Applications of the Symmetric Quantum-Difference Operator for New Subclasses of Meromorphic Functions
Abstract
1. Introduction and Definitions
2. Preliminaries
3. Main Results
Properties of the Function Class
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nunokawa, M.; Ahuja, O.P. On meromorphic starlike and convexfunctions. Indian J. Pure Appl. Math. 2001, 32, 1027–1032. [Google Scholar]
- El-Ashwah, R.M.; Aouf, M.K. Hadamard product of certain meromorphic starlike and convex functions. Comput. Math. Appl. 2009, 57, 1102–1106. [Google Scholar] [CrossRef]
- Liu, J.L. Some properties of certain meromorphically multivalent functions. Appl. Math. Comput. 2009, 210, 136–140. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent Functions, Fractional Calculus, and Associated Generalized Hypergeometric Functions. In Univalent Functions, Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; Halsted Press Ellis Horwood Limited, Chichester, John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1989; pp. 329–354. [Google Scholar]
- Srivastava, H.M.; Bansal, D. Close-to-convexity of a certain family of q-Mittag-Leffler functions. J. Nonlinear Var. Anal. 2017, 1, 61–69. [Google Scholar]
- Arif, M.; Srivastava, H.M.; Uma, S. Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. (RACSAM) 2019, 113, 1211–1221. [Google Scholar] [CrossRef]
- Faisal, M.I.; Al-Shbeil, I.; Abbas, M.; Arif, M.; Alhefthi, R.K. Problems Concerning Coefficients of Symmetric Starlike Functions Connected with the Sigmoid Function. Symmetry 2023, 15, 1292. [Google Scholar] [CrossRef]
- Mahmood, S.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, N.; Khan, B.; Tahir, M. A certain subclass of meromorphically q-starlike functions associated with the Janowski functions. J. Inequal. Appl. 2019, 2019, 88. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
- Saliu, A.; Al-Shbeil, I.; Gong, J.; Malik, S.N.; Aloraini, N. Properties of q-Symmetric Starlike Functions of Janowski Type. Symmetry 2022, 14, 1907. [Google Scholar] [CrossRef]
- Al-shbeil, A.C.I.; Shaba, T.G. Second Hankel Determinant for the Subclass of Bi-Univalent Functions Using q-Chebyshev Polynomial and Hohlov Operator. Fractals Fract. 2022, 6, 186. [Google Scholar] [CrossRef]
- Amini, E.; Fardi, M.; Al-Omari, S.; Nonlaopon, K. Results on univalent functions defined by q-analogues of Salagean and Ruscheweh operators. Symmetry 2022, 14, 1725. [Google Scholar] [CrossRef]
- Alsarari, F.; Alzahrani, S. Convolution properties of q-Janowski-type functions associated with (x,y)-symmetrical functions. Symmetry 2022, 14, 1406. [Google Scholar] [CrossRef]
- Al-shbeil, I.; saliu, A.; Catas, A.; Malik, S.N. Some Geometrical Results Associated with Secant Hyperbolic Functions. Mathematics 2022, 10, 2697. [Google Scholar] [CrossRef]
- Raza, M.; Riaz, A.; Xin, Q.; Malik, S.N. Hankel determinants and coefficient estimates for starlike functions related to Symmetric Booth Lemniscate. Symmetry 2022, 14, 1366. [Google Scholar] [CrossRef]
- Da Cruz, A.M.; Martins, N. The symmetric q variational calculus. Comput. Math. Appl. 2012, 64, 2241–2250. [Google Scholar]
- Lavagno, A. Basic-deformed quantum mechanics. Rep. Math. Phys. 2009, 64, 79–88. [Google Scholar] [CrossRef]
- Sun, M.; Jin, Y.; Hou, C. Certain fractional symmetric q-integrals and symmetric q derivatives and their application. Adv. Differ. Equ. 2016, 2016, 222. [Google Scholar] [CrossRef]
- Kanas, S.; Altinkaya, S.; Yalcin, S. Subclass of k-uniformly starlike functions defined by symmetric q-derivative operator. Ukr. Math. J. 2019, 70, 1727–1740. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, S.; Naeem, M.; Darus, M.; Rasheed, A. A subclass of q-starlike functions defined by using a symmetric q -derivative operator and related with generalized symmetric conic domains. Mathematics 2021, 9, 917. [Google Scholar] [CrossRef]
- Khan, M.F.; Al-Shbeil, I.; Aloraini, N.; Khan, N.; Khan, S. Applications of symmetric quantum calculus to the class of harmonic functions. Symmetry 2022, 14, 2188. [Google Scholar] [CrossRef]
- Khan, M.F.; Goswami, A.; Khan, S. Certain new subclass of multivalent q-starlike functions associated with symmetric q-calculus. Fractal Fract. 2022, 6, 367. [Google Scholar] [CrossRef]
- Kamel, B.; Yosr, S. On some symmetric q-special functions. Le Mat. 2013, 68, 107–122. [Google Scholar]
- Seoudy, T.M.; Shammaky, A.E. Some properties of certain classes of meromorphic multivalent functions defined by subordination. Symmetry 2023, 15, 347. [Google Scholar] [CrossRef]
- Elhaddad, S.; Darus, M. On meromorphic functions defined by a new operator containing the Mittag–Leffler function. Symmetry 2019, 11, 210. [Google Scholar] [CrossRef]
- Totoi, E.A.; Cotîrlă, L.I. Preserving classes of meromorphic functions through integral operators. Symmetry 2022, 14, 1545. [Google Scholar] [CrossRef]
- Çağlar, M.; Karthikeyan, K.R.; Murugusundaramoorthy, G. Inequalities on a class of analytic functions defined by generalized Mittag-Leffler function. Filomat 2023, 37, 6277–6288. [Google Scholar]
- Saliu, A.; Jabeen, K.; Al-shbeil, I.; Oladejo, S.O.; Cătaş, A. Radius and Differential Subordination Results for Starlikeness Associated with Limaçon Class. J. Funct. Spaces 2022, 2022, 8264693. [Google Scholar] [CrossRef]
- Al-shbeil, I.; Gong, J.; Shaba, T.G. Coefficients Inequalities for the Bi-Univalent Functions Related to q-Babalola Convolution Operator. Fractal Fract. 2023, 7, 155. [Google Scholar] [CrossRef]
- Al-shbeil, A.C.I.; Wanas, A.K.; Saliu, A. Applications of Beta Negative Binomial Distribution and Laguerre Polynomials on Ozaki Bi-Close-to-Convex Functions. Axioms 2022, 11, 451. [Google Scholar] [CrossRef]
- Shaba, T.G.; Araci, S.; Adebesin, B.O.; Tchier, F.; Zainab, S.; Khan, B. Sharp Bounds of the Fekete–Szegö Problem and Second Hankel Determinant for Certain Bi-Univalent Functions Defined by a Novel q-Differential Operator Associated with q-Limaçon Domain. Fractal Fract. 2023, 7, 506. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-shbeil, I.; Khan, S.; AlAqad, H.; Alnabulsi, S.; Khan, M.F. Applications of the Symmetric Quantum-Difference Operator for New Subclasses of Meromorphic Functions. Symmetry 2023, 15, 1439. https://doi.org/10.3390/sym15071439
Al-shbeil I, Khan S, AlAqad H, Alnabulsi S, Khan MF. Applications of the Symmetric Quantum-Difference Operator for New Subclasses of Meromorphic Functions. Symmetry. 2023; 15(7):1439. https://doi.org/10.3390/sym15071439
Chicago/Turabian StyleAl-shbeil, Isra, Shahid Khan, Hala AlAqad, Salam Alnabulsi, and Mohammad Faisal Khan. 2023. "Applications of the Symmetric Quantum-Difference Operator for New Subclasses of Meromorphic Functions" Symmetry 15, no. 7: 1439. https://doi.org/10.3390/sym15071439
APA StyleAl-shbeil, I., Khan, S., AlAqad, H., Alnabulsi, S., & Khan, M. F. (2023). Applications of the Symmetric Quantum-Difference Operator for New Subclasses of Meromorphic Functions. Symmetry, 15(7), 1439. https://doi.org/10.3390/sym15071439