Legendre Series Analysis and Computation via Composed Abel–Fourier Transform
Abstract
1. Introduction
2. Connection between Legendre Expansions and Fourier Series
Numerical Issues
3. Computation of Legendre Expansions
3.1. An Algorithm for the Evaluation of Legendre Series
- From the N-vector of Legendre coefficients, compute the N-vector by , where the (known) upper triangular matrix is defined in (13) (see also Proposition 1);
- Compute the cosine transform of length N of the vector to obtain values of at N selected points of the interval .
3.2. A Novel Algorithm
- The N-term approximation of the function is computed by using (22) from the input N-vector of Legendre coefficients:
- The values of the N-term Legendre expansion at points ()
4. Conclusions
Future Work
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheney, C.W. Introduction to Approximation Theory; McGraw-Hill: New York, NY, USA, 1966. [Google Scholar]
- Rainville, E.D. Special Functions; MacMillan: New York, NY, USA, 1960. [Google Scholar]
- Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A. Spectral Methods: Fundamentals in Single Domains; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Davis, P.; Rabinowitz, P. Methods of Numerical Integration; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Brunner, H.; Iserles, A.; Nørsett, S. The computation of the spectra of highly oscillatory Fredholm integral operators. J. Integral Equations Appl. 2011, 23, 467–519. [Google Scholar] [CrossRef]
- Gallagher, N.; Wise, G.; Allen, J. A novel approach for the computation of Legendre polynomial expansions. IEEE Trans. Acoustic Speech Signal Process. 1978, 26, 105–106. [Google Scholar] [CrossRef]
- Piessens, R. Algorithm 473, Computation of Legendre series coefficients. Comm. ACM 1974, 17, 25–26. [Google Scholar] [CrossRef]
- Delic, G. The Legendre series and a quadrature formula for its coefficients. J. Comp. Phys. 1974, 14, 254–268. [Google Scholar] [CrossRef]
- Orszag, S.A. Fast Eigenfunction Transforms. In Science and Computers; Academic Press: New York, NY, USA, 1986; pp. 13–30. [Google Scholar]
- Alpert, B.K.; Rokhlin, V. A fast algorithm for the evaluation of Legendre expansions. SIAM J. Sci. Stat. Comput. 1991, 12, 158–179. [Google Scholar] [CrossRef]
- O’Neil, M.; Woolfe, F.; Rokhlin, V. An algorithm for the rapid evaluation of special function transforms. Appl. Comput. Harmon. Anal. 2010, 28, 203–226. [Google Scholar] [CrossRef]
- Yarvin, N.; Rokhlin, V. An improved fast multipole method for potential fields on the line. SIAM J. Numer. Anal. 1999, 36, 629–666. [Google Scholar] [CrossRef]
- Hale, N.; Townsend, A. A fast, simple, and stable Chebyshev-Legendre transform using an asymptotic formula. SIAM J. Sci. Comput. 2014, 36, A148–A167. [Google Scholar] [CrossRef]
- Mori, A.; Suda, R.; Sugihara, M. An improvement on Orszag’s fast algorithm for Legendre polynomial transform. Trans. Info. Process. Soc. Japan 1999, 40, 3612–3615. [Google Scholar]
- Xiang, S. On fast algorithms for the evaluation of Legendre coefficients. Appl. Math. Lett. 2013, 26, 194–200. [Google Scholar] [CrossRef][Green Version]
- Driscoll, J.R.; Healy, D.M., Jr. Computing Fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math. 1994, 15, 202–250. [Google Scholar] [CrossRef]
- Potts, D.; Steidl, G.; Tasche, M. Fast algorithms for discrete polynomial transforms. Math. Comp. 1998, 67, 1577–1590. [Google Scholar] [CrossRef]
- Iserles, A. A fast and simple algorithm for the computation of Legendre coefficients. Numer. Math. 2011, 117, 529–553. [Google Scholar] [CrossRef]
- Gindikin, S. Abel Transform and Integral Geometry. In The Legacy of Niels Henrik Abel; Landal, O.A., Piene, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 585–596. [Google Scholar]
- Abd El-Hamid, H.A.; Rezk, H.M.; Ahmed, A.M.; AlNemer, G.; Zakarya, M.; El Saify, H.A. Dynamic inequalities in quotients with general kernels and measures. J. Funct. Spaces 2020, 2020, 5417084. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Saker, S.H.; Kenawy, M.R.; Rezk, H.M. Lower bounds on a generalization of Cesaro operator on time scales. Dyn. Contin. Discrete Impuls. Syst. A Math. Anal. 2021, 28, 345–355. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. (Eds.) Higher Transcendental Functions. In Bateman Manuscript Project; McGraw-Hill: New York, NY, USA, 1953; Volume 2. [Google Scholar]
- Vilenkin, N.I. Special Functions and the Theory of Group Representations; American Mathematical Society: Providence, RI, USA, 1968; Volume 22. [Google Scholar]
- Monegato, G.; Scuderi, L. Numerical integration of functions with boundary singularities. J. Comp. Appl. Math. 1999, 112, 201–214. [Google Scholar] [CrossRef]
- Alpert, B.K. High-order quadratures for integral operators with singular kernels. J. Comp. Appl. Math. 1995, 60, 367–378. [Google Scholar] [CrossRef]
- Rokhlin, V. End-point corrected trapezoidal quadrature rules for singular functions. Comput. Math. Appl. 1990, 20, 51–62. [Google Scholar] [CrossRef]
- Novak, E. Some Results on the Complexity of Numerical Integration. In Monte Carlo and Quasi-Monte Carlo Methods; Cools, R., Nuyens, D., Eds.; Springer: Cham, Switzerland, 2016; Volume 36. [Google Scholar]
- Calvetti, D. A stochastic roundoff error analysis for the fast Fourier transform. Math. Comp. 1991, 56, 755–774. [Google Scholar] [CrossRef]
- Kaneko, T.; Liu, B. Accumulation of round-off error in Fast Fourier Transforms. J. Assoc. Comp. Mach. 1970, 17, 637–654. [Google Scholar] [CrossRef]
- Song, J.; Mingotti, A.; Zhang, J.; Peretto, L.; Wen, H. Accurate damping factor and frequency estimation for damped real-valued sinusoidal signals. IEEE Trans. Instrum. and Meas. 2022, 71, 1–4. [Google Scholar] [CrossRef]
- Greengard, L. The Rapid Evaluation of Potential Fields in Particle Systems; MIT Press: Cambridge, MA, USA, 1988. [Google Scholar]
- Gorenflo, R.; Vessella, S. Abel Integral Equations. In Lecture Notes in Math; Springer: Berlin/Heidelberg, Germany, 1991; Volume 1461. [Google Scholar]
- Galassi, M. GNU Scientific Library Reference Manual, 3rd ed.; Network Theory Ltd.: London, UK, 2009; ISBN 0954612078. [Google Scholar]
- Mathematica, Version 12.0; Software For Technical Computation; Wolfram Research, Inc.: Champaign, IL, USA, 2019.
- Mohlenkamp, M.J. A fast transform for spherical harmonics. J. Fourier Anal. Appl. 1999, 5, 159–184. [Google Scholar] [CrossRef]
- Hille, E. On the absolute convergence of polynomial series. Amer. Math. Monthly 1938, 45, 220–226. [Google Scholar] [CrossRef]
- Young, W.H. On the connexion between Legendre series and Fourier series. Proc. Lond. Math. Soc. 1920, 18, 141–162. [Google Scholar] [CrossRef]
- Hobson, E.W. The Theory of Spherical and Ellipsoidal Harmonics; Cambridge University Press: Cambridge, UK, 1931. [Google Scholar]
- Greengard, L.; Rokhlin, V. A fast algorithm for particle simulations. J. Comp. Phys. 1987, 73, 325–348. [Google Scholar] [CrossRef]
0 | 8.15 | 7.51 | 1.11 | 3.33 |
1 | 2.98 | 1.44 | 3.33 | 5.55 |
2 | 3.12 | 1.86 | 3.88 | 1.97 |
3 | 5.43 | 9.20 | 3.39 | 2.87 |
4 | 3.41 | 1.07 | 4.72 | 3.36 |
5 | 2.53 | 1.30 | 5.47 | 1.58 |
6 | 9.28 | 1.14 | 4.50 | 1.96 |
7 | 1.09 | 9.75 | 4.22 | 2.54 |
8 | 1.99 | 4.29 | 3.18 | 2.63 |
9 | 1.27 | 6.10 | 3.94 | 2.90 |
10 | 1.87 | 5.74 | 1.65 | 2.93 |
11 | 7.50 | 4.45 | 1.54 | 9.71 |
12 | 1.16 | 1.79 | 1.94 | 2.04 |
13 | 2.20 | 3.32 | 3.60 | 1.67 |
14 | 1.56 | 8.43 | 7.36 | 2.37 |
15 | 2.75 | 9.81 | 4.18 | 2.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Micheli, E. Legendre Series Analysis and Computation via Composed Abel–Fourier Transform. Symmetry 2023, 15, 1282. https://doi.org/10.3390/sym15061282
De Micheli E. Legendre Series Analysis and Computation via Composed Abel–Fourier Transform. Symmetry. 2023; 15(6):1282. https://doi.org/10.3390/sym15061282
Chicago/Turabian StyleDe Micheli, Enrico. 2023. "Legendre Series Analysis and Computation via Composed Abel–Fourier Transform" Symmetry 15, no. 6: 1282. https://doi.org/10.3390/sym15061282
APA StyleDe Micheli, E. (2023). Legendre Series Analysis and Computation via Composed Abel–Fourier Transform. Symmetry, 15(6), 1282. https://doi.org/10.3390/sym15061282