Legendre Series Analysis and Computation via Composed Abel–Fourier Transform
Abstract
:1. Introduction
2. Connection between Legendre Expansions and Fourier Series
Numerical Issues
3. Computation of Legendre Expansions
3.1. An Algorithm for the Evaluation of Legendre Series
- From the N-vector of Legendre coefficients, compute the N-vector by , where the (known) upper triangular matrix is defined in (13) (see also Proposition 1);
- Compute the cosine transform of length N of the vector to obtain values of at N selected points of the interval .
3.2. A Novel Algorithm
- The N-term approximation of the function is computed by using (22) from the input N-vector of Legendre coefficients:
- The values of the N-term Legendre expansion at points ()
4. Conclusions
Future Work
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheney, C.W. Introduction to Approximation Theory; McGraw-Hill: New York, NY, USA, 1966. [Google Scholar]
- Rainville, E.D. Special Functions; MacMillan: New York, NY, USA, 1960. [Google Scholar]
- Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A. Spectral Methods: Fundamentals in Single Domains; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Davis, P.; Rabinowitz, P. Methods of Numerical Integration; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Brunner, H.; Iserles, A.; Nørsett, S. The computation of the spectra of highly oscillatory Fredholm integral operators. J. Integral Equations Appl. 2011, 23, 467–519. [Google Scholar] [CrossRef]
- Gallagher, N.; Wise, G.; Allen, J. A novel approach for the computation of Legendre polynomial expansions. IEEE Trans. Acoustic Speech Signal Process. 1978, 26, 105–106. [Google Scholar] [CrossRef]
- Piessens, R. Algorithm 473, Computation of Legendre series coefficients. Comm. ACM 1974, 17, 25–26. [Google Scholar] [CrossRef]
- Delic, G. The Legendre series and a quadrature formula for its coefficients. J. Comp. Phys. 1974, 14, 254–268. [Google Scholar] [CrossRef]
- Orszag, S.A. Fast Eigenfunction Transforms. In Science and Computers; Academic Press: New York, NY, USA, 1986; pp. 13–30. [Google Scholar]
- Alpert, B.K.; Rokhlin, V. A fast algorithm for the evaluation of Legendre expansions. SIAM J. Sci. Stat. Comput. 1991, 12, 158–179. [Google Scholar] [CrossRef]
- O’Neil, M.; Woolfe, F.; Rokhlin, V. An algorithm for the rapid evaluation of special function transforms. Appl. Comput. Harmon. Anal. 2010, 28, 203–226. [Google Scholar] [CrossRef] [Green Version]
- Yarvin, N.; Rokhlin, V. An improved fast multipole method for potential fields on the line. SIAM J. Numer. Anal. 1999, 36, 629–666. [Google Scholar] [CrossRef]
- Hale, N.; Townsend, A. A fast, simple, and stable Chebyshev-Legendre transform using an asymptotic formula. SIAM J. Sci. Comput. 2014, 36, A148–A167. [Google Scholar] [CrossRef] [Green Version]
- Mori, A.; Suda, R.; Sugihara, M. An improvement on Orszag’s fast algorithm for Legendre polynomial transform. Trans. Info. Process. Soc. Japan 1999, 40, 3612–3615. [Google Scholar]
- Xiang, S. On fast algorithms for the evaluation of Legendre coefficients. Appl. Math. Lett. 2013, 26, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Driscoll, J.R.; Healy, D.M., Jr. Computing Fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math. 1994, 15, 202–250. [Google Scholar] [CrossRef] [Green Version]
- Potts, D.; Steidl, G.; Tasche, M. Fast algorithms for discrete polynomial transforms. Math. Comp. 1998, 67, 1577–1590. [Google Scholar] [CrossRef] [Green Version]
- Iserles, A. A fast and simple algorithm for the computation of Legendre coefficients. Numer. Math. 2011, 117, 529–553. [Google Scholar] [CrossRef]
- Gindikin, S. Abel Transform and Integral Geometry. In The Legacy of Niels Henrik Abel; Landal, O.A., Piene, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 585–596. [Google Scholar]
- Abd El-Hamid, H.A.; Rezk, H.M.; Ahmed, A.M.; AlNemer, G.; Zakarya, M.; El Saify, H.A. Dynamic inequalities in quotients with general kernels and measures. J. Funct. Spaces 2020, 2020, 5417084. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Saker, S.H.; Kenawy, M.R.; Rezk, H.M. Lower bounds on a generalization of Cesaro operator on time scales. Dyn. Contin. Discrete Impuls. Syst. A Math. Anal. 2021, 28, 345–355. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. (Eds.) Higher Transcendental Functions. In Bateman Manuscript Project; McGraw-Hill: New York, NY, USA, 1953; Volume 2. [Google Scholar]
- Vilenkin, N.I. Special Functions and the Theory of Group Representations; American Mathematical Society: Providence, RI, USA, 1968; Volume 22. [Google Scholar]
- Monegato, G.; Scuderi, L. Numerical integration of functions with boundary singularities. J. Comp. Appl. Math. 1999, 112, 201–214. [Google Scholar] [CrossRef] [Green Version]
- Alpert, B.K. High-order quadratures for integral operators with singular kernels. J. Comp. Appl. Math. 1995, 60, 367–378. [Google Scholar] [CrossRef] [Green Version]
- Rokhlin, V. End-point corrected trapezoidal quadrature rules for singular functions. Comput. Math. Appl. 1990, 20, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Novak, E. Some Results on the Complexity of Numerical Integration. In Monte Carlo and Quasi-Monte Carlo Methods; Cools, R., Nuyens, D., Eds.; Springer: Cham, Switzerland, 2016; Volume 36. [Google Scholar]
- Calvetti, D. A stochastic roundoff error analysis for the fast Fourier transform. Math. Comp. 1991, 56, 755–774. [Google Scholar] [CrossRef]
- Kaneko, T.; Liu, B. Accumulation of round-off error in Fast Fourier Transforms. J. Assoc. Comp. Mach. 1970, 17, 637–654. [Google Scholar] [CrossRef]
- Song, J.; Mingotti, A.; Zhang, J.; Peretto, L.; Wen, H. Accurate damping factor and frequency estimation for damped real-valued sinusoidal signals. IEEE Trans. Instrum. and Meas. 2022, 71, 1–4. [Google Scholar] [CrossRef]
- Greengard, L. The Rapid Evaluation of Potential Fields in Particle Systems; MIT Press: Cambridge, MA, USA, 1988. [Google Scholar]
- Gorenflo, R.; Vessella, S. Abel Integral Equations. In Lecture Notes in Math; Springer: Berlin/Heidelberg, Germany, 1991; Volume 1461. [Google Scholar]
- Galassi, M. GNU Scientific Library Reference Manual, 3rd ed.; Network Theory Ltd.: London, UK, 2009; ISBN 0954612078. [Google Scholar]
- Mathematica, Version 12.0; Software For Technical Computation; Wolfram Research, Inc.: Champaign, IL, USA, 2019.
- Mohlenkamp, M.J. A fast transform for spherical harmonics. J. Fourier Anal. Appl. 1999, 5, 159–184. [Google Scholar] [CrossRef]
- Hille, E. On the absolute convergence of polynomial series. Amer. Math. Monthly 1938, 45, 220–226. [Google Scholar] [CrossRef]
- Young, W.H. On the connexion between Legendre series and Fourier series. Proc. Lond. Math. Soc. 1920, 18, 141–162. [Google Scholar] [CrossRef]
- Hobson, E.W. The Theory of Spherical and Ellipsoidal Harmonics; Cambridge University Press: Cambridge, UK, 1931. [Google Scholar]
- Greengard, L.; Rokhlin, V. A fast algorithm for particle simulations. J. Comp. Phys. 1987, 73, 325–348. [Google Scholar] [CrossRef]
0 | 8.15 | 7.51 | 1.11 | 3.33 |
1 | 2.98 | 1.44 | 3.33 | 5.55 |
2 | 3.12 | 1.86 | 3.88 | 1.97 |
3 | 5.43 | 9.20 | 3.39 | 2.87 |
4 | 3.41 | 1.07 | 4.72 | 3.36 |
5 | 2.53 | 1.30 | 5.47 | 1.58 |
6 | 9.28 | 1.14 | 4.50 | 1.96 |
7 | 1.09 | 9.75 | 4.22 | 2.54 |
8 | 1.99 | 4.29 | 3.18 | 2.63 |
9 | 1.27 | 6.10 | 3.94 | 2.90 |
10 | 1.87 | 5.74 | 1.65 | 2.93 |
11 | 7.50 | 4.45 | 1.54 | 9.71 |
12 | 1.16 | 1.79 | 1.94 | 2.04 |
13 | 2.20 | 3.32 | 3.60 | 1.67 |
14 | 1.56 | 8.43 | 7.36 | 2.37 |
15 | 2.75 | 9.81 | 4.18 | 2.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Micheli, E. Legendre Series Analysis and Computation via Composed Abel–Fourier Transform. Symmetry 2023, 15, 1282. https://doi.org/10.3390/sym15061282
De Micheli E. Legendre Series Analysis and Computation via Composed Abel–Fourier Transform. Symmetry. 2023; 15(6):1282. https://doi.org/10.3390/sym15061282
Chicago/Turabian StyleDe Micheli, Enrico. 2023. "Legendre Series Analysis and Computation via Composed Abel–Fourier Transform" Symmetry 15, no. 6: 1282. https://doi.org/10.3390/sym15061282
APA StyleDe Micheli, E. (2023). Legendre Series Analysis and Computation via Composed Abel–Fourier Transform. Symmetry, 15(6), 1282. https://doi.org/10.3390/sym15061282