Revealing Crack Propagation and Mechanical Behavior of Corroded Aluminum Alloys
Abstract
1. Introduction
2. Method
3. Result and Discussion
3.1. Corrosion Depth
3.2. Corrosion Width
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, H.; Sohn, S.S.; Lu, W.; Li, L.; Li, X.; Soundararajan, C.K.; Raabe, D. A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion. Nat. Commun. 2020, 11, 3081. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Huang, Y.; Li, L.; Wei, G.; Li, H.; Shang, Q.; Tao, X. A corrosion inhibiting layer to tackle the irreversible lithium loss in lithium metal batteries. Nat. Commun. 2023, 14, 8269. [Google Scholar] [CrossRef] [PubMed]
- Esmaily, M.; Svensson, J.E.; Fajardo, S.; Birbilis, N.; Frankel, G.S.; Virtanen, S.; Johansson, L.G. Fundamentals and advances in magnesium alloy corrosion. Prog. Mater. Sci. 2017, 89, 92. [Google Scholar] [CrossRef]
- Wu, P.; Gan, K.; Yan, D.; Fu, Z.; Li, Z. A non-equiatomic FeNiCoCr high-entropy alloy with excellent anti-corrosion performance and strength-ductility synergy. Corros. Sci. 2021, 183, 109341. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, Y.; Zheng, G.; Woller, K.B.; Stahle, P.W.; Minor, A.M.; Short, M.P. Proton irradiation-decelerated intergranular corrosion of Ni-Cr alloys in molten salt. Nat. Commun. 2020, 11, 3430. [Google Scholar] [CrossRef]
- López Freixes, M.; Zhou, X.; Zhao, H.; Godin, H.; Peguet, L.; Warner, T.; Gault, B. Revisiting stress-corrosion cracking and hydrogen embrittlement in 7xxx-Al alloys at the near-atomic-scale. Nat. Commun. 2022, 13, 4290. [Google Scholar] [CrossRef] [PubMed]
- Esquivel, J.; Gupta, R.K. Corrosion-resistant metastable Al alloys: An overview of corrosion mechanisms. J. Electrochem. Soc. 2020, 167, 081504. [Google Scholar] [CrossRef]
- Ji, Y.; Li, N.; Cheng, Z.; Fu, X.; Ao, M.; Li, M.; Dong, C. Random forest incorporating ab-initio calculations for corrosion rate prediction with small sample Al alloys data. npj Mater. Degrad. 2022, 6, 83. [Google Scholar] [CrossRef]
- Guo, X.H.; Ren, Y.J.; Shen, J.; Dai, T.; Lv, Y.L.; Niu, Y. The corrosion behavior of Co-Cr-Al alloys exposed to mixed oxygen-sulfur atmospheres at 900 °C. Corros. Sci. 2021, 188, 109530. [Google Scholar] [CrossRef]
- Tan, W.; Li, T.; Li, S.; Fang, D.; Ding, X.; Sun, J. High strength-ductility and rapid degradation rate of as-cast Mg-Cu-Al alloys for application in fracturing balls. J. Mater. Sci. Technol. 2021, 94, 22. [Google Scholar] [CrossRef]
- Sun, W.; Zhu, Y.; Marceau, R.; Wang, L.; Zhang, Q.; Gao, X.; Hutchinson, C. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity. Science 2019, 363, 972. [Google Scholar] [CrossRef] [PubMed]
- Asadikiya, M.; Yang, S.; Zhang, Y.; Lemay, C.; Apelian, D.; Zhong, Y. A review of the design of high-entropy aluminum alloys: A pathway for novel Al alloys. J. Mater. Sci. 2021, 56, 12093. [Google Scholar] [CrossRef]
- Zhao, H.; Chakraborty, P.; Ponge, D.; Hickel, T.; Sun, B.; Wu, C.H.; Raabe, D. Hydrogen trapping and embrittlement in high-strength Al alloys. Nature 2022, 602, 437. [Google Scholar] [CrossRef] [PubMed]
- Garner, A.; Euesden, R.; Yao, Y.; Aboura, Y.; Zhao, H.; Donoghue, J.; Prangnell, P.B. Multiscale analysis of grain boundary microstructure in high strength 7xxx Al alloys. Acta Mater. 2021, 202, 190. [Google Scholar] [CrossRef]
- Wang, Y.; Freiberg, D.; Huo, Y.; Zhu, W.; Williams, R.; Li, M.; Wang, Y. Shapes of nano Al6Mn precipitates in Mn-containing Al-alloys. Acta Mater. 2023, 249, 118819. [Google Scholar] [CrossRef]
- Bousser, E.; Rogov, A.; Shashkov, P.; Gholinia, A.; Laugel, N.; Slater, T.J.; Yerokhin, A. Phase transitions in alumina films during post-sparking anodising of Al alloys. Acta Mater. 2023, 244, 118587. [Google Scholar] [CrossRef]
- Gao, P.F.; Fei, M.Y.; Zhan, M.; Fu, M.W. Microstructure-and damage-nucleation-based crystal plasticity finite element modeling for the nucleation of multi-type voids during plastic deformation of Al alloys. Int. J. Plast. 2023, 165, 103609. [Google Scholar] [CrossRef]
- Zha, M.; Zhang, H.; Jia, H.; Gao, Y.; Jin, S.; Sha, G.; Li, Y. Prominent role of multi-scale microstructural heterogeneities on superplastic deformation of a high solid solution Al–7Mg alloy. Int. J. Plast. 2021, 146, 103108. [Google Scholar] [CrossRef]
- Kovalov, D.; Fekete, B.; Engelhardt, G.R.; Macdonald, D.D. Prediction of corrosion fatigue crack growth rate in alloys. Part I: General corrosion fatigue model for aero-space aluminum alloys. Corros. Sci. 2018, 141, 22. [Google Scholar] [CrossRef]
- Winzer, N.; Atrens, A.; Dietzel, W.; Raja, V.S.; Song, G.; Kainer, K.U. Characterisation of stress corrosion cracking (SCC) of Mg–Al alloys. Mater. Sci. Eng. A 2008, 488, 339. [Google Scholar] [CrossRef]
- Qin, J.; Li, Z.; Yi, D.; Wang, B. Diversity of intergranular corrosion and stress corrosion cracking for 5083 Al alloy with different grain sizes. Trans. Nonferrous Met. Soc. China 2022, 32, 765. [Google Scholar] [CrossRef]
- Winzer, N.; Atrens, A.; Dietzel, W.; Song, G.; Kainer, K.U. Fractography of stress corrosion cracking of Mg-Al alloys. Metall. Mater. Trans. A 2008, 39, 1157. [Google Scholar] [CrossRef]
- Cavalcante, T.R.F.; Pereira, G.S.; Koga, G.Y.; Bolfarini, C.; Bose Filho, W.W.; Avila, J.A. Fatigue crack propagation of aeronautic AA7050-T7451 and AA2050-T84 aluminum alloys in air and saline environments. Int. J. Fatigue 2022, 154, 106519. [Google Scholar] [CrossRef]
- Scully, J.C. Stress corrosion crack propagation: A constant charge criterion. Corros. Sci. 1975, 15, 207. [Google Scholar] [CrossRef]
- Song, H.; Liu, C.; Zhang, H.; Du, J.; Yang, X.; Leen, S.B. In-Situ SEM study of fatigue micro-crack initiation and propagation behavior in pre-corroded AA7075-T7651. Int. J. Fatigue 2020, 137, 105655. [Google Scholar] [CrossRef]
- Cui, Y.; Song, K.; Bao, Y.; Zhu, Y.; Liu, Q.; Qian, P. Effect of Cu and Mg co-segregation on the strength of the Al grain boundaries: A molecular dynamics simulation. Comput. Mater. Sci. 2023, 229, 112391. [Google Scholar] [CrossRef]
- Dolce, D.; Swamy, A.; Hoyt, J.; Choudhury, P. Computing the solid-liquid interfacial free energy and anisotropy of the Al-Mg system using a MEAM potential with atomistic simulations. Comput. Mater. Sci. 2023, 217, 111901. [Google Scholar] [CrossRef]
- Wu, C.D.; Fang, T.H.; Sung, P.H.; Hsu, Q.C. Critical size, recovery, and mechanical property of nanoimprinted Ni–Al alloys investigation using molecular dynamics simulation. Comput. Mater. Sci. 2012, 53, 321. [Google Scholar] [CrossRef]
- Yang, R.; Feng, Z.; Huang, T.; Wu, G.; Godfrey, A.; Huang, X. Unprecedented age-hardening and its structural requirement in a severely deformed Al-Cu-Mg alloy. Scr. Mater. 2022, 206, 114240. [Google Scholar] [CrossRef]
- Bansal, U.; Singh, M.P.; Sinha, S.K.; Sahu, D.K.; Mondol, S.; Makineni, S.K.; Chattopadhyay, K. Strength and stability through variable micro segregation behaviour of Ta and Zr solutes at intermetallic interfaces in Al-Cu alloys. Acta Mater. 2023, 259, 119254. [Google Scholar] [CrossRef]
- Lee, B.J.; Baskes, M.I. Second nearest-neighbor modified embedded-atom-method potential. Phys. Rev. B 2000, 62, 8564. [Google Scholar] [CrossRef]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Jia, M.; Wu, Z.; Wang, H.; Rena, C.Y.; Zhang, X. Analytical method for predicting mode I crack propagation process of concrete under low-cycle fatigue loading. Eng. Fract. Mech. 2023, 286, 109320. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Ma, G. Experimental investigation on Mode I crack growth and damage mechanism of sandstone subjected to cyclic loading. Eng. Fract. Mech. 2022, 267, 108429. [Google Scholar] [CrossRef]
- Zhao, G.L.; Qi, H.Y.; Li, S.L.; Liu, Y.; Yang, X.G.; Shi, D.Q.; Sun, Y.T. Low-temperature hot corrosion fatigue damage mechanism, life model, and corrosion resistance design method of hot section components. Adv. Mech. 2022, 52, 809. [Google Scholar]
- Li, J.; Fang, Q.H.; Liu, B.; Liu, Y.; Liu, Y.W.; Wen, P.H. Mechanism of crack healing at room temperature revealed by atomistic simulations. Acta Mater. 2015, 95, 291. [Google Scholar] [CrossRef]
- Fang, Q.; Li, J.; Luo, H.; Du, J.; Liu, B. Atomic scale investigation of nanocrack evolution in single-crystal and bicrystal metals under compression and shear deformation. J. Alloys Compd. 2017, 710, 281. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.; He, Q.; Fang, Q.; Liu, B.; Jiang, C.; Liaw, P.K. Unveiling the atomic-scale origins of high damage tolerance of single-crystal high entropy alloys. Phys. Rev. Mater. 2020, 4, 103612. [Google Scholar] [CrossRef]
- Wang, H.; Chen, D.; An, X.; Zhang, Y.; Sun, S.; Tian, Y.; Liao, X. Deformation-induced crystalline-to-amorphous phase transformation in a CrMnFeCoNi high-entropy alloy. Sci. Adv. 2021, 7, eabe3105. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhou, C.; Wu, R.; Sun, L.; Lu, C.; Xiao, Y.; Wu, G. Synergistic strengthening of Al–SiC composites by nano-spaced SiC-nanowires and the induced high-density stacking faults. Compos. Part B Eng. 2023, 250, 110458. [Google Scholar] [CrossRef]
- Ahmad, S.I.; Zekri, A.; Youssef, K.M. The role of twinning and stacking fault-induced plasticity on the mechanical properties of aluminum-lithium-graphene nanocomposites. Nanocomposites 2024, 10, 91–107. [Google Scholar] [CrossRef]
- Peng, P.; Wang, W.; Jin, Y.; Liu, Q.; Zhang, T.; Qiao, K.; Wang, K. Experimental investigation on fatigue crack initiation and propagation mechanism of friction stir lap welded dissimilar joints of magnesium and aluminum alloys. Mater. Charact. 2021, 177, 111176. [Google Scholar] [CrossRef]
- Li, Q.; Shang, Z.; Sun, X.; Fan, C.; Su, R.; Richter, N.A.; Zhang, X. High-strength and tunable plasticity in sputtered Al–Cr alloys with multistage phase transformations. Int. J. Plast. 2021, 137, 102915. [Google Scholar] [CrossRef]
- Li, J.; Fang, Q.; Liu, Y. Crack interaction with a second phase nanoscale circular inclusion in an elastic matrix. Int. J. Eng. Sci. 2013, 72, 89. [Google Scholar] [CrossRef]
- Gong, B.; Zhang, Z.; Duan, Q.; Wang, H.; Wang, X.; Liu, H.; Zhang, Z. Comparison on the Fatigue Crack Propagation of High-Strength Aluminum Alloys. Adv. Eng. Mater. 2023, 25, 2301083. [Google Scholar] [CrossRef]
- Lu, D.; Lin, B.; Liu, T.; Deng, S.; Guo, Y.; Li, J.; Liu, D. Effect of grain structure on fatigue crack propagation behavior of Al-Cu-Li alloys. J. Mater. Sci. Technol. 2023, 148, 75. [Google Scholar] [CrossRef]
- Bogdanoff, T.; Lattanzi, L.; Merlin, M.; Ghassemali, E.; Seifeddine, S. The influence of copper addition on crack initiation and propagation in an Al–Si–Mg alloy during cyclic testing. Materialia 2020, 12, 100787. [Google Scholar] [CrossRef]
- Wang, P.; Ye, L.; Liu, X.; Dong, Y.; Zhao, L. Effects of grain structures on fatigue crack propagation behavior of an Al-Cu-Li alloy. Int. J. Fatigue 2023, 177, 107927. [Google Scholar] [CrossRef]
- Ma, M.; Wang, B.; Liu, H.; Yi, D.; Shen, F.; Zhai, T. Investigation of fatigue crack propagation behavior of 5083 aluminum alloy under various stress ratios: Role of grain boundary and Schmid factor. Mater. Sci. Eng. A 2020, 773, 138871. [Google Scholar] [CrossRef]
- Snopiński, P. Electron Microscopy Study of Structural Defects Formed in Additively Manufactured AlSi10Mg Alloy Processed by Equal Channel Angular Pressing. Symmetry 2023, 15, 860. [Google Scholar] [CrossRef]
- Snopiński, P. Effects of KoBo-Processing and Subsequent Annealing Treatment on Grain Boundary Network and Texture Development in Laser Powder Bed Fusion (LPBF) AlSi10Mg Alloy. Symmetry 2024, 16, 122. [Google Scholar] [CrossRef]
Material | Aluminum Alloy |
---|---|
Composition | Al-3%Cu (at.%) |
Dimension | 60.2 nm × 88.6 nm × 4.0 nm |
Atomic count | 1,316,220 |
Time step | 1 fs |
Temperature | 300 K |
Crack length | 10 nm |
Corrosion depth | 1 nm, 2 nm, and 3 nm |
Corrosion width | 0.8 nm, 1.2 nm, 2 nm, and 4 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, A.; Fang, Q.; Yang, W.; Fan, W.; Li, J. Revealing Crack Propagation and Mechanical Behavior of Corroded Aluminum Alloys. Symmetry 2024, 16, 422. https://doi.org/10.3390/sym16040422
Zhang Y, Wang A, Fang Q, Yang W, Fan W, Li J. Revealing Crack Propagation and Mechanical Behavior of Corroded Aluminum Alloys. Symmetry. 2024; 16(4):422. https://doi.org/10.3390/sym16040422
Chicago/Turabian StyleZhang, Yong, Andong Wang, Qihong Fang, Wenfei Yang, Weijie Fan, and Jia Li. 2024. "Revealing Crack Propagation and Mechanical Behavior of Corroded Aluminum Alloys" Symmetry 16, no. 4: 422. https://doi.org/10.3390/sym16040422
APA StyleZhang, Y., Wang, A., Fang, Q., Yang, W., Fan, W., & Li, J. (2024). Revealing Crack Propagation and Mechanical Behavior of Corroded Aluminum Alloys. Symmetry, 16(4), 422. https://doi.org/10.3390/sym16040422