Three Alternative Model-Building Strategies Using Quasi-Hermitian Time-Dependent Observables
Abstract
:1. Introduction
2. The Abstract NIP Quantum Theory
2.1. The Concept of Non-Stationary Non-Hermitian Observables
2.2. The Physical Inner-Product Metric
3. The First, Dynamical-Input Strategy
4. The Second, Coriolis-Choice Strategy
5. The Third, State-Evolution Strategy
6. Summary
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. A Few Remarks on Applications
References
- Styer, D.F.; Balkin, M.S.; Becker, K.M.; Burns, M.R.; Dudley, C.E.; Forth, S.T.; Gaumer, J.S.; Kramer, M.A.; Oertel, D.C.; Park, .H.; et al. Nine formulations of quantum mechanics. Am. J. Phys. 2002, 70, 288–297. [Google Scholar] [CrossRef]
- Scholtz, F.G.; Geyer, H.B.; Hahne, F.J.W. Quasi-Hermitian Operators in Quantum Mechanics and the Variational Principle. Ann. Phys. 1992, 213, 74–101. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudo-Hermitian Representation of Quantum Mechanics. Int. J. Geom. Meth. Mod. Phys. 2010, 7, 1191–1306. [Google Scholar] [CrossRef]
- Dieudonne, J. Quasi-Hermitian Operators. In Proc. Int. Symp. Lin. Spaces; Pergamon: Oxford, UK, 1961; pp. 115–122. [Google Scholar]
- Bender, C.M.; Boettcher, S. Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry. Phys. Rev. Lett. 1998, 80, 5243. [Google Scholar] [CrossRef]
- Bender, C.M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 2007, 70, 947–1118. [Google Scholar] [CrossRef]
- Streater, R.F. Lost Causes in and beyond Physics; Springer: New York, NY, USA, 2007. [Google Scholar]
- Trefethen, L.N.; Embree, M. Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators; Princeton University Press: Princeton, NJ, USA, 2005. [Google Scholar]
- Siegl, P.; Krejčiřík, D. On the metric operator for the imaginary cubic oscillator. Phys. Rev. 2012, D 86, 121702(R). [Google Scholar] [CrossRef]
- Krejčiřík, D.; Siegl, P.; Tater, M.; Viola, J. Pseudospectra in non-Hermitian quantum mechanics. J. Math. Phys. 2015, 56, 103513. [Google Scholar] [CrossRef]
- Semorádová, I.; Siegl, P. Diverging eigenvalues in domain truncations of Schroedinger operators with complex potentials. SIAM J. Math. Anal. 2022, 54, 5064–5101. [Google Scholar] [CrossRef]
- Guenther, U.; Stefani, F. IR-truncated PT -symmetric ix3 model and its asymptotic spectral scaling graph. arXiv 2019, arXiv:1901.08526. [Google Scholar]
- Bender, C.M.; Milton, K.A. Nonperturbative Calculation of Symmetry Breaking in Quantum Field Theory. Phys. Rev. 1997, D 55, R3255. [Google Scholar] [CrossRef]
- Christodoulides, D.; Yang, J.-K. (Eds.) Parity-Time Symmetry and Its Applications; Springer: Singapore, 2018. [Google Scholar]
- Bender, C.M. PT Symmetry in Quantum and Classical Physics; World Scientific: Singapore, 2018. [Google Scholar]
- Bagarello, F.; Gazeau, J.-P.; Szafraniec, F.; Znojil, M. (Eds.) Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Ju, C.-Y.; Miranowicz, A.; Minganti, F.; Chan, C.-T.; Chen, G.-Y.; Nori, F. Einstein’s Quantum Elevator: Hermitization of Non-Hermitian Hamiltonians via a generalized vielbein Formalism. Phys. Rev. Res. 2022, 4, 023070. [Google Scholar] [CrossRef]
- Luiz, F.S.; Pontes, M.A.; Moussa, M.H.Y. Unitarity of the time-evolution and observability of non-Hermitian Hamiltonians for time-dependent Dyson maps. arXiv 2020, arXiv:1611.08286. [Google Scholar] [CrossRef]
- Znojil, M. Non-stationary quantum mechanics in hybrid non-Hermitian interaction representation. Phys. Lett. 2023, A 462, 128655. [Google Scholar] [CrossRef]
- Semorádová, I. Nonstandard Perturbation Methods and non-Hermitian Models in Quantum Mechanics. Ph.D. Thesis, Czech Technical University in Prague, Prague, Czech Republic, 2022. [Google Scholar]
- Mostafazadeh, A. Time-dependent pseudo-Hermitian Hamiltonians definiing a unitary quantum system and uniquenessof the metric operator. Phys. Lett. 2007, B 650, 208–212. [Google Scholar] [CrossRef]
- Dyson, F.J. General theory of spin-wave interactions. Phys. Rev. 1956, 102, 1217. [Google Scholar] [CrossRef]
- Znojil, M. Time-dependent version of cryptohermitian quantum theory. Phys. Rev. 2008, D 78, 085003. [Google Scholar]
- Znojil, M. Non-stationary non-Hermitian “wrong-sign” quantum oscillators and their meaningful physical interpretation. Entropy 2023, 25, 692. [Google Scholar] [CrossRef]
- Znojil, M. Non-Hermitian interaction representation and its use in relativistic quantum mechanics. Ann. Phys. 2017, 385, 162–179. [Google Scholar] [CrossRef]
- Messiah, A. Quantum Mechanics; North Holland: Amsterdam, The Netherlands, 1961. [Google Scholar]
- Bishop, R.F.; Znojil, M. Non-Hermitian coupled cluster method for non-stationary systems and its interaction-picture reinterpretation. Eur. Phys. J. Plus 2020, 135, 374. [Google Scholar] [CrossRef]
- Znojil, M. Composite quantum Coriolis forces. Mathematics 2023, 11, 1375. [Google Scholar]
- Znojil, M. Non-Hermitian Heisenberg representation. Phys. Lett. 2015, A 379, 20132017. [Google Scholar] [CrossRef]
- Znojil, M. Three-Hilbert-space formulation of Quantum Mechanics. SIGMA Symmetry Integr. Geom. Methods Appl. 2009, 5, 1. [Google Scholar] [CrossRef]
- Znojil, M. Hybrid form of quantum theory with non-Hermitian Hamiltonians. Phys. Lett. 2023, A 457, 128556. [Google Scholar] [CrossRef]
- Znojil, M. Systematics of quasi-Hermitian representations of non-Hermiitan quantum models. Ann. Phys. 2023, 448, 169198. [Google Scholar] [CrossRef]
- Jones, H.F.; Mateo, J. An Equivalent Hermitian Hamiltonian for the non-Hermitian −x4 Potential. Phys. Rev. 2006, D 73, 085002. [Google Scholar]
- Brody, D.C. Biorthogonal quantum mechanics. J. Phys. A Math. Theor. 2013, 47, 035305. [Google Scholar] [CrossRef]
- Znojil, M. On the role of the normalization factors κn and of the pseudo-metric P in crypto-Hermitian quantum models. SIGMA Symmetry Integr. Geom. Methods Appl. 2008, 4, 1. [Google Scholar] [CrossRef]
- Krejčiřík, D.; Lotoreichik, V.; Znojil, M. The minimally anisotropic metric operator in quasi-hermitian quantum mechanics. Proc. R. Soc. A Math. Phys. Eng. Sci. 2018, 474, 20180264. [Google Scholar] [CrossRef]
- Feinberg, J.; Riser, B. Pseudo-Hermitian random-matrix models: General formalism. Nucl. Phys. 2022, B 975, 115678. [Google Scholar] [CrossRef]
- Bíla, H. Pseudo-Hermitian Hamiltonians in Quantum Physics. Ph.D. Thesis, Czech Technical University in Prague, Prague, Czech Republic, 2009. [Google Scholar]
- Bíla, H. Adiabatic time-dependent metrics in PT-symmetric quantum theories. arXiv 2009, arXiv:0902.0474. [Google Scholar]
- Fring, A.; Moussa, M.H.Y. Unitary quantum evolution for time-dependent quasi-Hermitian systems with non-observable Hamiltonians. Phys. Rev. 2016, A 93, 042114. [Google Scholar] [CrossRef]
- Tenney, R. New Exact and Approximation Methods for Time-Dependent Non-Hermitian Quantum Systems. Ph.D. Thesis, City University of London, London, UK, 2022. [Google Scholar]
- Moiseyev, N. Non-Hermitian Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Doppler, J.; Mailybaev, A.A.; Böhm, J.; Kuhl, U.; Girschik, A.; Libisch, F.; Milburn, T.J.; Rabl, P.; Moiseyev, N.; Rotter, S. Dynamically encircling an exceptional point in asymmetric mode switching. Nature 2016, 537, 76. [Google Scholar] [CrossRef] [PubMed]
- Makris, K.G. Transient growth and dissipative exceptional points. Phys. Rev. 2021, E 104, 054218. [Google Scholar] [CrossRef]
- Khantoul, B.; Bounames, A.; Maamache, M. On the invariant method for the time-dependent non-Hermitian Hamiltonians. Eur. Phys. J. Plus 2017, 132, 258. [Google Scholar] [CrossRef]
- Fring, A.; Frith, T. Eternal life of entropy in non-Hermitian quantum systems. Phys. Rev. 2019, A 100, 010102(R). [Google Scholar] [CrossRef]
- Fring, A.; Taira, T.; Tenney, R. Real energies and Berry phases in all PT regimes in time-dependent non-Hermitian theories. J. Phys. A Math. Theor. 2023, 56, 12LT01. [Google Scholar] [CrossRef]
- Znojil, M. Wheeler-DeWitt equation and the applicability of crypto-Hermitian interaction representation in quantum cosmology. Universe 2022, 8, 385. [Google Scholar] [CrossRef]
- Znojil, M. Quasi-Hermitian formulation of quantum mechanics using two conjugate Schroedinger equations. Axioms 2023, 12, 644. [Google Scholar] [CrossRef]
- Buslaev, V.; Grecchi, V. Equivalence of unstable anharmonic oscillators and double wells. J. Phys. A Math. Gen. 1993, 26, 5541–5549. [Google Scholar] [CrossRef]
- Fring, A.; Tenney, R. Spectrally equivalent time-dependent double wells and unstable anharmonic oscillators. Phys. Lett. 2020, A 384, 126530. [Google Scholar] [CrossRef]
- Figueira de Morisson Faria, C.; Fring, A. Time evolution of non-Hermitian Hamiltonian systems. J. Phys. A Math. Gen. 2006, 39, 9269–9289. [Google Scholar] [CrossRef]
- Gong, J.; Wang, Q.H. Time-dependent PT-symmetric quantum mechanics. J. Phys. A Math. Theor. 2013, 46, 485302. [Google Scholar] [CrossRef]
- Fring, A.; Tenney, R. Infinite series of time-dependent maps. J. Phys. A Math. Theor. 2021, 54, 485201. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Znojil, M. Three Alternative Model-Building Strategies Using Quasi-Hermitian Time-Dependent Observables. Symmetry 2023, 15, 1596. https://doi.org/10.3390/sym15081596
Znojil M. Three Alternative Model-Building Strategies Using Quasi-Hermitian Time-Dependent Observables. Symmetry. 2023; 15(8):1596. https://doi.org/10.3390/sym15081596
Chicago/Turabian StyleZnojil, Miloslav. 2023. "Three Alternative Model-Building Strategies Using Quasi-Hermitian Time-Dependent Observables" Symmetry 15, no. 8: 1596. https://doi.org/10.3390/sym15081596
APA StyleZnojil, M. (2023). Three Alternative Model-Building Strategies Using Quasi-Hermitian Time-Dependent Observables. Symmetry, 15(8), 1596. https://doi.org/10.3390/sym15081596