosens. Bioelectron. X 2022, 11, 100180. [Google Scholar] [CrossRef]
- Hu, X.Y.; Yin, W.L.; Du, F.; Zhang, C.; Xiao, P.; Li, G. Biomedical Applications and Challenges of In-body Implantable Antenna for Implantable Medical Devices: A Review. AEU-Int. J. Electron. Commun. 2023, 174, 155053. [Google Scholar] [CrossRef]
- Niotaki, K.; Carvalho, N.B.; Georgiadis, A.; Gu, X.; Hemour, S.; Wu, K.; Matos, D.; Belo, D.; Pereira, R.; Figueiredo, R.; et al. RF energy harvesting and wireless power transfer for energy autonomous wireless devices and RFIDs. IEEE J. Microw. 2023, 3, 763–782. [Google Scholar] [CrossRef]
- Stankiewicz, J.M. Analysis of the Influence of the Skin Effect on the Efficiency and Power of the Receiver in the Periodic WPT System. Energies 2023, 16, 2009. [Google Scholar] [CrossRef]
- Li, M.; Khaleghi, A.; Hasanvand, A.; Narayanan, R.P.; Balasingham, I. A New Design and Analysis for Metasurface-Based Near-field Magnetic Wireless Power Transfer for Deep Implants. IEEE Trans. Power Electron. 2024, 39, 6442–6454. [Google Scholar] [CrossRef]
- Shao, Y.; Kang, N.; Zhang, H.; Ma, R.; Liu, M.; Ma, C. A lightweight and robust drone MHz WPT system via novel coil design and impedance matching. IEEE Trans. Ind. Appl. 2023, 59, 3851–3864. [Google Scholar] [CrossRef]
- Sun, G.; Muneer, B.; Li, Y.; Zhu, Q. Ultracompact implantable design with integrated wireless power transfer and RF transmission capabilities. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 281–291. [Google Scholar] [CrossRef]
- Aboualalaa, M.; Pokharel, R.K.; Kaho, T. Extended Embedded Depth Using Cascaded Resonators Near-field WPT System with High Efficiency for Biomedical Implants. In Proceedings of the 2023 IEEE/MTT-S International Microwave Symposium-IMS 2023, San Diego, CA, USA, 11–16 June 2023; pp. 887–890. [Google Scholar]
- Verma, S.; Rano, D.; Hashmi, M. On the Use of Dual-Band SIMO and MIMO Based Defected Ground Structures in the Design, Characterization, and Validation of RF WPT System. IEEE Trans. Instrum. Meas. 2023, 72, 8003610. [Google Scholar] [CrossRef]
- Jabbari, A.; Simovski, C.; Mollaei, M.S. Tunable Dual-Band High Impedance Coil for Wireless Power Transfer Applications. IEEE Trans. Antennas Propag. 2023, 71, 9467–9476. [Google Scholar] [CrossRef]
- Zhang, Z.; Pang, H.; Georgiadis, A.; Cecati, C. Wireless power transfer—An overview. IEEE Trans. Ind. Electron. 2018, 66, 1044–1058. [Google Scholar] [CrossRef]
- Bercich, R.A.; Duffy, D.R.; Irazoqui, P.P. Far-field RF powering of implantable devices: Safety considerations. IEEE Trans. Biomed. Eng. 2013, 60, 2107–2112. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Kumar, S.; Singh, N.; Kanaujia, B.K.; Singh, S.P.; Lay-Ekuakille, A. Far-Field Wireless Power Transmission and Measurement for a Leadless Transcatheter Pacing System. IEEE Trans. Instrum. Meas. 2023, 72, 5503912. [Google Scholar] [CrossRef]
- Park, J.H.; Tran, N.M.; Hwang, S.I.; Kim, D.I.; Choi, K.W. Design and implementation of 5.8 GHz RF wireless power transfer system. IEEE Access 2021, 9, 168520–168534. [Google Scholar] [CrossRef]
- Yousaf, M.; Mabrouk, I.B.; Faisal, F.; Zada, M.; Bashir, Z.; Akram, A.; Nedil, M.; Yoo, H. Compacted conformal implantable antenna with multitasking capabilities for ingestible capsule endoscope. IEEE Access 2020, 8, 157617–157627. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, P.; Han, J.; Li, L.; Huang, Y. Metamaterials and metasurfaces for wireless power transfer and energy harvesting. Proc. IEEE 2021, 110, 31–55. [Google Scholar] [CrossRef]
- Haerinia, M.; Shadid, R. Wireless power transfer approaches for medical implants: A review. Signals 2020, 1, 209–229. [Google Scholar] [CrossRef]
- Song, M.; Jayathurathnage, P.; Zanganeh, E.; Krasikova, M.; Smirnov, P.; Belov, P.; Kapitanova, P.; Simovski, C.; Tretyakov, S.; Krasnok, A. Wireless power transfer based on novel physical concepts. Nat. Electron. 2021, 4, 707–716. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; He, D.; Tang, D.; Chen, Z. Design of a mid-field wireless power transmission system for deep-tissue implants. Technol. Health Care 2023, 32, 1341–1349. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.C.; Dash, J.C.; Sarkar, D. Parasitic Patch-based Power Transfer Efficiency Enhancement of WPT Systems using Circularly Polarized Antennas for IMDs. Authorea Preprints 2023. [Google Scholar] [CrossRef]
- Das, R.; Yoo, H. A multiband antenna associating wireless monitoring and nonleaky wireless power transfer system for biomedical implants. IEEE Trans. Microw. Theory Tech. 2017, 65, 2485–2495. [Google Scholar] [CrossRef]
- Basir, A.; Yoo, H. Efficient wireless power transfer system with a miniaturized quad-band implantable antenna for deep-body multitasking implants. IEEE Trans. Microw. Theory Tech. 2020, 68, 1943–1953. [Google Scholar] [CrossRef]
- Iqbal, A.; Al-Hasan, M.; Mabrouk, I.B.; Basir, A.; Nedil, M.; Yoo, H. Biotelemetry and wireless powering of biomedical implants using a rectifier integrated self-diplexing implantable antenna. IEEE Trans. Microw. Theory Tech. 2021, 69, 3438–3451. [Google Scholar] [CrossRef]
- Shaw, T.; Samanta, G.; Mitra, D. Efficient wireless power transfer system for implantable medical devices using circular polarized antennas. IEEE Trans. Antennas Propag. 2020, 69, 4109–4122. [Google Scholar] [CrossRef]
- Shah, S.M.A.; Zada, M.; Nasir, J.; Owais, O.; Yoo, H. Electrically-small antenna with low SAR for scalp and deep tissue biomedical devices. IEEE Access 2022, 10, 90971–90981. [Google Scholar] [CrossRef]
- Kiourti, A.; Nikita, K.S. A review of in-body biotelemetry devices: Implantables, ingestibles, and injectables. IEEE Trans. Biomed. Eng. 2017, 64, 1422–1430. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.A.A.; Yoo, H. Radiative near-field wireless power transfer to scalp-implantable biotelemetric device. IEEE Trans. Microw. Theory Tech. 2020, 68, 2944–2953. [Google Scholar] [CrossRef]
- Yadav, M.P.; Singh, R.K.; Ray, K.P. A Comparative Investigation on Effect of Coupling in Aperture Coupled Microstrip Antennas. Prog. Electromagn. Res. C 2022, 124, 69–79. [Google Scholar] [CrossRef]
- Hasgall, P.A.; Di Gennaro, F.; Baumgartner, C.; Neufeld, E.; Lloyd, B.; Gosselin, M.C.; Payne, D.; Klingenböck, A.; Kuster, N. IT’IS Database for Thermal and Electromagnetic Parameters of Biological Tissues; ScienceOpen, Inc.: Lexington, MA, USA, 2018; Version 4.0, 15. [Google Scholar]
- Nguyen, N.; Ha-Van, N.; Seo, C. Midfield wireless power transfer for deep-tissue biomedical implants. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 2270–2274. [Google Scholar] [CrossRef]
- Iqbal, A.; Sura, P.R.; Al-Hasan, M.; Mabrouk, I.B.; Denidni, T.A. Wireless power transfer system for deep-implanted biomedical devices. Sci. Rep. 2022, 12, 13689. [Google Scholar] [CrossRef] [PubMed]
Comparison Table | [33] | [34] | [30] | [16] | This Work | |
---|---|---|---|---|---|---|
WPT System | WPT Technique | Mid-Field | Near-Field | Near-Field | Far-Field | Mid-Field |
Transfer Distance | 55 mm | 60 mm | 0.1267 | 150 mm | 30 mm | |
PTE |S21|dB,% | −22.5 (0.56) | −37 (0.0199), −23.7 (0.42) | −25 (0.316) | −28.1 (0.1549) | −23 (0.501) | |
Implantable Antenna (Rx) | Dimensions () | 9 × 13 | 5 × 5.25 | 5.6 × 6 | 5 × 5 | 10 × 13 |
Operating Frequency | 1.5 GHz | 0.915, 2.45 GHz | 1900 MHz | 2.45 GHz | 1.71 GHz | |
Bandwidth (GHz) | 0.62 GHz | 1.45, 0.82 GHz | 0.9 MHz | 1.2 GHz | 0.99 GHz | |
S11 (dB) | −30 | −24, −29 | −25 | −40 | −32 | |
Gain (dB) | −20 | −22.1, −19.6 | −26.8 | −23 | −20 | |
Transmitting Antenna (Tx) | Dimensions () | 65 × 65 | 53 × 83 | 50 × 50 | 90 × 130 | 60 × 60 |
Operating Frequency | 1.5 GHz | 0.915, 2.45 GHz | 1900 MHz | 2.45 GHz | 1.71 GHz | |
Bandwidth (GHz) | 0.4 GHz | 1.9 GHz | 0.98 GHz | 0.9 GHz | 0.105 GHz | |
S22 (dB) | −17 | −30 | −30 | −30 | −47 | |
Gain (dB) | - | - | - | 8.1 | 5.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, D.; Ahmad, A.; Choi, D.-y. Design and Optimization of a Mid-Field Wireless Power Transfer System for Enhanced Energy Transfer Efficiency. Symmetry 2024, 16, 753. https://doi.org/10.3390/sym16060753
Khan D, Ahmad A, Choi D-y. Design and Optimization of a Mid-Field Wireless Power Transfer System for Enhanced Energy Transfer Efficiency. Symmetry. 2024; 16(6):753. https://doi.org/10.3390/sym16060753
Chicago/Turabian StyleKhan, Daud, Ashfaq Ahmad, and Dong-you Choi. 2024. "Design and Optimization of a Mid-Field Wireless Power Transfer System for Enhanced Energy Transfer Efficiency" Symmetry 16, no. 6: 753. https://doi.org/10.3390/sym16060753
APA StyleKhan, D., Ahmad, A., & Choi, D.-y. (2024). Design and Optimization of a Mid-Field Wireless Power Transfer System for Enhanced Energy Transfer Efficiency. Symmetry, 16(6), 753. https://doi.org/10.3390/sym16060753