Evolution of Quantum Systems with a Discrete Energy Spectrum in an Adiabatically Varying External Field
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Two-Level System
3.2. Qubit States in a Multilevel System
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landau, L.D. On the theory of transfer of energy at collisions II. Phys. Z. Sowjetunion 1932, 2, 46. [Google Scholar]
- Zener, C. Non-adiabatic crossing of energy levels. Proc. R. Soc. A 1932, 137, 696. [Google Scholar]
- Stückelberg, E.C.G. Theory of Inelastic Collisions between Atoms. Helv. Phys. Acta 1932, 5, 369. [Google Scholar]
- Majorana, E. Atomi orientati in campo magnetico variabile. Nuovo C 1932, 9, 43. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifschitz, E.M. Quantum Mechanics Nonrelativistic Theory, 3rd ed.; Pergamon: Oxford, NY, USA, 1977. [Google Scholar]
- Stock, R.; Babcock, N.S.; Raizen, M.G.; Sanders B., C. Entanglement of group-II-like atoms with fast measurement for quantum information processing. Phys. Rev. A 2008, 78, 022301. [Google Scholar] [CrossRef]
- Vandermause, J.; Ramanathan, C. Superadiabatic control of quantum operations. Phys. Rev. A 2016, 93, 052329. [Google Scholar] [CrossRef]
- Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J.G. Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys. 2019, 91, 045001. [Google Scholar] [CrossRef]
- Mostafanejad, M. Quantum communication through spin chain dynamics: An introductory overview. Int. J. Quantum Chem. 2014, 114, 1495. [Google Scholar] [CrossRef]
- Mansikkama¨ki, A. Theoretical And Computational Studies of Magnetic Anisotropy and Exchange Coupling in Molecular Systems. Ph.D. Thesis, University of Jyva¨skyla¨, Jyva¨skyla¨, Finland, 2018. [Google Scholar]
- Parafilo, A.V.; Kiselev, M.N. Landau-Zener transitions and Rabi oscillations in a Cooper-pair box: Beyond two-level models. Low Temp. Phys. 2018, 44, 1692. [Google Scholar] [CrossRef]
- Gong, M.; Zhou, Y.; Lan, D.; Fan, Y.; Pan, J.; Yu, H.; Chen, J.; Sun, G.; Yu, Y.; Han, S.; et al. Landau-Zener-Stückelberg-Majorana interference in a 3D transmon driven by a chirped microwave. Appl. Phys. Lett. 2018, 108, 112602. [Google Scholar] [CrossRef]
- Berry, M.V. Quantal Phase Factors Accompanying Adiabatic Changes. Proc. R. Soc. Lond. A 1984, 392, 45–57. [Google Scholar]
- Simon, B. Holonomy, the Quantum Adiabatic Theorem, and Berry’s Phase. Phys. Rev. Lett. 1983, 51, 2167–2170. [Google Scholar] [CrossRef]
- Berry, M.V. Transitionless quantum driving. J. Phys. A Math. Theor. 2009, 42, 365303. [Google Scholar] [CrossRef]
- Zwanziger, J.W.; Koenig, M.; Pines, A. Berry’s Phase. Annu. Rev. Phys. Chem. 1990, 41, 601–646. [Google Scholar] [CrossRef]
- Yehuda, B.B.; Avishai, Y. Approximation Methods. In Quantum Mechanics with Applications to Nanotechnology and Information Science.; Ch.7; Elsevier Ltd.: Amsterdam, The Netherlands, 2013; pp. 303–366. [Google Scholar] [CrossRef]
- Demirplak, M.; Rice, S.A. Adiabatic Population Transfer with Control Fields. J. Phys. Chem. A 2003, 107, 9937. [Google Scholar] [CrossRef]
- Belousov, Y.; Grimaudo, R.; Messina, A.; Megliore, A.; Sergi, A. New approach to describer two coupled spins in a variable magnetic field. AIP Conf. Proc. 2021, 2362, 040001. [Google Scholar] [CrossRef]
- Belousov, Y.M.; Chernousov, I.V.; Manko, V.I. Pseudoqutrit formed by two interacting identical spins s=1/2 in a variable external magnetic field. Entropy 2023, 25, 716. [Google Scholar] [CrossRef]
- Messina, A.; Nakazato, H. Analytically solvable Hamiltonians for quantum two-level systems. J. Phys. A Math. Theor. 2014, 47, 445302. [Google Scholar] [CrossRef]
- Belousov, Y.; Man’ko, V.; Messina, A.; Megliore, A.; Sergi, A. Symmetry-Induced Emergence of a Pseudo-Qutrit in the Dipolar Coupling of Two Qubits. Entropy 2022, 24, 223. [Google Scholar] [CrossRef]
- Abragam, A.; Bleaney, B. Electron Paramagnetic Resonance of Transition Ions; Clarendon Press: Oxford, UK, 1970. [Google Scholar]
- Belousov, Y.M.; Gorelkin, V.N.; Smilga, V.P. Anomalous Muonum in Crystals with Diamond Structure. Sov. Phys. JETP 1978, 48, 1007. [Google Scholar]
- Smilga, V.P.; Belousov, Y.M. The Muon Method in Science; Nova Science: New York, NY, USA, 1994. [Google Scholar]
- Bagrov, V.G.; Gitman, D.M.; Baldiotti, M.C.; Levin, A.D. Two interacting spins in external fields. Four-level systems. Ann. Der Phys. 2005, 14, 764. [Google Scholar] [CrossRef]
- Barnes, E.; Das Sarma, S. Analytically Solvable Driven Time-Dependent Two-Level Quantum Systems. Phys. Rev. Lett. 2012, 109, 060401. [Google Scholar] [CrossRef]
- Grimaudo, R.; Messina, A.; Nakazato, H. Exactly solvable time-dependent models of two interacting two-level systems. Phys. Rev. A 2016, 94, 022108. [Google Scholar] [CrossRef]
- Markovich, L.A.; Grimaudo, R.; Messina, A.; Nakazato, H. An example of interplay between physics and mathematics: Exact resolution of a new class of riccati equations. Ann. Phys. 2017, 385, 522. [Google Scholar] [CrossRef]
- Grimaudo, R.; de Castro, A.S.M.; Nakazato, H.; Messina, A. Classes of Exactly Solvable Generalized Semi-Classical Rabi Systems. Ann. Phys. 2018, 530, 1800198. [Google Scholar] [CrossRef]
- Grimaudo, R.; Belousov, Y.; Nakazato, H.; Messina, A. Time evolution of a pair of distinguishable interacting spins subjected to controllable and noisy magnetic fields. Ann. Phys. 2018, 392, 242. [Google Scholar] [CrossRef]
- Chen, X.; Ruschhaupt, A.; Schmidt, S.; del Campo, A.; Guery-Odelin, D.; Muga, J.G. Fast optimal frictionless atom cooling in harmonic traps. Phys. Rev. Lett. 2010, 104, 063002. [Google Scholar] [CrossRef]
- del Campo, A.; Goold, J.; Paternostro, M. More bang for your buck: Super-adiabatic quantum engines. Sci. Rep. 2014, 4, 6208. [Google Scholar] [CrossRef]
- de Bernardo, B.L. Time-rescaled quantum dynamics as a shortcut to adiabaticity. Phys. Rev. Res. 2020, 2, 013133. [Google Scholar] [CrossRef]
- da Andrade, J.S.; da França, ÂF.S.; de Bernardo, B.L. Shortcuts to adiabatic population inversion via time.rescaling: Stability and thermodynamic cost. Sci. Rep. 2022, 12, 11538. [Google Scholar] [CrossRef]
- Hayashi, T.; Fujisawa, T.; Cheong, H.D.; Jeong, Y.H.; Hirayama, Y. Coherent Manipulation of Electronic States in a Double Quantum Dot. Phys. Rev. Lett. 2003, 91, 226804. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Sarma, S.D. Hilbert-space structure of a solid-state quantum computer: Two-electron states of a double-quantum-dot artificial molecule. Phys. Rev. A 2000, 61, 062301. [Google Scholar] [CrossRef]
- Gorman, J.; Hasko, D.G.; Williams, D.A. Charge-Qubit Operation of an Isolated Double Quantum Dot. Phys. Rev.lett. 2005, 95, 090502. [Google Scholar] [CrossRef] [PubMed]
- Petta, J.R.; Johnson, A.C.; Taylor, J.M.; Laird, E.A.; Yacoby, A.; Lukin, M.D.; Marcus, C.M.; Hanson, M.P.; Gossard, A.C. Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots. Science 2005, 309, 2180. [Google Scholar] [CrossRef] [PubMed]
- Mason, N.; Biercuk, M.J.; Marcus, C.M. Local Gate Control of a Carbon Nanotube Double Quantum Dot. Science 2004, 303, 655. [Google Scholar] [CrossRef]
- Anderlini, M.; Sebby-Strabley, J.; Kruse, J.; Porto, J.V.; Phillips, W.D. Controlled Atom Dynamics in a Double-Well Optical Lattice. J. Phys. B At. Mol. Opt. Phys. 2006, 39, S199. [Google Scholar] [CrossRef]
- Anderlini, M.; Lee, P.J.; Brown, B.L.; Sebby-Strabley, J.; Phillips, W.D.; Porto, J.V. Controlled exchange interaction between pairs of neutral atoms in an optical lattice. Nature 2007, 448, 452. [Google Scholar] [CrossRef]
- Ringbauer, M.; Meth, M.; Postler, L.; Stricker, R.; Blatt, R.; Schindler, P.; Monz, T. A universal qudit quantum processor with trapped ions. Nat. Phys. 2022, 18, 1053–1057. [Google Scholar] [CrossRef]
- Aksenov, M.A.; Zalivako, I.V.; Semerikov, I.A.; Borisenko, A.S.; Semenin, N.V.; Sidorov, P.L.; Fedorov, A.K.; Khabarova, K.Y.; Kolachevsky, N.N. Realizing quantum gates with optically addressable 171Yb+ ion qudits. Phys. Rev. A 2023, 107, 052612. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belousov, Y. Evolution of Quantum Systems with a Discrete Energy Spectrum in an Adiabatically Varying External Field. Symmetry 2024, 16, 1466. https://doi.org/10.3390/sym16111466
Belousov Y. Evolution of Quantum Systems with a Discrete Energy Spectrum in an Adiabatically Varying External Field. Symmetry. 2024; 16(11):1466. https://doi.org/10.3390/sym16111466
Chicago/Turabian StyleBelousov, Yury. 2024. "Evolution of Quantum Systems with a Discrete Energy Spectrum in an Adiabatically Varying External Field" Symmetry 16, no. 11: 1466. https://doi.org/10.3390/sym16111466
APA StyleBelousov, Y. (2024). Evolution of Quantum Systems with a Discrete Energy Spectrum in an Adiabatically Varying External Field. Symmetry, 16(11), 1466. https://doi.org/10.3390/sym16111466