Diamond-Type Dirac Dynamic System in Mathematical Physics
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hilger, S. Ein Masskettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. Thesis, Universität Würzburg, Würzburg, Germany, 1988. [Google Scholar]
- Hilger, S. Analysis on measure chains—A unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Aulbach, B.; Hilger, S. Linear dynamic processes with inhomogeneous time scale. In Nonlinear Dynamics and Quantum Dynamical Systems; Akademie Verlag: Berlin, Germany, 1990; Volume 59, pp. 9–20. [Google Scholar]
- Aulbach, B.; Hilger, S. A unified approach to continuous and discrete dynamics, Qualitive theory of differential equaitons (Szeged 1988). In Colloquia Mathematica Societatis Jànos Bolyai; North-Holland Pub. Co.: Amsterdam, The Netherlands, 1988; Volume 53, pp. 37–56. [Google Scholar]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser Boston: Boston, MA, USA, 2001. [Google Scholar]
- Bohner, M.; Peterson, A.C. Advances in Dynamic Equations on Time Scales; Birkhäuser Boston: Boston, MA, USA, 2003. [Google Scholar]
- Guseinov, G.S.; Kaymakcalan, B. Basics of Riemann Δ and ∇ integration on time scales. J. Differ. Equ. Appl. 2002, 8, 1001–1017. [Google Scholar] [CrossRef]
- Caputo, M.C. Time scales: From nabla calculus to delta calculus and vice versa via duality. Int. J. Differ. Equ. 2010, 5, 25–40. [Google Scholar]
- Atici, F.M.; Guseinov, G.S. On Green’s functions and positive solutions for boundary value problems on time scales. J. Comput. Appl. Math. 2002, 141, 75–99. [Google Scholar] [CrossRef]
- Bohner, M.; Georgiev, S. Multivariable Dynamic Calculus on Time Scales; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Sheng, Q.; Fadag, M.; Henderson, J.; Davis, J.M. An exploration of combined dynamic derivatives on time scales and their applications. Nonlinear Anal. Real World Appl. 2006, 7, 395–413. [Google Scholar] [CrossRef]
- Rogers, J.W., Jr.; Sheng, Q. Notes on the diamond dynamic derivative on time scales. J. Math. Anal. Appl. 2007, 326, 228–241. [Google Scholar] [CrossRef]
- Sheng, Q. Hybrid approximations via second order combined dynamic derivatives on time scales. Electron. J. Qual. Theory Differ. Equ. 2007, 17, 1–13. [Google Scholar] [CrossRef]
- Sidi Ammi, M.R.; Ferreira, R.A.; Torres, D.F. Diamond-Jensen’s inequality on time scales. J. Inequalities Appl. 2008, 2008, 1–13. [Google Scholar] [CrossRef]
- Mozyrska, D.; Torres, D.F.M. A study of diamond alpha dynamic equations on regular time scales. Afr. Diaspora J. Math. 2009, 8, 35–47. [Google Scholar]
- Malinowska, A.B.; Torres, D.F.M. On the diamond alpha Riemann integral and mean value theorems on time scales. Dyn. Syst. Appl. 2009, 18, 469–482. [Google Scholar]
- Mozyrska, D.; Torres, D.F.M. Diamond-alpha polynomial series on time scales. Int. J. Math. Stat. 2009, 5, 92–101. [Google Scholar]
- Ozkan, U.M.; Kaymakçalan, B. Basics of diamond-α partial dynamic calculus on time scales. Math. Comput. Model. 2009, 50, 1253–1261. [Google Scholar] [CrossRef]
- Sidi Ammi, M.R.; Torres, D.F. Holder’s and Hardy’s two dimensional diamond-alpha inequalities on time scales. Ann. Univ. Craivo, Math. Comput. Sci. Ser. 2010, 37, 1–11. [Google Scholar]
- Brito da Cruz, A.M.; Martins, N.; Torres, D.F. The diamond integral on time scales. Bull. Malays. Math. Sci. Soc. 2015, 38, 1453–1462. [Google Scholar] [CrossRef]
- El-Deeb, A.A.; Awrejcewicz, J. Diamond-α Hardy-type inequalities on time scales. Symmetry 2022, 14, 2047. [Google Scholar] [CrossRef]
- Agarwal, R.; O’Regan, D.; Saker, S. Dynamic Inequalities on Time Scales; Springer: Berlin/Heidelberg, Germany, 2014; Volume 2014. [Google Scholar]
- Martynyuk, A.A. Stability Theory for Dynamic Equations on Time Scales; Springer International Publishing: Basel, Switzerland, 2016. [Google Scholar]
- Mozyrska, D.; Torres, D.F. Diamond-alpha polynomial series on time scales. arXiv 2008, arXiv:0805.0274. [Google Scholar]
- Dirac, P.A.M. The quantum theory of the electron. Proc. R. Soc. Math. Phys. Eng. Sci. 1928, 117, 610–624. [Google Scholar]
- Levitan, B.M.; Sargsjan, I.S. Sturm–Liouville and Dirac Operators; Nauka: Moscow, Russia, 1991. [Google Scholar]
- Joa, I.; Minkin, A. Eigenfunction estimate for a Dirac operator. Acta Math. Hung. 1997, 76, 337–349. [Google Scholar] [CrossRef]
- Bairamov, E.; Aygar, Y.; Olgun, M. Jost solution and the spectrum of the discrete Dirac systems. Bound. Value Probl. 2010, 306571, 1–11. [Google Scholar] [CrossRef]
- Keskin, B.; Ozkan, A.S. Inverse spectral problems for Dirac operator with eigenvalue dependent boundary and jump conditions. Acta Math. Hung. 2011, 130, 309–320. [Google Scholar] [CrossRef]
- Gulsen, T.; Yilmaz, E. Spectral theory of Dirac system on time scales. Appl. Anal. 2017, 96, 2684–2694. [Google Scholar] [CrossRef]
- Hovhannisyan, G. On Dirac equation on a time scale. J. Math. Phys. 2011, 52, 102701. [Google Scholar] [CrossRef]
- Allahverdiev, B.P.; Tuna, H. One-dimensional q-Dirac equation. Math. Methods Appl. Sci. 2017, 40, 7287–7306. [Google Scholar] [CrossRef]
- Gulsen, T.; Yilmaz, E.; Goktas, S. Conformable fractional Dirac system on time scales. J. Inequalities Appl. 2017, 2017, 161. [Google Scholar] [CrossRef]
- Koprubası, T. A study of impulsive discrete Dirac system with hyperbolic eigenparameter. Turk. J. Math. 2021, 45, 540–548. [Google Scholar] [CrossRef]
- Gasymov, M.G.; Levitan, B.M. The inverse problem for the Dirac system. Dokl. Akad. Nauk. SSSR 1996, 167, 967970. [Google Scholar]
- Prats, F.; Toll, J.S. Construction of the Dirac equation central potential from phase shifts and bound states. Phys. Rev. 1959, 113, 363–370. [Google Scholar] [CrossRef]
- Panakhov, E.S. The defining of Dirac system in two incompletely set collection of eigenvalues. Dokl. Akad. AzSSR 1985, 5, 8–12. [Google Scholar]
- Watson, B.A. Inverse spectral problems for weighted Dirac systems. Inverse Probl. 1999, 15, 793–805. [Google Scholar] [CrossRef]
- Kerimov, N.B. A boundary value problem for the Dirac system with a spectral parameter in the boundary conditions. Differ. Equ. 2002, 38, 164–174. [Google Scholar] [CrossRef]
- Mamedov, K.R.; Akcay, O. Inverse eigenvalue problem for a class of Dirac operators with discontinuous coefficient. Bound. Value Probl. 2014, 2014, 1–20. [Google Scholar] [CrossRef]
- Abdullaev, T.S.; Nabiev, I.M.O. An algorithm for reconstructing the Dirac operator with a spectral parameter in the boundary condition. Comput. Math. Math. Phys. 2016, 56, 256–262. [Google Scholar] [CrossRef]
- Gulsen, T.; Yilmaz, E.; Koyunbakan, H. Inverse nodal problem for p–laplacian dirac system. Math. Methods Appl. Sci. 2017, 40, 2329–2335. [Google Scholar] [CrossRef]
- Brown, A.L.; Page, A. Elements of Functional Analysis; Van Nostrand-Reinhold: London, UK, 1970. [Google Scholar]
- Atasever, N. On Diamond-Alpha Dynamic Equations and Inequalities. Master’s Thesis, Georgia Southern University, Statesboro, GA, USA, 2011. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gulsen, T.; Yar, A.Ç.; Yilmaz, E. Diamond-Type Dirac Dynamic System in Mathematical Physics. Symmetry 2024, 16, 318. https://doi.org/10.3390/sym16030318
Gulsen T, Yar AÇ, Yilmaz E. Diamond-Type Dirac Dynamic System in Mathematical Physics. Symmetry. 2024; 16(3):318. https://doi.org/10.3390/sym16030318
Chicago/Turabian StyleGulsen, Tuba, Ayşe Çiğdem Yar, and Emrah Yilmaz. 2024. "Diamond-Type Dirac Dynamic System in Mathematical Physics" Symmetry 16, no. 3: 318. https://doi.org/10.3390/sym16030318
APA StyleGulsen, T., Yar, A. Ç., & Yilmaz, E. (2024). Diamond-Type Dirac Dynamic System in Mathematical Physics. Symmetry, 16(3), 318. https://doi.org/10.3390/sym16030318