
Citation: De Micheli, E. Legendre

Series Analysis and Computation via

Composed Abel–Fourier Transform.

Symmetry 2023, 15, 1282. https://

doi.org/10.3390/sym15061282

Academic Editor: Junesang Choi

Received: 18 May 2023

Revised: 14 June 2023

Accepted: 16 June 2023

Published: 19 June 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Legendre Series Analysis and Computation via Composed
Abel–Fourier Transform
Enrico De Micheli

IBF—Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genova, Italy; enrico.demicheli@cnr.it

Abstract: Legendre coefficients of an integrable function f (x) are proved to coincide with the Fourier
coefficients with a nonnegative index of a suitable Abel-type transform of the function itself. The nu-
merical computation of N Legendre coefficients can thus be carried out efficiently in O(NlogN)

operations by means of a single fast Fourier transform of the Abel-type transform of f (x). Sym-
metries associated with the Abel-type transform are exploited to further reduce the computational
complexity. The dual problem of calculating the sum of Legendre expansions at a prescribed set
of points is also considered. We prove that a Legendre series can be written as the Abel transform
of a suitable Fourier series. This fact allows us to state an efficient algorithm for the evaluation of
Legendre expansions. Finally, some numerical tests are illustrated to exemplify and confirm the
theoretical results.
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1. Introduction

The computation of the coefficients of Legendre expansions is a very important problem
in applied mathematics and numerical analysis, with a wide range of applications including,
just to name a few, approximation theory [1], special function theory [2], spectral methods
for differential equations [3], and the construction of quadrature formulae [3,4]. Its impor-
tance has also emerged in connection with the computation of spectra of highly oscillatory
Fredholm integral operators, which play an important role in laser engineering [5]. Due to
its relevance, this problem has attracted a significant amount of research attention since the
1970s [6,7].

The essential difficulty of the problem is that these coefficients are represented by
integrals whose integrands oscillate rapidly for large values of the index of the polynomial.
Standard quadrature procedures for the calculation of N Legendre coefficients lead only to
slow O(N2) algorithms (see [6,8]). The first contribution toward a more efficient computa-
tion of Legendre coefficients traces back to the work of Orszag [9], where the algorithm
used a slowly converging first-order WKB expansion of the Legendre polynomials.

More efficiently, in [10], the Legendre coefficients are obtained by transforming the cor-
responding Chebyshev coefficients through a multipole-like expansion, which yields a fast
O(N log N) algorithm, despite requiring a considerable and rather expensive initialization
phase. In this context, various improvements have been proposed, e.g., in [11,12]. Remain-
ing within this kind of approach, Hale and Townsend [13] described an O(N(log N)2/
log log N) Chebyshev–Legendre transform, which is based on Stieltjes’ asymptotic formula
for Legendre polynomials of large degree. Mori et al. [14] employed the same asymptotic
formula to produce a fast O(N log N) algorithm, but this algorithm was affected by the
problem of numerical instability for large values of N. The connection between Legendre
and Chebyshev coefficients is also analyzed in [15] in the case of piecewise smooth func-
tions. In Ref. [16] (see also [17]), an O(N(log N)2) algorithm is given for a value of N equal
to a power of two, which requires a suitably preprocessed data structure.
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Another way to tackle this problem was described by Iserles in [18], where an algo-
rithm for the rapid computation of the Legendre coefficients is presented when the analytic
expression of the input function is known on a Bernstein ellipse in the complex plane.
The complexity of the algorithm is O(N log N) but requires knowledge of the region of
analyticity of the function in C.

In this paper, an alternative procedure is presented. The basic idea of our method
consists of exploiting the Dirichlet–Murphy integral representation of the Legendre poly-
nomials. We prove that the coefficients of the Legendre expansion of a function f (x) are
connected with a subset of the Fourier coefficients (the ones with a nonnegative index) of
an Abel-type transform of f (x) [19–21].

The numerical implementation of the algorithm follows straightforwardly and is very
efficient. The aforementioned Fourier coefficients (which represent the sought-for Legendre
coefficients) can be computed in O(N log N) operations by a single fast Fourier transform
(FFT) after the evaluation of the Abel-type integral by means of standard quadrature
techniques.

The dual problem of calculating the values of (finite) Legendre expansions at a set
of prescribed points is analyzed in Section 3. In Section 3.1, we prove that the Legendre
expansions can be computed by an (inverse) cosine transform of a sequence of coefficients,
which is obtained by a suitable linear transformation of the given set of N Legendre
coefficients. Further, a novel algorithm is presented in Section 3.2, where the Legendre
expansions are proved to be the Abel-type transform of a Fourier series, whose coefficients
coincide with the Legendre coefficients of the function f (x). This leads to an efficient
algorithm that requires the calculation of one FFT and one Abel-type integral.

2. Connection between Legendre Expansions and Fourier Series

The standard form of the Legendre expansion reads

f (x) =
∞

∑
n=0

cn Pn(x), (x ∈ [−1, 1]), (1)

where Pn(x) are the Legendre polynomials, which can be defined by the generating function [22]

∞

∑
n=0

Pn(x) tn =
(

1− 2xt + t2
)− 1

2 , (|x| 6 1, |t| < 1), (2)

and the coefficients {cn}∞
n=0 are given by

cn =
(

n + 1
2

) ∫ 1

−1
f (x) Pn(x)dx, (n > 0). (3)

The conditions to be satisfied by f (x) to guarantee the uniform convergence of the
series in (1) will be discussed in the next section. However, for our current purpose
of computing the Legendre coefficients cn, it is sufficient to assume that f (x) must be
absolutely integrable on the interval [−1, 1]. For later convenience, we define the normalized
Legendre coefficients as

an
.
=

cn

2n + 1
, (n > 0). (4)

We can now state the following theorem.

Theorem 1. The normalized Legendre coefficients {an}∞
n=0 coincide with the Fourier coefficients

(with n > 0) of an Abel-type transform of f (x); that is:

an =
∫ π

−π
f̂ (y) einy dy, (n > 0), (5)

where the 2π-periodic function f̂ (y) is defined by
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f̂ (y) =
1

2πi
ε(y) ei y

2

∫ 1

cos y

f (x)

[2(x− cos y)]
1
2

dx, (y ∈ R), (6)

with ε(y) being the sign function.

Proof. We consider the Dirichlet–Murphy integral representation of the Legendre polyno-
mials [23] (Ch. III, §5.4):

Pn(cos u) = − i
π

∫ (2π−u)

u

e i(n+ 1
2 )y

[2(cos u− cos y)]
1
2

dy. (7)

Plugging (7) into Equality (3) (after changing the variable x → cos u), we have:

2πi an =
∫ π

0
du f (cos u) sin u

∫ (2π−u)

u

e i(n+ 1
2 )y

[2(cos u− cos y)]
1
2

dy. (8)

Interchanging the order of integration in (8), we obtain

2πi an =
∫ π

0
dy e i(n+ 1

2 )y
∫ y

0
f (cos u)

sin u

[2(cos u− cos y)]
1
2

du

+
∫ 2π

π
dy e i(n+ 1

2 )y
∫ (2π−y)

0
f (cos u)

sin u

[2(cos u− cos y)]
1
2

du.
(9)

Next, changing the variables y → y− 2π and u → −u, the second integral on the
right-hand side of (9) reads

eiπ
∫ 0

−π
dy e i(n+ 1

2 )y
∫ y

0
f (cos u)

sin u

[2(cos u− cos y)]
1
2

du.

Then, (9) becomes

2πi an =
∫ π

0
dy e i(n+ 1

2 )y
∫ y

0
f (cos u)

sin u

[2(cos u− cos y)]
1
2

du

+ eiπ
∫ 0

−π
dy e i(n+ 1

2 )y
∫ y

0
f (cos u)

sin u

[2(cos u− cos y)]
1
2

du,

which, after changing the variable cos u→ x into the integrals on the r.h.s., yields:

an =
∫ π

−π
f̂ (y) einy dy, (n > 0),

with f̂ (y) given by (6).

It is immediate to see from (6) that f̂ (y) satisfies the symmetry relation,

f̂ (y) = −eiy f̂ (−y), (10)

which, by (5), induces the following symmetry on an:

an = −a−n−1, (n ∈ Z).

Numerical Issues

Let us now consider the actual problem of computing the first N Legendre coefficients
{cn}N−1

n=0 (or, equivalently, N normalized coefficients {an}N−1
n=0 ) associated with the function

f (x) (see (1) and (3)).
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The numerical implementation of the algorithm suggested by Theorem 1 requires the
computation of the Fourier coefficients (5) of the Abel-type integral function f̂ (y) defined
in (6). For what concerns the computation of f̂ (y), the integrand has a weak algebraic
singularity at the lower boundary of the integration domain, which can be effectively
treated by means of a proper nonlinear change of variable. This technique, along with
the use of a standard quadrature formula (e.g., the Gauss–Legendre one), produces high
accuracy with a small number of nodes [24]. Quadrature formulae suited to end-point
singular integrands can also be used [25,26].

It is important to stress that the function f̂ (y) does not depend on the order n of the
Legendre polynomial. Therefore, the computational cost for evaluating f̂ (y) is independent
of the number N of Legendre coefficients to be computed. This means that the number of
knots that are necessary to compute the integral in f̂ (y) (with a prescribed fixed accuracy ε)
does not depend on N but depends only upon the oscillatory characteristics of the function
f (x) (i.e., the number of samples needed to determine f (x) uniquely) and on the accuracy
ε [27]. The oscillatory contributions due to the Legendre polynomials or, in other words,
the dependence on the order n of the Legendre polynomial, are accounted for only in the
Fourier formula (5) and are neatly separated from the oscillatory contributions ascribable
to the input function f (x). The consequence of this decoupling is the low computational
complexity of the whole algorithm. In fact, Formula (5) makes it possible to take full
benefit of the computational efficiency of the fast Fourier transform either in terms of speed
of computation and accuracy [28–30]. The first N Fourier coefficients an of f̂ (y) (which
coincide with the normalized Legendre coefficients of f (x)) can thus be computed by a single
FFT from the values (samples) of f̂ (y) at N distinct points in O(N log N) time. As we
have seen above, the number of operations for the calculation of each sample of f̂ (y) is
independent of N and, consequently, the (asymptotic) computational complexity of the
entire algorithm for the computation of the Legendre coefficients coincides with that of
the FFT, i.e., O(N log N). Moreover, in view of the symmetry Relation (10), the number
of calls to the procedure for the computation of the Abel integral is halved. Of course,
if O(N) samples are needed to uniquely determine the function f (x) and we want the
error ε to be as small as possible, then all the O(N) samples of f (x) must be used for
the numerical computation of the Abel integral and, consequently, the total number of
operations in the algorithm will be O(N2). Therefore, following logical lines similar to
those adopted by Alpert and Rokhlin in [1] (and, more generally, in methods such as, e.g.,
the fast multipole methods [31]), the reduction of complexity from O(N2) to O(N log N) is
obtained by accepting a lower precision in the computation (in our case, a lower precision
in the computation of the Abel integral).

We want to remark on two additional features of the algorithm just presented. First,
the algorithm does not require the knowledge of the input function f (x) at a specific and
prescribed set of knots (see, for instance, [10] where the input function is supposed to
be known at Chebyshev knots). The function f (x) enters the algorithm only through its
Abel-type integral. This gives a significant amount of flexibility in choosing the quadrature
scheme, which is more suitable for the distribution of knots at which the input function
is known (e.g., a uniform grid, Chebyshev grid, or a set of measurements of f (x) that are
non-uniformly distributed).

The final remark concerns the robustness of the algorithm against the noise. In the case
for which the values of f (x) are only approximately known, e.g., when the input samples
of f (x) represent measurements affected by error, the effects of the noise in the calculation
of the coefficients cn are damped by the algorithm. In fact, the noisy input samples of f (x)
are smoothed by the Abel integral operator [32] before being analyzed (encoded as samples
of f̂ (y)) by the oscillatory Fourier integral (5).

The procedure described above was implemented in double-precision arithmetics using the
standard open source GNU Scientific Library (GSL) (all algorithms were implemented on a laptop
with Intel Core i7-2630QM processor at 2.0 GHz with 8 GB RAM. The actual computation of the
Abel-type integrals is based on the GSL module gsl_integration_qaws.) [33].
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The feasibility and accuracy of the algorithm were verified by the direct comparison of
the obtained numerical results with the true Legendre coefficients for a variety of functions.
We report some of them here.

Table 1 displays the absolute error En
.
= |cTrue

n − cComputed
n | in the computation of Leg-

endre coefficients for four functions with different degrees of regularity: the discontinuous
function f1(x) = γ ε(x − x0) (with ε(·) being the sign function and γ being a constant),
whose Legendre coefficients are c(1)0 = −γx0, c(1)n = γ[Pn−1(x0)− Pn+1(x0)] for n > 1; the
C0[−1, 1] function f2(x) = |x|3/2, whose Legendre coefficients are [3] (p. 78)

c(2)n =


(α + 1)−1 if n = 0, (α = 3

2 ),

(2n + 1) α (α− 2) · · · (α− n + 2)
(α + 1)(α + 3) · · · (α + n + 1)

if n is even,

0 if n is odd;

(11)

the function f3(x) = (1 − 2xt + t2)−1/2 with c(3)n = tn (with a singlarity for x outside
the interval [−1 : 1]; see (2)); and the C-analytic function f4(x) = eβx J0(β

√
1− x2), with

c(4)n = βn/n! (J0 denoting the Bessel function of the first kind and zeroth order).

Table 1. Absolute error En of the computed Legendre coefficients cn for four different functions with
different degrees of smoothness (see text). The reference “exact” values of cn were computed with 30
significant figures by standard quadrature with Mathematica [34].

n En[ f1] En[ f2] En[ f3] En[ f4]

0 8.15−6 7.51−11 1.11−16 3.33−16
1 2.98−6 1.44−10 3.33−15 5.55−17
2 3.12−5 1.86−12 3.88−15 1.97−15
3 5.43−5 9.20−11 3.39−15 2.87−15
4 3.41−5 1.07−10 4.72−15 3.36−15
5 2.53−5 1.30−10 5.47−15 1.58−15
6 9.28−5 1.14−10 4.50−15 1.96−15
7 1.09−4 9.75−11 4.22−15 2.54−15
8 1.99−5 4.29−10 3.18−15 2.63−15
9 1.27−4 6.10−10 3.94−15 2.90−15

10 1.87−4 5.74−10 1.65−15 2.93−15
11 7.50−5 4.45−10 1.54−15 9.71−16
12 1.16−4 1.79−10 1.94−15 2.04−15
13 2.20−4 3.32−10 3.60−15 1.67−15
14 1.56−4 8.43−10 7.36−16 2.37−15
15 2.75−5 9.81−10 4.18−15 2.06−15

The first observation from Table 1 is that the accuracy depends on the degree of
smoothness of the function because of the computation of the Abel transform of f (x),
which, in order to obtain a given target precision, requires more quadrature knots for low
regular functions. Concerning the smooth (within the interval [−1, 1]) functions f3 and f4,
which give similar results, the accuracy increases significantly to reach values comparable
with the ε-machine.

The algorithm sources of error are the approximation of integral (5) by the discrete
Fourier transform; the approximation of the Abel transform (6) by quadratures, and, finally,
the limited accuracy of the floating-point arithmetic. The error associated with the discrete
Fourier transform is ruled by N. This is clearly visible from Figure 1a, where the maximum
error Emax(N)

.
= maxn∈[0,N−1] En is plotted versus N. For the C0-function f2(x) (asterisks),

we see that for low values of N the maximum error is mainly ascribable to the error due
to the approximation of the Fourier integral with the DFT and to the approximation of
the Abel integral: it decreases according to N−2 up to N ∼ 103 and then starts increasing
according to O(N), as in the case of smooth functions. From the comparison with the
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plot of the maximum error for smooth functions (triangles), we can also say that it is not
necessary to use a large number of points N in the DFT unless the function f (x) itself has
low regularity.
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Figure 1. (a) Maximum error Emax(N) = maxn∈[0,N−1] En versus the number N of computed
Lagendre coefficients. The filled dots (•) refer to the function f1(x), the asterisks (∗) refer to f2(x),
and the filled triangles (N) refer to f3(x) (see text). (b) Execution time T versus N. The O(N2) line is
plotted just for reference.

The computation of N Legendre coefficients cn by ordinary quadrature produces a
O(N2) algorithm. The increment of performances of the algorithm presented here was
verified by evaluating the speed of computation at (nearly) the same precision. The results
of these tests are illustrated in Figure 1b, where the execution time T (in seconds) is
plotted versus the number N of computed Legendre coefficients. The results show a O(N)
execution time (at least in the N-interval we considered, up to N ∼ 5 · 105) independent
of the regularity properties of the input function f (x), confirming the expected great
increase in computational speed (asymptotically, with the awaited improvement ratio
being proportional to N/ log N). Such an increase in performances will become even more
crucial for the efficient evaluation of multivariate Legendre transforms [5] and of spherical
harmonic expansions [35], which will be the subject of a forthcoming paper.

3. Computation of Legendre Expansions

Let us now move on to consider the dual problem of computing the function f (x)
from the set of N Legendre coefficients cn. In general, in the complex plane, the domain of
convergence of the Legendre expansion (1) is the maximal ellipse with foci at ±1 within
which the function f is analytic [36]. This rather restricted class of functions can be
greatly enlarged when we limit ourselves to consider convergence issues on the segment
x ∈ [−1, 1]. In Ref. [37], W. H. Young showed the tight connection between Legendre series
and Fourier series when x ∈ (−1, 1). In particular, he proved that in any internal closed
interval of (−1, 1), the Legendre series (1) behaves, with respect to convergence (uniform
or otherwise), divergence, and oscillation, exactly as the Fourier series of f (cos u), where
x = cos u, assuming that the coefficients cn of Series (1) are such that

n−
1
2 cn → 0 for n→ ∞,
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the latter being the natural necessary condition for the convergence of Series (1). More
explicitly, E. W. Hobson [38] provided a test of convergence, stating that if the condition∫ 1

−1
(1− x2)−

1
4 | f (x)|dx < ∞

is satisfied (the latter condition being equivalent to require that f (cos u)
√

sin u be integrable
on u ∈ [0, π]), then Series (1) is convergent for any x ∈ (−1, 1) near which f is of a
bounded variation. Since the points x = ±1 are singular points of Legendre’s equation, the
convergence at the end points of the interval requires somehow more stringent (than in
the Fourier case) conditions, such as, e.g., f (x) being of bounded variation over the entire
interval [−1, 1].

This parallelism between Legendre and Fourier expansions has already been exploited
in the previous section, where we proved that the (normalized) Legendre coefficients of
f (x) coincide with the Fourier coefficients of the function f̂ (y). In the next two subsections,
we continue our analysis along this line, and present two algorithms for the computation
of values of Legendre expansions.

3.1. An Algorithm for the Evaluation of Legendre Series

In the theorem that follows, we will prove that a Legendre expansion can be computed
by calculating the (inverse) cosine transform of a sequence, which is obtained by a suitable
linear transformation of the set of Legendre coefficients cn.

Theorem 2. Assume that f (x) is such that the Legendre expansion (1) and the Fourier expansion
of f (cos u) converge uniformly on x ∈ [−1, 1] and u ∈ [0, π], respectively. Then, for u ∈ [0, π],
f (cos u) can be represented as

f (cos u) =
ϕ0

2
+

+∞

∑
m=1

ϕm cos mu, (12)

with the coefficients ϕm (m = 0, 1, 2, . . .) being given by

ϕm =
+∞

∑
n=0

km,n cn, (m = 0, 1, 2, . . .),

where cn denotes the Legendre coefficients of f (x) (see (3)) and

km,n =
2
π

∫ π

0
Pn(cos u) cos(mu)du, (m, n = 0, 1, 2, . . .). (13)

Proof. Since f (x) is compactly supported on x ∈ [−1, 1], the function f (cos u) (u ∈ [0, π])
is a 2π-periodic function of u. Hence, the latter can be represented as the Fourier series,

f (cos u) =
1

2π

+∞

∑
n=−∞

fn e−inu, (u ∈ [0, π]). (14)

For the uniform convergence of the two series, we have from (1) and (14)

1
2π

+∞

∑
n=−∞

fn e−inu =
+∞

∑
n=0

cn Pn(cos u), (15)
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so that, multiplying both sides of (15) by eimu and integrating on u ∈ [−π, π], we have

+∞

∑
n=−∞

fn

[
1

2π

∫ π

−π
ei(m−n)u du

]
=

+∞

∑
n=0

cn

∫ π

−π
Pn(cos u) eimu du. (16)

The term in the parentheses on the l.h.s. of (16) is the integral representation of the
Kronecker delta δm,n. Then, from (16), we have

ϕm
.
=

fm

π
=

+∞

∑
n=0

[
2
π

∫ π

0
Pn(cos u) cos(mu)du

]
cn =

+∞

∑
n=0

km,n cn,

with km,n defined in (13). Finally, Expansion (12) follows readily by observing that
ϕ−m = ϕm.

It is worth remarking that the linear transformation K .
= {km,n}∞

m,n=0, which connects
the Legendre coefficients of f (x) with the Fourier coefficients of f (cos u), is independent of
f (x). Thus, it can be pre-computed with arbitrary precision and can be regarded as known.
In the next proposition, some known facts on the structure of the matrix K are listed, along
with the analytic expression of its entries as smooth functions of the indexes (see Ref. [10])
and an iterative procedure for computing its elements.

Proposition 1. (i) The coefficients km,n (defined in (13)) can be written as follows:

km,n =
2
π

∫ 1

−1
Pn(x) Tn(x)

dx√
1− x2

, (17)

with Tn(·) denoting the Chebyshev polynomials of the first kind.
(ii) The matrix K is upper triangular, and its entries km,n can be computed as follows:

km,n =


1
π

[
Λ
( n

2
)]2, for m = 0 and n > m with n even,

2
π Λ

( n−m
2
)
Λ
( n+m

2
)
, if 0 < m 6 n and (n + m) is even,

0, otherwise,

(18)

where

Λ(z) .
=

Γ(z + 1
2 )

Γ(z + 1)
,

with Γ(·) denoting the Euler gamma function.
(iii) The following recurrence relationship holds for n > 1 and 0 6 m < n:

km,n =
(n− 1)(n−m− 1)

n(m + n)
km,n−2 +

m(2n− 1)
n(m + n)

km−1,n−1. (19)

(iv) The diagonal elements can be written as follows:

km,m = 2
m

∏
j=1

(
1− 1

2j

)
, (m = 1, 2, . . .). (20)

(v) The elements k0,2n of the first row can be written as follows:

k0,2n = 2
n

∏
j=1

(
1− 1

2j

)2
, (n = 1, 2, . . .).
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Proof. Formula (17) follows from Definition (13) by making the substitution cos u → x
into the integral and recalling the definition of the Chebyshev polynomials of the first
kind: Tm(x) .

= cos(m arccos x), (m > 0). Representation (ii) of the coefficients km,n is
well-known, and it is given, e.g., by Alpert and Rokhlin in [10] (Formula (20)) (where the
matrix K is there named M). The recurrence relationship in Equation (19) follows from
Representation (18) and from the following three-term recurrence relationships holding,
respectively, for the Legendre polynomials Pn(x) and for Chebyshev polynomials Tn(x):

nPn(x) = (2n− 1)x Pn−1(x)− (n− 1)Pn−2(x), (n > 2),

P0(x) = 1 and P1(x) = x,

and

Tn(x) = 2xTn−1(x)− Tn−2(x), (n > 2),

T0(x) = 1 and T1(x) = x.

Finally, Point (iv) is obtained by putting n = m into (20), and, similarly, Point (v)
follows by putting m = 0 into Relationship (20).

The algorithmic prescription provided by Theorem 2 for the computation of the
values of a (truncated) Legendre expansion is indeed very simple. It consists of a two-
step procedure:

1. From the N-vector c = (c0, c1, . . . , cN−1)
T of Legendre coefficients, compute the N-

vector ϕ = (ϕ0, ϕ1, . . . , ϕN−1)
T by ϕ = KN c, where the (known) upper triangular

matrix KN = {km,n}N−1
m,n=0 is defined in (13) (see also Proposition 1);

2. Compute the cosine transform of length N of the vector ϕ to obtain values of f (cos u)
at N selected points of the interval u ∈ [0, π].

The second step of the algorithm presents no difficulties. It is fast since it can be imple-
mented by a single FFT of length N, which requires O(N log N) operations. The standard
FFT procedure provides an output on a uniform grid {un}N−1

n=0 of [0, π], so that, according
to Formula (12), the final result consists of the set of function values { f (cos un)}N−1

n=0 at
Chebyshev points.

The first step of the algorithm instead presents some aspects that deserve a few
comments. The crux is that the matrix KN is dense, and the direct calculation of the
matrix–vector product KN c requires O(N2) operations (precisely, N(N+2)

4 multiplications).
Therefore, this step can become a bottleneck for the algorithm when N becomes large.
In some practical cases, the question is not critical, e.g., when the triangular structure of KN
can be exploited on some computer architectures (e.g., vector machines or parallel GPU) to
significantly decrease the complexity of the computation. Nevertheless, the reduction in
the algorithmic complexity remains an issue. Approximate methods are the only tools to
effectively handle the fast computation of the matrix–vector product when the matrix is
not structured (e.g., when its entries depend only on O(N) parameters). The key to many
of these fast methods is renouncing exactness and accepting the result of the computation
within an a priori fixed level of accuracy. This enables using approximations of the kernel
K which, combined with a suitable subdivision of the matrix into panels, can enormously
reduce the computational cost. Among these algorithms, it is worth citing the celebrated
fast multipole methods by L. Greengard and V. Rokhlin for the fast computation of N-body
interactions [12,31,39], which are able to reduce the number of operations to O(N log N)
(or even less, to O(N), when the matrix has structure).

The specific problem we are dealing with here, that is, the fast computation of the
matrix–vector product KN c (where {km,n}N−1

m,n=0 is given by Formula (17)) has been solved
brilliantly by B. Alpert and V. Rokhlin in Ref. [10]. In that paper, the matrix KN is first
properly divided in square submatrices, and then, the computation associated with each
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submatrix is performed efficiently, approximating each entry of the submatrix by its finite
Chebyshev expansion. The computational cost brought by a ν × ν submatrix is then
reduced from order O(ν2) of the naive computation to O(ν log 1

ε ), with ε being the fixed
precision required in the Chebyshev interpolation of the submatrix entries. This basic
building block can thus be assembled to construct an algorithm for the fast computation of
the matrix–vector product KN c with a O(N log N) order of complexity.

3.2. A Novel Algorithm

In this subsection, we present a novel algorithm for the inversion of the Legendre
transform, which somewhat represents the natural dual algorithm of the one presented in
Section 2 for the computation of the forward Legendre transform. In the next theorem,
it will be proved that a Legendre expansion can be written as the Abel-type transform
of a proper Fourier series, whose coefficients are the Legendre coefficients of f (x) (cf.
Theorem 1).

Theorem 3. Assume that the Legendre expansion in Equation (1) of f (x) converges uniformly on
x ∈ [−1, 1]. Then, f (cos u), where u ∈ [0, π], can be represented as

f (cos u) =
∫ π

u

χ(t)

[2(cos u− cos t)]
1
2

dt, (u ∈ [0, π]), (21)

with the function χ(t) being given by

χ(t) .
=

2
π

∞

∑
n=0

cn sin(n + 1
2 )t, (t ∈ [0, π]), (22)

and where cn are the Legendre coefficients of f (x) (see (3)).

Proof. The first step is to show that the Legendre polynomials Pn(cos u) can be represented
by the following integral:

Pn(cos u) =
2
π

∫ π

u

sin(n + 1
2 )t

[2(cos u− cos t)]
1
2

dt, (u ∈ [0, π]). (23)

Formula (23) is readily derived from the Dirichlet–Murphy Representation (7). First,
the domain of integration is divided into two subintervals, [u, 2π− u] = [u, π]∪ [π, 2π− u],
and then, after changing the variable of integration in the second integral t → 2π − t,
we obtain

Pn(cos u) = − i
π

(∫ π

u
+
∫ 2π−u

π

)
e i(n+ 1

2 )t

[2(cos u− cos t)]
1
2

dt

= − i
π

{∫ π

u

e i(n+ 1
2 )t

[2(cos u− cos t)]
1
2

dt−
∫ π

u

e−i(n+ 1
2 )t

[2(cos u− cos t)]
1
2

dt

}

=
2
π

∫ π

u

sin(n + 1
2 )t

[2(cos u− cos t)]
1
2

dt.

Formula (23) can now be plugged into Expansion (1) to obtain, after swapping the
sum and integral (which is legitimate for the uniform convergence of (1)),

f (cos u) =
2
π

∞

∑
n=0

cn

∫ π

u

sin(n + 1
2 )t

[2(cos u− cos t)]
1
2

dt =
∫ π

u

[
2
π ∑∞

n=0 cn sin(n + 1
2 )t
]

[2(cos u− cos t)]
1
2

dt,

which is indeed Formula (21) with χ(t) defined by (22).
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Theorem 3 suggests the following algorithm for the calculation of N values of a
Legendre expansion.

1. The N-term approximation χN(t) of the function χ(t) is computed by using (22) from
the input N-vector c = (c0, c1, . . . , cN−1)

T of Legendre coefficients:

χN(t)
.
=

2
π

N−1

∑
n=0

cn sin(n + 1
2 )t.

2. The values of the N-term Legendre expansion at points un (n > 0)

fN(cos un) =
N−1

∑
k=0

ck Pk(cos un) (un ∈ [0, π]),

are computed by the Abel-type integral (see (21))

fN(cos un) =
∫ π

un

χN(t)

[2(cos un − cos t)]
1
2

dt (un ∈ [0, π]). (24)

The first step of the algorithm is fast. The N values {χN(tn)}N−1
n=0 of the function χN(t)

on a regular grid of [0, π] can be computed in O(N log N) time with one FFT.
For what regards the second point of the algorithm, it should first be noted that the

choice of the the nodes un is unconstrained, and hence the approximation fN(cos u) can be
computed at any set of points un ∈ [0, π] using Formula (24). Concerning the computation
of Integral (24), since the first step of the algorithm yields values of the integrand on a
regular grid of t ∈ [0, π], only quadrature formulae based on equally spaced knots can be
implemented.

In general, the computation of fN(cos un) at N points {un}N−1
n=0 requires O(N2) opera-

tions since the second step of the algorithm requiresO(N) operations when all the N known
values of the function χN(t) are used for the computation of the integral in (24). However, it
is important to note that, for this computation, it is not always necessary to implement a full
N-knot quadrature procedure, particularly when N is large. Frequently, the computation
with the a priori fixed precision of Integral (24) requires much less (than N) quadrature
nodes, with the actual number of nodes depending either on the adopted quadrature
algorithm or on the oscillatory behavior of the integrand, which, in turn, depends on the
oscillatory characteristics of f (x).

An instance of a suitable quadrature scheme is given in [25,26], where quadrature rules
are proposed, which are based on modifications of the trapezoidal rule for integrands with
end-point singularities of various types, including singularities of the form xη , |η| < 1.
The convergence rate of these quadrature formulae is proved to be at least κ (that is, the
approximation error is of the order of N−κ), where κ denotes the order of the corrected
quadrature rule [25,26]. Thus, in these cases, and for an N that is sufficiently large, the algo-
rithm we propose for the evaluation of the Legendre expansion turns out to be particularly
favourable since the number of operations in Step (2) of the algorithm is a constant that
does not depend on N. Therefore, the algorithm’s complexity is ruled by the O(N log N)
complexity of the FFT used in Step (1).

4. Conclusions

In summary, we have presented a new and rapid, i.e., O(N log N), algorithm for the
computation of Legendre coefficients. The algorithm is very easy to implement and com-
putes the coefficients by employing only one FFT of the Abel-type transform of the input
function. The dual problem of evaluating Legendre expansions has also been considered,
and two algorithms have been described. In the first algorithm, the values of the expansion
at appropriately chosen points of the interval x ∈ [−1, 1] are computed by simply perform-
ing a single (inverse) FFT of a sequence of coefficients, which are obtained by a suitable
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linear transformation of the given set of N Legendre coefficients. The rapid evaluation of
the expansion values requires using approximate methods for the rapid calculation of the
matrix–vector product. The second algorithm for the calculation of values of Legendre ex-
pansions is new and somehow inverts the logical steps of the algorithm we have proposed
for the computation of the Legendre coefficients. Thus, the N-term Legendre expansion
can be evaluated efficiently (for an N that is sufficiently large) at any point in the interval
x ∈ [−1, 1] by computing the Abel transform of a proper Fourier series.

Future Work

The procedures described so far call for a number of natural generalizations to other
orthogonal polynomial systems, such as the associated Legendre polynomials and the related
spherical harmonics, with the aim of deriving an algorithm for a fast spherical harmonic
transform with an analogous flavour to the present paper. Another challange is to go up
the Legendre branch of the Askey scheme of hypergeometric orthogonal polynomials and
generalize what was discussed in Section 2 to Jacobi polynomials in order to achieve an
integral representation of the latter in terms of a composed Abel–Fourier transform.
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