Sharp Bounds on Toeplitz Determinants for Starlike and Convex Functions Associated with Bilinear Transformations
Abstract
1. Introduction, Definitions and Motivation
2. Main Results
3. Concluding Remarks and Observations
Funding
Data Availability Statement
Conflicts of Interest
References
- Duren, P.L. Univalent Functions; Grundlehren der mathematischen wissenchaffen, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Sakaguchi, K. On a certain univalent mapping. J. Math. Soc. Jpn. 1959, 11, 72–75. [Google Scholar] [CrossRef]
- Das, R.N.; Singh, P. On subclasses of schlicht mapping. Indian J. Pure Appl. Math. 1977, 8, 864–872. [Google Scholar]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Petersburg Beach, FL, USA, 4–7 June 1992; International Press: Cambridge, MA, USA, 1992; pp. 157–169. [Google Scholar]
- Ravichandran, V. Starlike and convex functions with respect to conjugate points. Acta Math. Acad. Paedagog. Nyí Regyháziensis New Ser. 2004, 20, 31–37. [Google Scholar]
- Khatter, K.; Ravichandran, V.; Kumar, S.S. Estimates for initial coefficients of certain starlike functions with respect to symmetric points. In Applied Analysis in Biological and Physical Sciences; Springer: Aligarh, India, 2016. [Google Scholar]
- Ganesh, K.; Bharavi, S.R.; Rajya, L.K. Third Hankel determinant for a class of functions with respect to symmetric points associated with exponential function. WSEAS Trans. Math. 2020, 19, 13. [Google Scholar] [CrossRef]
- Zaprawa, P. On coefficient problems for functions starlike with respect to symmetric points. Boletín Soc. Matemática Mex. 2022, 28, 17. [Google Scholar] [CrossRef]
- Milin, I.M. Univalent Functions and Orthonormal Systems; AMS Translations of Mathematical Monographs: Proovidence, RI, USA, 1977; Volume 49. [Google Scholar]
- Ye, K.; Lim, L.H. Every matrix is a product of Toeplitz matrices. Found. Comput. Math. 2016, 16, 577–598. [Google Scholar] [CrossRef]
- Grenander, U.; Szegö, G. Toeplitz Forms and Their Applications; University of California Press: Berkcley, CA, USA, 1958. [Google Scholar]
- Thomas, D.K.; Halim, S.A. Toeplitz matrices whose elements are the coefficients of starlike and close-to-convex functions. Bull. Malays. Math. Sci. Soc. 2017, 40, 1781–1790. [Google Scholar] [CrossRef]
- Ali, M.F.; Thomas, D.K.; Vasudevarao, A. Toeplitz determinants whose elements are the coefficients of analytic and univalent functions. Bull. Aust. Math. Soc. 2018, 97, 253–264. [Google Scholar] [CrossRef]
- Cudna, K.; Kwon, O.S.; Lecko, A.; Sim, Y.J.; Smiarowska, B. The second and third-order Hermitian Toeplitz determinants for starlike and convex functions of order α. Boletín Soc. Matemática Mex. 2020, 26, 361–375. [Google Scholar] [CrossRef]
- Obradović, M.; Tuneski, N. Hermitian Toeplitz determinants for the class of univalent functions. Armen. J. Math. 2021, 13, 1–10. [Google Scholar]
- Sun, Y.; Wang, Z.G. Sharp bounds on Hermitian Toeplitz determinants for Sakaguchi Classes. Bull. Malays. Math. Sci. Soc. 2023, 46, 59. [Google Scholar] [CrossRef]
- Mandal, S.; Roy, P.P.; Ahamed, M.B. Hankel and Toeplitz determinants of logarithmic coefficients of Inverse functions for certain classes of univalent functions. arXiv 2023, arXiv:2308.01548. [Google Scholar]
- Wanas, A.K.; Sakar, F.M.; Oros, G.I.; Cotîrlă, L.I. Toeplitz determinants for a certain family of analytic functions endowed with Borel distribution. Symmetry 2023, 15, 262. [Google Scholar] [CrossRef]
- Mandal, S.; Ahamed, M.B. Second Hankel determinant of logarithmic coefficients of inverse functions in certain classes of univalent functions. Lith. Math. J. 2024, 64, 67–79. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, V.; Das, L. Hermitian-Toeplitz determinants and some coefficient functionals for the starlike functions. Appl. Math. 2023, 68, 289–304. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Shaba, T.G.; Ibrahim, M.; Tchier, F.; Khan, B. Coefficient bounds and second Hankel determinant for a subclass of symmetric bi-starlike functions involving Euler polynomials. Bull. Sci. Math. 2024, 192, 103405. [Google Scholar] [CrossRef]
- Buyankara, M.; Çağlar, M. Hankel and Toeplitz determinants for a subclass of analytic functions. Mat. Stud. 2023, 60, 132–137. [Google Scholar] [CrossRef]
- Ali, R.M.; Kumar, S.; Ravichandran, V. The third Hermitian-Toeplitz and Hankel determinants for parabolic starlike functions. Bull. Korean Math. Soc. 2023, 60, 281–291. [Google Scholar]
- Sabir, P.O.; Agarwal, R.P.; Mohammedfaeq, S.J.; Mohammed, P.O.; Chorfi, N.; Abdeljawad, T. Hankel determinant for a general subclass of m-fold symmetric biunivalent functions defined by Ruscheweyh operators. J. Inequalities Appl. 2024, 2024, 14. [Google Scholar] [CrossRef]
- Dobosz, A. The third-order Hermitian Toeplitz determinant for alpha-convex functions. Symmetry 2021, 13, 1274. [Google Scholar] [CrossRef]
- Tang, H.; Gul, I.; Hussain, S.; Noor, S. Bounds for Toeplitz determinants and related inequalities for a new subclass of analytic functions. Mathematics 2023, 11, 3966. [Google Scholar] [CrossRef]
- Shakir, Q.A.; Atshan, W.G. On third Hankel determinant for certain subclass of bi-univalent functions. Symmetry 2024, 16, 239. [Google Scholar] [CrossRef]
- Efraimidis, I. A generalization of Livingston’s coefficient inequalities for functions with positive real part. J. Math. Anal. Appl. 2016, 435, 369–379. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabir, P.O. Sharp Bounds on Toeplitz Determinants for Starlike and Convex Functions Associated with Bilinear Transformations. Symmetry 2024, 16, 595. https://doi.org/10.3390/sym16050595
Sabir PO. Sharp Bounds on Toeplitz Determinants for Starlike and Convex Functions Associated with Bilinear Transformations. Symmetry. 2024; 16(5):595. https://doi.org/10.3390/sym16050595
Chicago/Turabian StyleSabir, Pishtiwan Othman. 2024. "Sharp Bounds on Toeplitz Determinants for Starlike and Convex Functions Associated with Bilinear Transformations" Symmetry 16, no. 5: 595. https://doi.org/10.3390/sym16050595
APA StyleSabir, P. O. (2024). Sharp Bounds on Toeplitz Determinants for Starlike and Convex Functions Associated with Bilinear Transformations. Symmetry, 16(5), 595. https://doi.org/10.3390/sym16050595