Results for Analytic Function Associated with Briot–Bouquet Differential Subordinations and Linear Fractional Integral Operators
Abstract
1. Introduction
2. Differential Subordination Results
3. Application
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sǎlǎgean, G.S. Subclass of Univalent Functios, Lecture Note in Math; Springer: Berlin, Germany, 1983; Volume 1013, pp. 362–372. [Google Scholar]
- Robertson, M.I.S. On the theory of univalent functions. Ann. Math. 1936, 37, 374–408. [Google Scholar] [CrossRef]
- Amini, E.; Al-Omari, S.; Nonlaopon, K.; Baleanu, D. Estimates for coefficients of bi-univalent functions associated with a fractional q-difference operator. Symmetry 2022, 14, 879. [Google Scholar] [CrossRef]
- Kohr, G.; Graham, I. Geometric Function Theory in One and Higher Dimensions; Marcel Dekker, Inc.: New York, NY, USA, 2003. [Google Scholar]
- Kanas, S. Techniques of the differential subordination for domains bounded by conic sections. Int. J. Math. Math. Sci. 2003, 2003, 2389–2400. [Google Scholar] [CrossRef]
- Amini, E.; Al-Omari, S.; Rahmatan, H. On geometric properties of certain subclasses of univalent functions defined by Noor integral operator. Analysis 2022, 42, 251–259. [Google Scholar] [CrossRef]
- Noor, K.I.; Murtaza, R.; Sokol, J. Some new subclasses of analytic functions defined by Srivastava-Owa-Ruscheweyh fractional derivative operator. Kyungpook Math. J. 2017, 57, 109–124. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications, Chapman & Hall/CRC Pure and Applied Mathematics, 1st ed.; CRC Press: Leiden, The Netherlands, 2000. [Google Scholar]
- Lupaş, A.A.; Oros, G.I. Differential subordination and superordination results using fractional integral of confluent hypergeometric function. Symmetry 2021, 13, 327. [Google Scholar] [CrossRef]
- Lupaş, A.A.; Oros, G.I. On special differential subordinations using fractional integral of Sǎlǎgean and Ruscheweyh operators. Symmetry 2021, 13, 1553. [Google Scholar] [CrossRef]
- Amini, E.; Fardi, M.; Al-Omari, S.; Nonlaopon, K. Results on univalent functions defined by q-analogues of Sǎlǎgean and Ruscheweh operators. Symmetry 2022, 14, 1725. [Google Scholar] [CrossRef]
- Amini, E.; Fardi, M.; Al-Omari, S.; Saadeh, R. Certain differential subordination results for univalent functions associated with q-Sǎlǎgean operators. AIMS Math. 2023, 8, 15892–15906. [Google Scholar] [CrossRef]
- Oros, G.I. Univalence conditions for gaussian hypergeometric function involving differential inequalities. Symmetry 2021, 13, 904. [Google Scholar] [CrossRef]
- Ibrahim, R.W. Geometric process solving a class of analytic functions using q-convolution differential operator. J. Taibah Univ. Sci. 2020, 14, 670–677. [Google Scholar] [CrossRef]
- Needham, D.J.; McAllister, D. Centre families in two-dimensional complex holomorphic dynamical systems. Proc. R. Soc. Lond. Ser. 1998, 454, 2267–2278. [Google Scholar] [CrossRef]
- Rong, F. The Briot-Bouquet systems and the center families for holomorphic dynamical systems. Adv. Math. 2013, 245, 237–249. [Google Scholar] [CrossRef]
- Habibi, M.; Mohammadgholiha, M.; Safarpour, H. Wave propagation characteristics of the electrically GNP-reinforced nanocomposite cylindrical shell. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 221. [Google Scholar] [CrossRef]
- Eenigenburg, P.; Miller, S.S.; Mocanu, P.T.; Read, M.O. On Briot-Bouquet differential surbordination. Rev. Roum. Math. Pures Appl. 1984, 29, 567–573. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Univalence of Gaussian and confluent hypergeometric functions. Proc. Am. Math. Soc. 1990, 110, 333–342. [Google Scholar] [CrossRef]
- Mohammed, A.; Darus, M. A generalized operator involving the q-hypergeometric function. Mat. Vesn. 2013, 65, 454–465. [Google Scholar]
- Vijaya, K.; Murugusundaramoorthy, G.; Kasthuri, M. Starlike functions of complex order involving q-hypergeometric functions with fixed point. Annales Universitatis Paedagogicae Cracoviensis. Stud. Math. 2014, 13, 51–63. [Google Scholar]
- Ponnusamy, S.; Vuorinen, M. Starlikeness of the Gaussian hypergeometric functions. Complex Var. Elliptic Equ. 2010, 55, 173–184. [Google Scholar]
- Ghanim, F.; Al-Janaby, H.F.; Bazighifan, O. Some new extensions on fractional differential and integral properties for Mittag-Leffler confluent hypergeometric function. Fractal Fract. 2021, 5, 143. [Google Scholar] [CrossRef]
- Antonino, J.A.; Miller, S.S. Systems of simultaneous differential inequalities, inclusions and subordinations in the complex plane. Anal. Math. Phys. 2020, 10, 32. [Google Scholar] [CrossRef]
- Restrepo, J.; Kılıçman, A.; Agarwal, P.; Altun, O. Weighted hypergeometric functions and fractional derivative. Adv. Differ. Equ. 2017, 2017, 105. [Google Scholar] [CrossRef]
- Srivastava, H.; Saxena, R. Operators of fractional integration and their applications. Appl. Math. Comput. 2001, 118, 1–52. [Google Scholar] [CrossRef]
- Gasper, G. Rahman, M. Basic Hypergeometric Series, 2nd ed.; Cambridge University PRESS: Cambridge, UK, 2004. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amini, E.; Salameh, W.; Al-Omari, S.; Zureigat, H. Results for Analytic Function Associated with Briot–Bouquet Differential Subordinations and Linear Fractional Integral Operators. Symmetry 2024, 16, 711. https://doi.org/10.3390/sym16060711
Amini E, Salameh W, Al-Omari S, Zureigat H. Results for Analytic Function Associated with Briot–Bouquet Differential Subordinations and Linear Fractional Integral Operators. Symmetry. 2024; 16(6):711. https://doi.org/10.3390/sym16060711
Chicago/Turabian StyleAmini, Ebrahim, Wael Salameh, Shrideh Al-Omari, and Hamzeh Zureigat. 2024. "Results for Analytic Function Associated with Briot–Bouquet Differential Subordinations and Linear Fractional Integral Operators" Symmetry 16, no. 6: 711. https://doi.org/10.3390/sym16060711
APA StyleAmini, E., Salameh, W., Al-Omari, S., & Zureigat, H. (2024). Results for Analytic Function Associated with Briot–Bouquet Differential Subordinations and Linear Fractional Integral Operators. Symmetry, 16(6), 711. https://doi.org/10.3390/sym16060711