On Some Combinatorial Properties of Balancing Split Quaternions
Abstract
:1. Introduction
2. Balancing and Lucas-Balancing Numbers
3. The Balancing Split Quaternions and Lucas-Balancing Split Quaternions
- (i)
- (ii)
- (i)
- (ii)
4. Some Identities for the Balancing Split Quaternions and Lucas-Balancing Split Quaternions
5. Generating Functions and Matrix Representations
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, F. Quaternions and matrices of quaternions. Linear Algebra Appl. 1997, 251, 21–57. [Google Scholar] [CrossRef]
- Leo, S.; Scolarici, G.; Solombrino, L. Quaternionic eiqenvalue problem. J. Math. Phys. 2002, 43, 5815–5829. [Google Scholar] [CrossRef]
- Ward, J.P. Quaternions and Cayley Numbers: Algebra and Applications; Springer: Berlin/Heidelberg, Germany, 2012; Volume 403. [Google Scholar]
- Jafari, M.; Yayli, Y. Generalized quaternions and their algebraic properties. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2015, 64, 15–27. [Google Scholar]
- Cockle, J. On systems of algebra involving more than one imaginary. Philos. Mag. III 1849, 35, 434–435. [Google Scholar]
- Pogoruy, A.A.; Rodrigues-Dagnino, R.M.R. Some algebraic and Analytical Properties of Coquaternion Algebra. Adv. Appl. Clifford Algebr. 2010, 20, 79–84. [Google Scholar] [CrossRef]
- Özdemir, M. The roots of a split quaternion. Appl. Math. Lett. 2009, 22, 258–263. [Google Scholar] [CrossRef]
- Alagöz, Y.; Kürşat, H.O.; Yüce, S. Split quaternion matrices. Miskolc Math. Notes 2012, 13, 223–232. [Google Scholar] [CrossRef]
- Karaca, E.; Yilmaz, F.; Çalışkan, M. A Unified Approach: Split Quaternions with Quaternion Coefficients and Quaternions with Dual Coefficients. Mathematics 2020, 8, 2149. [Google Scholar] [CrossRef]
- Kula, L.; Yayli, Y. Split quaternions and rotations in semi euclidian space . J. Korean Math. Soc. 2007, 44, 1313–1327. [Google Scholar] [CrossRef]
- Antonuccio, F. Split-Quaternions and the Dirac Equation. Adv. Appl. Clifford Algebr. 2015, 25, 13–29. [Google Scholar] [CrossRef]
- Adler, S.L. Quaternionic Quantum Mechanics and Quantum Fields; Oxford U.P.: New York, NY, USA, 1994. [Google Scholar]
- Berthier, M.; Prencipe, N.; Provenzi, E. Split quaternions for perceptual white balance. IEEE Signal Process. Mag. 2023; in press. [Google Scholar]
- Behera, A.; Panda, G.K. On the square roots of triangular numbers. Fibonacci Q. 1999, 37, 98–105. [Google Scholar]
- Catarino, P.; Campos, H.; Vasco, P. On some identities for balancing and cobalancing numbers. Ann. Math. Inform. 2015, 45, 11–24. [Google Scholar]
- Panda, G.K.; Ray, P.K. Cobalancing numbers and cobalancers. Int. J. Math. Math. Sci. 2005, 8, 1189–1200. [Google Scholar] [CrossRef]
- Ray, P.K. Certain Matrices Associated with Balancing and Lucas-balancing Numbers. Matematika 2012, 28, 15–22. [Google Scholar]
- Horadam, A.F. Complex Fibonacci Numbers and Fibonacci Quaternions. Am. Math. Mon. 1963, 70, 289–291. [Google Scholar] [CrossRef]
- Akyiğit, M.; Kösal, H.H.; Tosun, M. Split Fibonacci Quaternions. Adv. Appl. Clifford Algebr. 2013, 23, 535–545. [Google Scholar] [CrossRef]
- Polatli, E.; Kizilates, C.; Kesim, S. On Split k-Fibonacci and k-Lucas Quaternions. Adv. Appl. Clifford Algebr. 2016, 26, 353–362. [Google Scholar] [CrossRef]
- Tokeşer, Ü.; Ünal, Z.; Bilgici, G. Split Pell and Pell-Lucas Quaternions. Adv. Appl. Clifford Algebr. 2017, 27, 1881–1893. [Google Scholar] [CrossRef]
- Patel, B.K.; Ray, P.K. On balancing and Lucas-balancing Quaternions. Commun. Math. 2021, 29, 325–341. [Google Scholar] [CrossRef]
- Sevgi, E.; Taşci, D. Bi-periodic balancing quaternions. Turk. J. Math. Comput. Sci. 2020, 12, 68–75. [Google Scholar] [CrossRef]
- Ray, P.K.; Sahu, J. Generating functions for certain balancing and Lucas-balancing numbers. Palest. J. Math. 2016, 5, 122–129. [Google Scholar]
- Özkoç, A. Tridiagonal matrices via k-balancing number. Br. J. Math. Comput. Sci. 2015, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Özkoç, A.; Tekcan, A. On k-balancing numbers. Notes Number Theory Discret. Math. 2017, 23, 38–52. [Google Scholar]
- Ray, P.K. On the properties of k-balancing and k-Lucas-balancing numbers. Acta Comment. Univ. Tartu. Math. 2017, 21, 259–274. [Google Scholar] [CrossRef]
- Patel, B.K.; Irmak, N.; Ray, P.K. Incomplete balancing and Lucas-balancing numbers. Math. Rep. 2018, 20, 59–72. [Google Scholar]
- Liptai, K.; Luca, F.; Pintérm, Á.; Szalay, L. Generalized balancing numbers. Indag. Math. 2009, 20, 87–100. [Google Scholar] [CrossRef]
- Panda, G.K.; Panda, A.K. Almost balancing numbers. J. Indian Math. Soc. 2015, 82, 147–156. [Google Scholar]
- Panda, A.K.; Panda, G.K. Circular balancing numbers. Fibonacci Q. 2017, 55, 309–314. [Google Scholar]
- Kovács, T.; Liptai, K.; Olajos, P. On (a, b)-Balancing Numbers. Publ. Math. Debrecen 2010, 77, 485–498. [Google Scholar] [CrossRef]
- Davala, R.K.; Panda, G.K. Supercobalancing numbers. Matematika 2016, 32, 31–42. [Google Scholar] [CrossRef]
- Chailangka, N.; Pakapongpun, A. Neo balancing numbers. Int. J. Math. Comput. Sci. 2021, 16, 1653–1664. [Google Scholar]
n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
0 | 1 | 6 | 35 | 204 | 1189 | 6930 | 40,391 | |
1 | 3 | 17 | 99 | 577 | 3363 | 19,601 | 114,243 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bród, D. On Some Combinatorial Properties of Balancing Split Quaternions. Symmetry 2024, 16, 373. https://doi.org/10.3390/sym16030373
Bród D. On Some Combinatorial Properties of Balancing Split Quaternions. Symmetry. 2024; 16(3):373. https://doi.org/10.3390/sym16030373
Chicago/Turabian StyleBród, Dorota. 2024. "On Some Combinatorial Properties of Balancing Split Quaternions" Symmetry 16, no. 3: 373. https://doi.org/10.3390/sym16030373
APA StyleBród, D. (2024). On Some Combinatorial Properties of Balancing Split Quaternions. Symmetry, 16(3), 373. https://doi.org/10.3390/sym16030373