A Singular Tempered Sub-Diffusion Fractional Model Involving a Non-Symmetrically Quasi-Homogeneous Operator
Abstract
:1. Introduction
- The nonlinearity of the equation contains a tempered fractional sub-diffusion term, and the reducing order technique of fractional derivatives and integrals is used;
- The equation involves a quasi-homogeneous nonlinear operator, which gives the model a wider range of applications;
- The nonlinear term may include the strong singularities in time and space variables.
2. Preliminaries and Lemmas
- (F)
- is continuous and, for any ,
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meerschaert, M.M.; Sabzikar, F. Tempered fractional Brownian motion. Stat. Probab. Lett. 2013, 83, 2269–2275. [Google Scholar] [CrossRef]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations. In North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Davenport, A.G. The spectrum of horizontal gustiness near the ground in high winds. Q. J. R. Meteorol. Soc. 1961, 87, 194–211. [Google Scholar] [CrossRef]
- Norton, D.J. Mobile offshore platform wind loads. In Proceedings of the 13th Offshore Technology Conference, OTC 4123, Houston, TX, USA, 4–7 May 1981; Volume 4, pp. 77–88. [Google Scholar]
- Koponen, I. Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Phys. Rev. E 1995, 52, 1197–1199. [Google Scholar] [CrossRef] [PubMed]
- Meerschaert, M.; Zhang, Y.; Baeumer, B. Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 2008, 35, L17403. [Google Scholar] [CrossRef]
- Zhang, Y.; Meerschaert, M. Gaussian setting time for solute transport in fluvial systems. Water Resour. Res. 2011, 47, W08601. [Google Scholar] [CrossRef]
- Carr, P.; Geman, H.; Madan, D.; Yor, M. The fine structure of asset returns: An empirical investigation. J. Bus. 2002, 75, 305–333. [Google Scholar] [CrossRef]
- Tang, H.; Wang, G. Limiting weak type behavior for multilinear fractional integrals. Nonlinear Anal. 2020, 2020, 197. [Google Scholar] [CrossRef]
- Shi, S.; Xiao, J. Fractional capacities relative to bounded open Lipschitz sets complemented. Calc. Var. Partial. Differ. Equ. 2017, 56, 1–22. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Q.; Jhang, S.; Kang, Q. Approximation theorems associated with multidimensional fractional fouried reansform and applications in Laplace and heat equations. Fractal. Fract. 2022, 6, 625. [Google Scholar] [CrossRef]
- Shi, S.; Xiao, J. On Fractional Capacities Relative to Bounded Open Lipschitz Sets. Potential Anal. 2016, 45, 261–298. [Google Scholar] [CrossRef]
- He, J.; Zhang, X.; Liu, L.; Wu, Y.; Cui, Y. A singular fractional Kelvin-Voigt model involving a nonlinear operator and their convergence properties. Bound. Value Probl. 2019, 2019, 112. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, L.; Wang, G. Some new inequalities and extremal solutions of a Caputo-Fabrizio fractional Bagley-Torvik differential equation. Fractal Fract. 2022, 6, 488. [Google Scholar] [CrossRef]
- Ren, T.; Li, S.; Zhang, X.; Liu, L. Maximum and minimum solutions for a nonlocal p-Laplacian fractional differential system from eco-economical processes. Bound. Value Probl. 2017, 2017, 118. [Google Scholar] [CrossRef]
- Ledesma, C.; Cuti, H.; Rodríguez, J.; Bonilla, M. Boundary value problem with tempered fractional derivatives and oscillating term. J.-Pseudo-Differ. Oper. Appl. 2023, 14, 62. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, P.; Tian, H.; Wu, Y. Upper and lower solution method for a singular tempered fractional equation with a p-Laplacian operator. Fractal Fract. 2023, 7, 522. [Google Scholar] [CrossRef]
- Chang, D.; Duong, X.; Li, J.; Wang, W.; Wu, Q. An explicit formula of Cauchy-Szegö kernel for quaternionic Siegel upper half space and applications. Indiana Univ. Math. J. 2021, 70, 2451–2477. [Google Scholar] [CrossRef]
- Chang, D.; Fu, Z.; Yang, D.; Yang, S. Real-variable characterizations of Musielak-Orlicz-Hardy spaces associated with Schrödinger operators on domains. Math. Methods Appl. Sci. 2016, 39, 533–569. [Google Scholar] [CrossRef]
- Ruan, J.; Fan, D.; Wu, Q. Weighted Herz space estimates for Hausdorff operators on the Heisenberg group. Banach J. Math. Anal. 2017, 11, 513–535. [Google Scholar] [CrossRef]
- Chen, P.; Duong, X.; Li, J.; Wu, Q. Compactness of Riesz transform commutator on stratified Lie groups. J. Funct. Anal. 2019, 277, 1639–1676. [Google Scholar] [CrossRef]
- Shi, S.; Fu, Z.; Lu, S. On the compactness of commutators of Hardy operators. Pac. J. Math. 2020, 307, 239–256. [Google Scholar] [CrossRef]
- Duong, X.; Lacey, M.; Li, J.; Wick, B.; Wu, Q. Commutators of Cauchy-Szego type integrals for domains in Cn with minimal smoothness. Indiana Univ. Math. J. 2021, 70, 1505–1541. [Google Scholar] [CrossRef]
- Bu, R.; Fu, Z.; Zhang, Y. Weighted estimates for bilinear square function with non-smooth kernels and commutators. Front. Math. China 2020, 15, 1–20. [Google Scholar] [CrossRef]
- Gong, R.; Vempati, M.; Wu, Q.; Xie, P. Boundedness and compactness of Cauchy-type integral commutator on weighted Morrey spaces. J. Aust. Math. Soc. 2022, 113, 3656. [Google Scholar] [CrossRef]
- Fu, Z.; Gong, S.; Lu, S.; Yuan, W. Weighted multilinear Hardy operators and commutators. Forum Math. 2015, 27, 2825–2852. [Google Scholar] [CrossRef]
- Gu, L.; Zhang, Z. Riemann boundary value problem for Harmonic functions in Clifford analysis. Math. Nachrichten 2014, 287, 1001–1012. [Google Scholar]
- Gu, L.; Liu, Y.; Lin, R. Some integral representation formulas and Schwarz lemmas related to perturbed Dirac operators. J. Appl. Anal. Comput. 2022, 12, 2475–2487. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Lu, S. Characterization of the central Campanato space via the commutator operator of Hardy type. J. Math. Anal. Appl. 2015, 429, 713732. [Google Scholar] [CrossRef]
- Gu, L.; Ma, D. Dirac, Operators with gradient potentials and related monogenic functions. Complex Anal. Oper. Theory 2020, 14, 53. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, P.; Wu, Y.; Wiwatanapataphee, B. A necessary and sufficient condition for the existence of entire large solutions to a k-Hessian system. Appl. Math. Lett. 2023, 145, 108745. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, P.; Tian, H.; Wu, Y. The iterative properties for positive solutions of a tempered fractional equation. Fractal Fract. 2023, 7, 761. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, J.; Wu, Y.; Wiwatanapataphee, B. Iterative properties of solution for a general singular n-Hessian equation with decreasing nonlinearity. Appl. Math. Lett. 2021, 112, 106826. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Z.; Chen, L. Classification of solutions for an integral system with negative exponents. Complex Var. Elliptic Equ. 2019, 64, 204–222. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, W. On strong indefinite Schrödinger equations with non-periodic potential. J. Appl. Anal. Comput. 2023, 13, 1–10. [Google Scholar]
- Chen, W.; Fu, Z.; Wu, Y. Positive solutions for nonlinear Schrodinger Kirchhoff equation in R3. Appl. Math. Lett. 2020, 104, 106274. [Google Scholar] [CrossRef]
- Yang, M.; Fu, Z.; Sun, J. Existence and large time behavior to coupled chemotaxis-fluid equations in Besov-Morrey spaces. J. Differ. Equ. 2019, 266, 5867–5894. [Google Scholar] [CrossRef]
- Yang, S.; Chang, D.; Yang, D.; Fu, Z. Gradient estimates via rearrangements for solutions of some Schrödinger equations. Anal. Appl. 2018, 16, 339–361. [Google Scholar] [CrossRef]
- Proinov, P.D. A generalization of the Banach contraction principle with high order of convergence of successive approximations. Nonlinear Anal. Theory Methods Appl. 2007, 67, 2361–2369. [Google Scholar] [CrossRef]
- Proinov, P.D. New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems. J. Complex. 2010, 26, 3–42. [Google Scholar] [CrossRef]
- Proinov, P.D. Two classes of iteration functions and Q-convergence of two iterative methods for polynomial zeros. Symmetry 2021, 13, 371. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, Y.; Li, L.; Wu, Y.; Wiwatanapataphee, B. Multiple positive solutions for a singular tempered fractional equation with lower order tempered fractional derivative. Electron. Res. Arch. 2024, 32, 1998–2015. [Google Scholar] [CrossRef]
- Deimling, K. Nonlinear Functional Analysis; Springer: Berlin, Germany, 1985. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Chen, P.; Li, L.; Wu, Y. A Singular Tempered Sub-Diffusion Fractional Model Involving a Non-Symmetrically Quasi-Homogeneous Operator. Symmetry 2024, 16, 671. https://doi.org/10.3390/sym16060671
Zhang X, Chen P, Li L, Wu Y. A Singular Tempered Sub-Diffusion Fractional Model Involving a Non-Symmetrically Quasi-Homogeneous Operator. Symmetry. 2024; 16(6):671. https://doi.org/10.3390/sym16060671
Chicago/Turabian StyleZhang, Xinguang, Peng Chen, Lishuang Li, and Yonghong Wu. 2024. "A Singular Tempered Sub-Diffusion Fractional Model Involving a Non-Symmetrically Quasi-Homogeneous Operator" Symmetry 16, no. 6: 671. https://doi.org/10.3390/sym16060671
APA StyleZhang, X., Chen, P., Li, L., & Wu, Y. (2024). A Singular Tempered Sub-Diffusion Fractional Model Involving a Non-Symmetrically Quasi-Homogeneous Operator. Symmetry, 16(6), 671. https://doi.org/10.3390/sym16060671