An Old Babylonian Algorithm and Its Modern Applications
Abstract
1. Introduction
2. He Chengtian Average
3. Cube Root and Beyond
4. MEMS System
5. Differential Equations
6. Discussion and Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leung, F.K.S. Jewish culture, Chinese culture, and mathematics education. Educ. Stud. Math. 2021, 107, 405–423. [Google Scholar] [CrossRef]
- Chemla, K. Reviving Ancient Chinese Mathematics: Mathematics, History, and Politics in the Work of Wu Wen-Tsun. ISIS 2016, 107, 894–896. [Google Scholar] [CrossRef]
- Liu, P. The Traditional Academy of Mathematics at the Fenglong Mountain of China. Math. Intell. 2021, 43, 45–49. [Google Scholar] [CrossRef]
- Saito, K. Re-examination of the different origins of the arithmetical books of Euclid’s Elements. Hist. Math. 2019, 47, 39–53. [Google Scholar] [CrossRef]
- Kline, M. Mathematical Thought From Ancient to Modern Times; Oxford University Press: New York, NY, USA, 1972. [Google Scholar]
- Eves, H. An Introduction to the History of Mathematics, 5th ed.; CBS College Publishing: New York, NY, USA, 1983. [Google Scholar]
- Eves, H. Great Moments in Mathematics; The Mathematical Association of America: New York, NY, USA, 1983. [Google Scholar]
- Papakonstantinou, J.M.; Tapia, R.A. Origin and Evolution of the Secant Method in One Dimension. Am. Math. Mon. 2013, 120, 500–518. [Google Scholar] [CrossRef]
- Manimegalai, B.; Swaminathan, R.; Lyons, M.E.G.; Rajendran, L. Application of Taylor’s series with Ying Buzu Shu algorithm for the nonlinear problem in amperometric biosensors. Int. J. Electrochem. Sci. 2022, 17, 22074. [Google Scholar] [CrossRef]
- He, C.H. A simple analytical approach to a nonlinear equation arising in porous catalyst. Int. J. Numer. Methods Heat Fluid Flow 2017, 27, 861–866. [Google Scholar] [CrossRef]
- Cullen, C. Can we make the history of mathematics historical? The case of ancient China. Stud. Hist. Philos. Sci. Part A 2006, 37, 515–525. [Google Scholar] [CrossRef]
- Dauben, J.W. Ancient Chinese mathematics: The (Jiu Zhang Suan Shu) vs Euclid’s Elements. Aspects of proof and the linguistic limits of knowledge. Int. J. Eng. Sci. 1998, 36, 1339–1359. [Google Scholar] [CrossRef]
- Zhang, H.L.; Qin, L.J. An ancient Chinese mathematical algorithm and its application to nonlinear oscillators. Comput. Math. Appl. 2011, 61, 2071–2075. [Google Scholar] [CrossRef]
- He, J.H. Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 2006, 20, 1141–1199. [Google Scholar] [CrossRef]
- Elías-Zúñiga, A.; Martínez-Romero, O.; Trejo, D.O.; Palacios-Pineda, L.M. Analysis of a damped fractal system using the ancient Chinese algorithm and the two-scale fractal dimension transform. Fractals 2022, 30, 2250173. [Google Scholar] [CrossRef]
- Elías-Zúñiga, A.; Palacios-Pineda, L.M.; Jiménez-Cedeño, I.H.; Martínez-Romero, O.; Olvera-Trejo, D. Enhanced He’s frequency-amplitude formulation for nonlinear oscillators. Results Phys. 2020, 19, 103626. [Google Scholar] [CrossRef]
- Zhang, J.G.; Song, Q.R.; Zhang, J.Q.; Wang, F. Application of He’s frequency formula to nonlinear oscillators with generalized initial conditions. Facta Univ. Ser. Mech. Eng. 2023, 21, 701–712. [Google Scholar] [CrossRef]
- Yang, Y.J.; Han, G.L.; Yuan, Y.Z. Local fractional damped non-linear oscillation: Frequency Estimation and Energy Consumption. Therm. Sci. 2024, 28, 2143–2151. [Google Scholar] [CrossRef]
- Shen, Y. The Lagrange interpolation for He’s frequency formulation. J. Low Freq. Noise Vib. Act. Control 2021, 40, 1387–1391. [Google Scholar] [CrossRef]
- He, C.H.; Liu, C. A modified frequency-amplitude formulation for fractal vibration systems. Fractals 2022, 30, 2250046. [Google Scholar] [CrossRef]
- He, C.H. An introduction to an ancient Chinese algorithm and its modification. Int. J. Numer. Methods Heat Fluid Flow 2016, 26, 2486–2491. [Google Scholar] [CrossRef]
- Khan, W.A. Numerical simulation of Chun-Hui He’s iteration method with applications in engineering. Int. J. Numer. Methods Heat Fluid Flow 2022, 32, 944–955. [Google Scholar] [CrossRef]
- Khan, W.A.; Arif, M.; Mohammed, M.; Farooq, U.; Farooq, F.B.; Elbashir, M.K.; Rahman, J.U.; AlHussain, Z.A. Numerical and Theoretical Investigation to Estimate Darcy Friction Factor in Water Network Problem Based on Modified Chun-Hui He’s Algorithm and Applications. Math. Probl. Eng. 2022, 2022, 8116282. [Google Scholar] [CrossRef]
- Wang, J. He’s Max-Min Approach for Coupled Cubic Nonlinear Equations Arising in Packaging System. Math. Probl. Eng. 2013, 2013, 382509. [Google Scholar] [CrossRef]
- Durmaz, S.; Demirbag, S.A.; Kaya, M.O. Approximate solutions for nonlinear oscillation of a mass attached to a stretched elastic wire. Comput. Math. Appl. 2011, 61, 578–585. [Google Scholar] [CrossRef]
- Bayat, M.; Bayat, M.; Kia, M.; Ahmadi, H.R.; Pakar, I. Nonlinear frequency analysis of beams resting on elastic foundation using max-min approach. Geomech. Eng. 2018, 16, 355–361. [Google Scholar]
- Knuth, D.E. Ancient Babylonian algorithm. Commun. ACM 1972, 15, 671–677. [Google Scholar] [CrossRef]
- Fowler, D.; Robson, E. Square root approximations in Old Babylonian mathematics: YBC 7289 in context. Hist. Math. 1998, 25, 366–378. [Google Scholar] [CrossRef]
- Kainzinger, A. The Mathematics of the Viereckschanzen of the La Tene Culture. Nexus Netw. J. 2021, 23, 337–393. [Google Scholar] [CrossRef]
- Bailey, D.H.; Borwein, J.M. Ancient Indian Square Roots: An Exercise in Forensic Paleo-Mathematics. Am. Math. Mon. 2012, 119, 646–657. [Google Scholar] [CrossRef]
- Hoyrup, J. When is the algorithm concept pertinent—And when not? Thoughts about algorithms and paradigmatic examples, and about algorithmic and non-algorithmic mathematical cultures. AIMS Math. 2018, 3, 211–232. [Google Scholar] [CrossRef]
- Kainzinger, A. The mathematics in the structures of Stonehenge. Arch. Hist. Exact Sci. 2011, 65, 67–97. [Google Scholar] [CrossRef]
- Cha, J.; Kim, Y.J. Reconsidering a proportional system of timber-frame structures through ancient mathematics books: A case study on the Muryangsujon Hall at Pusoksa Buddhist Monastery. J. Asian Archit. Build. 2019, 18, 457–471. [Google Scholar] [CrossRef]
- Friberg, J. Geometric division problems, quadratic equations, and recursive geometric algorithms in Mesopotamian mathematics. Arch. Hist. Exact Sci. 2014, 68, 1–34. [Google Scholar] [CrossRef]
- Ilic, S.; Petkovic, M.S.; Herceg, D. A note on Babylonian square root algorithm and related variants. Novi Sad J. Math 1996, 26, 155–162. [Google Scholar]
- Calkin, N.J.; Davis, K.; Haithcock, E.; Kenyon, C.M.; Wu, S. What Newton Might Have Known: Experimental Mathematics in the Classroom. Am. Math. Mon. 2021, 128, 845–855. [Google Scholar] [CrossRef]
- Gayathri, S.S.; Kumar, R.; Haghparast, M.; Dhanalakshmi, S. A Novel and Efficient square root Computation Quantum Circuit for Floating-point Standard. Int. J. Theor. Phys. 2022, 61, 234. [Google Scholar]
- Parise, M. Improved Babylonian Square Root Algorithm-Based Analytical Expressions for the Surface-to-Surface Solution to the Sommerfeld Half-Space Problem. IEEE Trans. Antennas Propag. 2015, 63, 5832–5837. [Google Scholar] [CrossRef]
- Parise, M. An exact series representation for the EM field from a vertical electric dipole on an imperfectly conducting half-space. J. Electromagn. Waves Appl. 2014, 28, 932–942. [Google Scholar] [CrossRef]
- Liu, Y.Q.; He, J.H. On relationship between two ancient Chinese algorithms and their application to flash evaporation. Results Phys. 2017, 7, 320–322. [Google Scholar] [CrossRef]
- Lin, L.; Yu, D.N.; He, C.H.; Liu, Y.P. A short remark on the solution of Rachford-Rice equation. Therm. Sci. 2018, 22, 1849–1852. [Google Scholar] [CrossRef]
- Skrzypacz, P.; Kadyrov, S.; Nurakhmetov, D.; Wei, D. Analysis of dynamic pull-in voltage of a graphene MEMS model. Nonlinear Anal. Real World Appl. 2019, 45, 581–589. [Google Scholar] [CrossRef]
- He, J.H. Periodic solution of a micro-electromechanical system. Facta Univ. Ser. Mech. Eng. 2024, 22, 187–198. [Google Scholar] [CrossRef]
- Yang, Q. A mathematical control for the pseudo-pull-in stability arising in a micro-electromechanical system. J. Low Freq. Noise Vib. Act. Control 2023, 42, 927–934. [Google Scholar] [CrossRef]
- Tian, D.; Ain, Q.T.; Anjum, N.; He, C.-H.; Cheng, B. Fractal N/MEMS: From pull-in instability to pull-in stability. Fractals 2021, 29, 2150030. [Google Scholar] [CrossRef]
- He, J.H.; He, C.H.; Qian, M.Y.; Alsolami, A.A. Piezoelectric Biosensor based on ultrasensitive MEMS system. Sens. Actuators A Phys. 2024, 376, 115664. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Tian, D.; Pang, J. A fast estimation of the frequency property of the microelectromechanical system oscillator. J. Low Freq. Noise Vib. Act. Control 2022, 41, 160–166. [Google Scholar] [CrossRef]
- Lv, G. Dynamic behaviors for the graphene nano/microelectromechanical system in a fractal space. J. Low Freq. Noise Vib. Act. Control 2023, 42, 1107–1116. [Google Scholar] [CrossRef]
- Faghidian, S.A.; Tounsi, A. Dynamic characteristics of mixture unified gradient elastic nanobeams. Facta Univ. Ser. Mech. Eng. 2022, 20, 539–552. [Google Scholar] [CrossRef]
- He, J.H.; Yang, Q.; He, C.H.; Alsolami, A.A. Pull-down instability of the quadratic nonlinear oscillator. Facta Univ. Ser. Mech. Eng. 2023, 21, 191–200. [Google Scholar] [CrossRef]
- Wang, K.J. Variational approach for the fractional exothermic reactions model with constant heat source in porous medium. Therm. Sci. 2023, 27, 2879–2885. [Google Scholar] [CrossRef]
- He, C.H.; Amer, T.S.; Tian, D.; Abolila, A.F.; Galal, A.A. Controlling the kinematics of a spring-pendulum system using an energy harvesting device. J. Low Freq. Noise Vib. Act. Control 2022, 41, 1234–1257. [Google Scholar] [CrossRef]
- He, C.H.; El-Dib, Y.O. A heuristic review on the homotopy perturbation method for non-conservative oscillators. J. Low Freq. Noise Vib. Act. Control 2022, 41, 572–603. [Google Scholar] [CrossRef]
- He, C.H.; Tian, D.; Moatimid, G.M.; Salman, H.F.; Zekry, M.H. Hybrid rayleigh-van der pol-duffing oscillator: Stability analysis and controller. J. Low Freq. Noise Vib. Act. Control 2022, 41, 244–268. [Google Scholar] [CrossRef]
- Lu, J.F.; Ma, L. Analysis of a fractal modification of attachment oscillator. Therm. Sci. 2024, 28, 2153–2163. [Google Scholar] [CrossRef]
- Feng, G.Q. He’s frequency formula to fractal undamped Duffing equation. J. Low Freq. Noise Vib. Act. Control 2021, 40, 1671–1676. [Google Scholar] [CrossRef]
- Ren, F. Non-linear oscillation of a mass attached to a stretched elastic wire in a fractal space. Therm. Sci. 2024, 28, 2165–2169. [Google Scholar] [CrossRef]
- Tian, D.; He, C.H. A fractal micro-electromechanical system and its pull-in stability. J. Low Freq. Noise Vib. Act. Control 2021, 40, 1380–1386. [Google Scholar] [CrossRef]
- He, C.H. A variational principle for a fractal nano/microelectromechanical (N/MEMS) system. Int. J. Numer. Methods Heat Fluid Flow 2023, 33, 351–359. [Google Scholar] [CrossRef]
- El-Dib, Y.O.; Elgazery, N.S.; Alyousef, H.A. The up-grating rank approach to solve the forced fractal duffing oscillator by non- perturbative technique. Facta Univ. Ser. Mech. Eng. 2024, 22, 199–216. [Google Scholar] [CrossRef]
- He, C.H.; Liu, C. Fractal dimensions of a porous concrete and its effect on the concrete’s strength. Facta Univ. Ser. Mech. Eng. 2023, 21, 137–150. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.-H. An Old Babylonian Algorithm and Its Modern Applications. Symmetry 2024, 16, 1467. https://doi.org/10.3390/sym16111467
He J-H. An Old Babylonian Algorithm and Its Modern Applications. Symmetry. 2024; 16(11):1467. https://doi.org/10.3390/sym16111467
Chicago/Turabian StyleHe, Ji-Huan. 2024. "An Old Babylonian Algorithm and Its Modern Applications" Symmetry 16, no. 11: 1467. https://doi.org/10.3390/sym16111467
APA StyleHe, J.-H. (2024). An Old Babylonian Algorithm and Its Modern Applications. Symmetry, 16(11), 1467. https://doi.org/10.3390/sym16111467