The D4/D8 Model and Holographic QCD
Abstract
:1. Introduction
2. The D4/D8 Model
2.1. Eleven-Dimensional Supergravity and D4-Brane Background
2.2. Embedding the Probe D8/-Branes
2.3. Gluon, Quark and Symmetries
2.4. Mesons on the Flavor Brane
2.5. The Wrapped D4-Brane and Baryon Vertex
2.6. Gravitational Wave as Glueball
3. Developments and Holographic Approaches to QCD
3.1. QCD Deconfinement Transition
3.2. Phase Diagram with Chiral Transition
3.3. Higgs Mechanism and Heavy–Light Meson Field
3.4. Interactions of Hadrons and Glueballs
3.5. Theta Dependence in QCD
4. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. The Type II Supergravity Solution
Appendix B. Dimensional Reduction for Spinors
Appendix C. Supersymmetric Meson on the Flavor Brane
References
- Witten, E. Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 1998, 2, 253–291. [Google Scholar] [CrossRef] [Green Version]
- Maldacena, J.M. The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 1998, 2, 231–252. [Google Scholar] [CrossRef] [Green Version]
- Aharony, O.; Gubser, S.S.; Maldacena, J.M.; Ooguri, H. Large N field theories, string theory and gravity. Phys. Rept. 2000, 323, 183. [Google Scholar] [CrossRef] [Green Version]
- Maldacena, J. Wilson loops in large N field theories. Phys. Rev. Lett. 1998, 80, 4859–4862. [Google Scholar] [CrossRef] [Green Version]
- Rey, S.; Theisen, S.; Yee, J. Wilson-Polyakov loop at finite temperature in large N gauge theory and anti-de Sitter supergravity. Nucl. Phys. B 1998, 527, 171–186. [Google Scholar] [CrossRef] [Green Version]
- Brandhuber, A.; Itzhaki, N.; Sonnenschein, J.; Yankielowicz, S. Wilson loops in the large N limit at finite temperature. Phys. Lett. B 1998, 434, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Policastro, G.; Son, D.T.; Starinets, A.O. From AdS/CFT correspondence to hydrodynamics. J. High Energy Phys. 2002, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- Son, D.T.; Starinets, A.O. Minkowski space correlators in AdS/CFT correspondence: Recipe and applications. J. High Energy Phys. 2002, 9, 42. [Google Scholar] [CrossRef] [Green Version]
- Kovtun, P.; Son, D.T.; Starinets, A.O. Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 2005, 94, 111601. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, N.; Liu, H. Real-time response in AdS/CFT with application to spinors. Fortsch. Phys. 2009, 57, 367–384. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; McGreevy, J.; Vegh, D. Non-Fermi liquids from holography. Phys. Rev. D 2011, 83, 065029. [Google Scholar] [CrossRef]
- Semenoff, G.W.; Zarembo, K. Holographic Schwinger Effect. Phys. Rev. Lett. 2011, 107, 171601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, S.; Takayanagi, T. Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 2006, 96, 181602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klebanov, I.R.; Kutasov, D.; Murugan, A. Entanglement as a probe of confinement. Nucl. Phys. B 2008, 796, 274–293. [Google Scholar] [CrossRef] [Green Version]
- Harlow, D. Jerusalem Lectures on Black Holes and Quantum Information. Rev. Mod. Phys. 2016, 88, 015002. [Google Scholar] [CrossRef] [Green Version]
- Gross, D.J.; Wilczek, F. Ultraviolet Behavior of Nonabelian Gauge Theories. Phys. Rev. Lett. 1973, 30, 1343–1346. [Google Scholar] [CrossRef] [Green Version]
- Politzer, H.D. Reliable Perturbative Results for Strong Interactions? Phys. Rev. Lett. 1973, 30, 1346–1349. [Google Scholar] [CrossRef] [Green Version]
- Erlich, J.; Katz, E.; Son, D.T.; Stephanov, M.A. QCD and a holographic model of hadrons. Phys. Rev. Lett. 2005, 95, 261602. [Google Scholar] [CrossRef] [Green Version]
- Karch, A.; Katz, E.; Son, D.T.; Stephanov, M.A. Linear Confinement and AdS/QCD. arXiv 2006, arXiv:hep-ph/0602229. [Google Scholar] [CrossRef] [Green Version]
- Rold, L.; Pomarol, A. Chiral symmetry breaking from five dimensional spaces. Nucl. Phys. B 2005, 721, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Casalderrey-Solana, J.; Liu, H.; Mateos, D.; Rajagopal, K.; Wiedemann, U.A. Gauge/Gravity Duality, Hot QCD and Heavy Ion Collisions; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Kruczenski, M.; Mateos, D.; Myers, R.C.; Winters, D.J. Towards a holographic dual of large N(c) QCD. J. High Energy Phys. 2004, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- Witten, E. Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 1998, 2, 505–532. [Google Scholar] [CrossRef] [Green Version]
- Sakai, T.; Sugimoto, S. Low energy hadron physics in holographic QCD. Prog. Theor. Phys. 2005, 113, 843–882. [Google Scholar] [CrossRef] [Green Version]
- Sakai, T.; Sugimoto, S. More on a holographic dual of QCD. Prog. Theor. Phys. 2005, 114, 1083–1118. [Google Scholar] [CrossRef]
- Witten, E. Baryons and branes in anti-de Sitter space. J. High Energy Phys. 1998, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Hata, H.; Sakai, T.; Sugimoto, S.; Yamato, S. Baryons from instantons in holographic QCD. Prog. Theor. Phys. 2007, 117, 1157. [Google Scholar] [CrossRef] [Green Version]
- Hata, H.; Murata, M. Baryons and the Chern-Simons term in holographic QCD with three flavors. Prog. Theor. Phys. 2008, 119, 461–490. [Google Scholar] [CrossRef] [Green Version]
- Constable, N.R.; Myers, R.C. Spin-two glueballs, positive energy theorems and the AdS/CFT correspondence. J. High Energy Phys. 1999, 9910, 37. [Google Scholar] [CrossRef]
- Brower, R.C.; Mathur, S.D.; Tan, C.-I. Glueball spectrum for QCD from AdS supergravity duality. Nucl. Phys. B 2000, 587, 249–276. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, K.; Tan, C.-I.; Terashima, S. Glueball Decay in Holographic QCD. Phys. Rev. 2008, D77, 086001. [Google Scholar] [CrossRef] [Green Version]
- Brünner, F.; Parganlija, D. Rebhan Glueball Decay Rates in the Witten-Sakai-Sugimoto Model. Phys. Rev. 2015, D91, 106002, Erratum in Phys. Rev. 2016, D93, 109903. [Google Scholar]
- Aharony, O.; Sonnenschein, J.; Yankielowicz, S. A Holographic model of deconfinement and chiral symmetry restoration. Ann. Phys. 2007, 322, 1420–1443. [Google Scholar] [CrossRef] [Green Version]
- Bigazzi, F.; Cotrone, A.L. Holographic QCD with Dynamical Flavors. J. High Energy Phys. 2015, 1501, 104. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Jia, T. Dynamically flavored description of holographic QCD in the presence of a magnetic field. Phys. Rev. D 2017, 96, 066032. [Google Scholar] [CrossRef] [Green Version]
- Bergman, O.; Lifschytz, G.; Lippert, M. Holographic Nuclear Physics. J. High Energy Phys. 2007, 11, 56. [Google Scholar] [CrossRef]
- Li, S.; Schmitt, A.; Wang, Q. From holography towards real-world nuclear matter. Phys. Rev. D 2015, 92, 026006. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zahed, I. Heavy-light mesons in chiral AdS/QCD. Phys. Lett. B 2017, 769, 314–321. [Google Scholar] [CrossRef]
- Liu, Y.; Zahed, I. Holographic Heavy-Light Chiral Effective Action. Phys. Rev. D 2017, 95, 056022. [Google Scholar] [CrossRef] [Green Version]
- Kovensky, N.; Schmitt, A. Heavy Holographic QCD. J. High Energy Phys. 2020, 2, 96. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Xiao, Z.; Zhou, D. Sakai-Sugimoto model in D0–D4 background. Phys. Rev. D 2013, 88, 026016. [Google Scholar] [CrossRef] [Green Version]
- Seki, S.; Sin, S. A New Model of Holographic QCD and Chiral Condensate in Dense Matter. J. High Energy Phys. 2013, 10, 223. [Google Scholar] [CrossRef] [Green Version]
- Bartolini, L.; Bigazzi, F.; Bolognesi, S.; Cotrone, A.L.; Manenti, A. Theta dependence in Holographic QCD. J. High Energy Phys. 2017, 2, 29. [Google Scholar] [CrossRef] [Green Version]
- Bigazzi, F.; Cotrone, A.L.; Sisca, R. Notes on Theta Dependence in Holographic Yang-Mills. J. High Energy Phys. 2015, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Bigazzi, F.; Caddeo, A.; Cotrone, A.L.; Vecchia, P.D.; Marzolla, A. The Holographic QCD Axion. J. High Energy Phys. 2019, 12, 56. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, K.; Sakai, T.; Sugimoto, S. Nuclear Force from String Theory. Prog. Theor. Phys. 2009, 122, 427–476. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, K.; Iizuka, N.; Yi, P. A Matrix Model for Baryons and Nuclear Forces. J. High Energy Phys. 2010, 10, 3. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, K.; Iizuka, N. Three-Body Nuclear Forces from a Matrix Model. J. High Energy Phys. 2010, 11, 58. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, K.; Matsuo, Y. Nuclear binding energy in holographic QCD. Phys. Rev. D 2021, 104, 026006. [Google Scholar] [CrossRef]
- Li, S.; Jia, T. Matrix model and Holographic Baryons in the D0–D4 background. Phys. Rev. D 2015, 92, 046007. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Jia, T. Three-body force for baryons from the D0–D4/D8 brane matrix model. Phys. Rev. D 2016, 93, 065051. [Google Scholar] [CrossRef] [Green Version]
- Kaplunovsky, V.; Sonnenschein, J. Searching for an Attractive Force in Holographic Nuclear Physics. J. High Energy Phys. 2011, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Becker, K.; Becker, M.; Schwarz, J.H. String Theory and M-Theory, A Modern Introduction; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Witten, E. String Theory Dynamics in Various Dimensions. Nucl. Phys. B 1995, 443, 197. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, S.; Takahashi, K. QED and string theory. J. High Energy Phys. 2004, 4, 51. [Google Scholar] [CrossRef] [Green Version]
- Antonyan, E.; Harvey, J.A.; Jensen, S.; Kutasov, D. NJL and QCD from String Theory. arXiv 2006, arXiv:hep-th/0604017. [Google Scholar]
- Freedman, D.Z.; Proeyen, A.V. Supergravity; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Mandal, G.; Morita, T. Gregory-Laflamme as the confinement/deconfinement transition in holographic QCD. J. High Energy Phys. 2011, 9, 73. [Google Scholar] [CrossRef] [Green Version]
- Mandal, G.; Morita, T. What is the gravity dual of the confinement/deconfinement transition in holographic QCD? J. Phys. Conf. Ser. 2012, 343, 012079. [Google Scholar]
- Johnson, C.V. D-Branes; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Zahed, I.; Brown, G.E. The Skyrme Model. Phys. Rept. 1986, 142, 1–102. [Google Scholar] [CrossRef]
- Witten, E. Global Aspects of Current Algebra. Nucl. Phys. B 1983, 223, 422. [Google Scholar] [CrossRef]
- Kaymakcalan, O.; Rajeev, S.; Schechter, J. Nonabelian Anomaly and Vector Meson Decays. Phys. Rev. D 1984, 30, 594. [Google Scholar] [CrossRef]
- Rey, S.-J.; Yee, J.-T. Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity. Eur. Phys. J. C 2001, 22, 379–394. [Google Scholar] [CrossRef] [Green Version]
- Gross, D.J.; Ooguri, H. Aspects of large N gauge theory dynamics as seen by string theory. Phys. Rev. D 1998, 58, 106002. [Google Scholar] [CrossRef] [Green Version]
- Tong, D. TASI lectures on solitons: Instantons, monopoles, vortices and kinks. arXiv 2005, arXiv:hep-th/0509216. [Google Scholar]
- Witten, E. Current Algebra, Baryons, and Quark Confinement. Nucl. Phys. B 1983, 223, 433–444. [Google Scholar] [CrossRef]
- Seo, Y.; Sin, S.-J. Baryon Mass in medium with Holographic QCD. J. High Energy Phys. 2008, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Adkins, G.; Nappi, C.; Witten, E. Static Properties of Nucleons in the Skyrme Model. Nucl. Phys. B 1983, 228, 552. [Google Scholar] [CrossRef]
- Lau, P.; Sugimoto, S. Chern-Simons 5-form and Holographic Baryons. Phys. Rev. D 2017, 95, 126007. [Google Scholar] [CrossRef] [Green Version]
- Mateos, D.; Myers, R.C.; Thomson, R.M. Thermodynamics of the brane. J. High Energy Phys. 2007, 705, 67. [Google Scholar] [CrossRef] [Green Version]
- Bayona, A.B. Holographic deconfinement transition in the presence of a magnetic field. J. High Energy Phys. 2013, 1311, 168. [Google Scholar] [CrossRef] [Green Version]
- Bigazzi, F.; Cotrone, A.L.; Mas, J.; Mayerson, D.; Tarrio, J. D3–D7 Quark-Gluon Plasmas at Finite Baryon Density. J. High Energy Phys. 2011, 1104, 60. [Google Scholar] [CrossRef] [Green Version]
- Cotrone, A.L.; Tarrio, J. Consistent reduction of charged D3–D7 systems. J. High Energy Phys. 2012, 164, 1210. [Google Scholar] [CrossRef] [Green Version]
- Bigazzi, F.; Cotrone, A.L.; Tarrio, J. Charged D3–D7 plasmas: Novel solutions, extremality and stability issues. J. High Energy Phys. 2013, 1307, 74. [Google Scholar] [CrossRef] [Green Version]
- Benincasa, P. A note on Holographic Renormalization of Probe D-Branes. arXiv 2009, arXiv:0903.4356. [Google Scholar]
- Papadimitriou, I. Holographic renormalization as a canonical transformation. J. High Energy Phys. 2010, 1011, 14. [Google Scholar] [CrossRef] [Green Version]
- Papadimitriou, I. Holographic Renormalization of general dilaton-axion gravity. J. High Energy Phys. 2011, 1108, 119. [Google Scholar] [CrossRef] [Green Version]
- Giataganas, D.; Irges, N. Flavor Corrections in the Static Potential in Holographic QCD. Phys. Rev. D 2012, 85, 046001. [Google Scholar] [CrossRef] [Green Version]
- Deuzeman, A.; Lombardo, M.P.; Miura, K.; da Silva, T.N.; Pallante, E. Phases of many flavors QCD: Lattice results. arXiv 2012, arXiv:1304.3245. [Google Scholar]
- Braun, J.; Gies, H. Scaling laws near the conformal window of many-flavor QCD. J. High Energy Phys. 2010, 1005, 60. [Google Scholar] [CrossRef] [Green Version]
- Liao, J.; Shuryak, E. Effect of Light Fermions on the Confinement Transition in QCD-like Theories. Phys. Rev. Lett. 2012, 109, 152001. [Google Scholar] [CrossRef] [Green Version]
- Bali, G.S.; Bruckmann, F.; Endrodi, G.; Fodor, Z.; Katz, S.D.; Krieg, S.; Schafer, A.; Szabo, K.K. The QCD phase diagram for external magnetic fields. J. High Energy Phys. 2012, 2, 44. [Google Scholar] [CrossRef] [Green Version]
- Bali, G.S.; Bruckmann, F.; Endrődi, G.; Katz, S.D.; Schäfer, A. The QCD equation of state in background magnetic fields. J. High Energy Phys. 2014, 8, 177. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, K.; Hidaka, Y. Magnetic Catalysis Versus Magnetic Inhibition. Phys. Rev. Lett. 2013, 110, 031601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraga, E.S.; Palhares, L.F. Deconfinement in the presence of a strong magnetic background: An exercise within the MIT bag model. Phys. Rev. D 2012, 86, 016008. [Google Scholar] [CrossRef] [Green Version]
- Sachan, S.; Siwach, S. Thermodynamics of soft wall AdS/QCD at finite chemical potential. Mod. Phys. Lett. A 2012, 27, 1250163. [Google Scholar] [CrossRef] [Green Version]
- Sachan, S. Study of confinement/deconfinement transition in AdS/QCD with generalized warp factors. Adv. High Energy Phys. 2014, 2014, 543526. [Google Scholar] [CrossRef] [Green Version]
- Sevrin, A.; Troost, J.; Troost, W. The non-Abelian Born-Infeld action at order F6. Nucl. Phys. B 2001, 603, 389–412. [Google Scholar] [CrossRef] [Green Version]
- Rozali, M.; Shieh, H.-H.; Raamsdonk, M.V.; Wu, J. Cold Nuclear Matter in Holographic QCD. J. High Energy Phys. 2008, 1, 53. [Google Scholar] [CrossRef]
- Ghoroku, K.; Kubo, K.; Tachibana, M.; Taminato, T.; Toyoda, F. Holographic cold nuclear matter as dilute instanton gas. Phys. Rev. D 2013, 87, 066006. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, B.-J.; Pawlowski, J.M.; Wambach, J. The Phase Structure of the Polyakov–Quark–Meson Model. Phys. Rev. D 2007, 76, 074023. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, B.-J.; Wagner, M.; Wambach, J. Thermodynamics of (2 + 1)-flavor QCD: Confronting Models with Lattice Studies. Phys. Rev. D 2010, 81, 074013. [Google Scholar] [CrossRef] [Green Version]
- Nambu, Y.; Lasinio, G.J. Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. I. Phys. Rev. 1961, 122, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Nambu, Y.; Lasinio, G.J. Dynamical model of elementary particles based on an analogy with superconductivity. II. Phys. Rev. 1961, 124, 246–254. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, K. Chiral effective model with the Polyakov loop. Phys. Lett. B 2004, 591, 277–284. [Google Scholar] [CrossRef] [Green Version]
- Buballa, M. NJL model analysis of quark matter at large density. Phys. Rept. 2005, 407, 205–376. [Google Scholar] [CrossRef] [Green Version]
- Ruester, S.B.; Werth, V.; Buballa, M.; Shovkovy, I.A.; Rischke, D.H. The Phase diagram of neutral quark matter: Self-consistent treatment of quark masses. Phys. Rev. D 2005, 72, 034004. [Google Scholar] [CrossRef] [Green Version]
- Walecka, J.D. A Theory of highly condensed matter. Ann. Phys. 1974, 83, 491–529. [Google Scholar] [CrossRef]
- Boguta, J.; Bodmer, A.R. Relativistic Calculation of Nuclear Matter and the Nuclear Surface. Nucl. Phys. A 1977, 292, 413–428. [Google Scholar] [CrossRef]
- Gallas, S.; Giacosa, F.; Pagliara, G. Nuclear matter within a dilatation-invariant parity doublet model: The role of the tetraquark at nonzero density. Nucl. Phys. A 2011, 872, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Floerchinger, S.; Wetterich, C. Chemical freeze-out in heavy ion collisions at large baryon densities. Nucl. Phys. A 2012, 891, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Myers, R.C. Dielectric-Branes. J. High Energy Phys. 1999, 22, 9912. [Google Scholar] [CrossRef]
- Liu, Y.; Nowak, M.A. Hyperons and θ s + in holographic QCD. Phys. Rev. D 2022, 105, 114021. [Google Scholar] [CrossRef]
- Liu, Y.; Zahed, I. Heavy Baryons and their Exotics from Instantons in Holographic QCD. Phys. Rev. D 2017, 95, 116012. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zahed, I. Heavy and Strange Holographic Baryons. Phys. Rev. D 2017, 96, 056027. [Google Scholar] [CrossRef] [Green Version]
- Li, S. The interaction of glueball and heavy-light flavoured meson in holographic QCD. Eur. Phys. J. C 2020, 80, 881. [Google Scholar] [CrossRef]
- BESIII Collaboration. Measurement of yCP in D0−D0 oscillation using quantum correlations in e−e+→D0D0 at √s = 3.773 GeV. Phys. Lett. B 2015, 774, 339–346. [Google Scholar]
- CDF Collaboration. Observation of Bs-Bsbar Oscillations. Phys. Rev. Lett. 2006, 97, 242003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.-W. Glueball–baryon interactions in holographic QCD. Phys. Lett. B 2017, 773, 142–149. [Google Scholar] [CrossRef]
- Li, S.-W. Holographic description of heavy-flavored baryonic matter decay involving glueball. Phys. Rev. D 2019, 99, 046013. [Google Scholar] [CrossRef] [Green Version]
- Vicari, E.; Panagopoulos, H. Theta dependence of SU(N) gauge theories in the presence of a topological term. Phys. Rept. 2009, 470, 93–150. [Google Scholar] [CrossRef] [Green Version]
- Debbio, L.D.; Manca, G.M.; Panagopoulos, H.; Skouroupathis, A.; Vicari, E. Theta-dependence of the spectrum of SU(N) gauge theories. J. High Energy Phys. 2006, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- D’Elia, M.; Negro, F. Phase diagram of Yang-Mills theories in the presence of a θ term. Phys. Rev. D 2013, 88, 034503. [Google Scholar] [CrossRef] [Green Version]
- D’Elia, M.; Negro, F. θ dependence of the deconfinement temperature in Yang-Mills theories. Phys. Rev. Lett. 2012, 109, 072001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukushima, K.; Kharzeev, D.E.; Warringa, H.J. The Chiral Magnetic Effect. Phys. Rev. D 2008, 78, 074033. [Google Scholar] [CrossRef]
- Kharzeev, D.E. The Chiral Magnetic Effect and Anomaly-Induced Transport. Prog. Part. Nucl. Phys. 2014, 75, 133–151. [Google Scholar] [CrossRef] [Green Version]
- Witten, E. Theta dependence in the large N limit of four-dimensional gauge theories. Phys. Rev. Lett. 1998, 81, 2862–2865. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Wu, C.; Xiao, Z. Baryons in the Sakai-Sugimoto model in the D0–D4 background. Phys. Rev. D 2014, 90, 106001. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Li, K.; Li, S. Electromagnetic instability and Schwinger effect in the Witten–Sakai–Sugimoto model with D0–D4 background. Eur. Phys. J. C 2019, 79, 904. [Google Scholar] [CrossRef]
- Hashimoto, K.; Oka, T.; Sonoda, A. Electromagnetic instability in holographic QCD. J. High Energy Phys. 2015, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Luo, S.; Li, H. Holographic Schwinger effect and electric instability with anisotropy. J. High Energy Phys. 2022, 8, 206. [Google Scholar] [CrossRef]
- Li, S. Holographic Schwinger effect in the confining background with D-instanton. Eur. Phys. J. C 2021, 81, 797. [Google Scholar] [CrossRef]
- Wu, C.; Chen, Y.; Huang, M. Fluid/gravity correspondence: A nonconformal realization in compactified D4 branes. Phys. Rev. D 2016, 93, 066005. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Chen, Y.; Huang, M. Fluid/gravity correspondence: Second order transport coefficients in compactified D4-branes. J. High Energy Phys. 2017, 1, 118. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Chen, Y.; Huang, M. Chiral vortical effect from the compactified D4-branes with smeared D0-brane charge. J. High Energy Phys. 2017, 3, 82. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.; Li, S. Sound waves in the compactified D0–D4 brane system. Phys. Rev. D 2016, 94, 066012. [Google Scholar] [CrossRef] [Green Version]
- Benincasa, P.; Buchel, A. Hydrodynamics of Sakai-Sugimoto model in the quenched approximation. Phys. Lett. B 2006, 640, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Imaanpur, A. Correction to baryon spectrum in holographic QCD. Phys. Lett. B 2022, 832, 137233. [Google Scholar] [CrossRef]
- Li, S.; Li, H.; Luo, S. Corrections to the instanton configuration as baryon in holographic QCD. Phys. Rev. D 2022, 106, 126027. [Google Scholar] [CrossRef]
- Li, S.; Luo, S.; Hu, Y. Holographic QCD3 and Chern-Simons theory from anisotropic supergravity. J. High Energy Phys. 2022, 6, 40. [Google Scholar] [CrossRef]
- Li, S.; Luo, S.; Tan, M. Three-dimensional Yang-Mills-Chern-Simons theory from a D3-brane background with D-instantons. Phys. Rev. D 2021, 104, 066008. [Google Scholar] [CrossRef]
- Schmitt, A.; Shternin, P. Reaction rates and transport in neutron stars. Astrophys. Space Sci. Libr. 2018, 457, 455–574. [Google Scholar]
- Kovensky, N.; Poole, A.; Schmitt, A. Building a realistic neutron star from holography. Phys. Rev. D 2022, 105, 034022. [Google Scholar] [CrossRef]
- Heise, R.; Svendsen, H. A Note on fermions in holographic QCD. J. High Energy Phys. 2007, 8, 65. [Google Scholar] [CrossRef]
- Marolf, D.; Martucci, L.; Silva, P.J. Fermions, T-duality and effective actions for D-branes in bosonic backgrounds. J. High Energy Phys. 2003, 4, 51. [Google Scholar] [CrossRef] [Green Version]
- Marolf, D.; Martucci, L.; Silva, P.J. Actions and fermionic symmetries for D-branes in bosonic backgrounds. J. High Energy Phys. 2003, 7, 19. [Google Scholar] [CrossRef]
- Martucci, L.; Rosseel, J.; Van den Bleeken, D.; Van Proeyen, A. Dirac actions for D-branes on backgrounds with fluxes. Class. Quant. Grav. 2005, 22, 2745–2764. [Google Scholar] [CrossRef] [Green Version]
- Camporesi, R.; Higuchi, A. On the eigenfunctions of the Dirac operator on spheres and real hyperbolic spaces. J. Geom. Phys. 1996, 20, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Nakas, T.; Rigatos, K.S. Fermions and baryons as open-string states from brane junctions. J. High Energy Phys. 2020, 12, 157. [Google Scholar] [CrossRef]
0 | 1 | 2 | 3 | 4 | 5(U) | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|
D4-branes | - | - | - | - | - | |||||
-branes | - | - | - | - | - | - | - | - | - |
Fields | ||||
---|---|---|---|---|
adj. | 4 | 1 | (1, 1) | |
fund. | 2+ | 1 | (fund., 1) | |
fund. | 2− | 1 | (1, fund.) | |
1 | 1 | 1 | (1, 1) | |
1 | 1 | 5 | (1, 1) |
Mode | ||||||
---|---|---|---|---|---|---|
7.30835 | 22.0966 | 31.9853 | 53.3758 | 83.0449 | 115.002 | |
46.9855 | 55.5833 | 72.4793 | 109.446 | 143.581 | 189.632 | |
94.4816 | 102.452 | 126.144 | 177.231 | 217.397 | 227.283 | |
154.963 | 162.699 | 193.133 | 257.959 | 304.531 | 378.099 | |
228.709 | 236.328 | 273.482 | 351.895 | 405.011 | 492.171 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.-W.; Zhang, X.-T. The D4/D8 Model and Holographic QCD. Symmetry 2023, 15, 1213. https://doi.org/10.3390/sym15061213
Li S-W, Zhang X-T. The D4/D8 Model and Holographic QCD. Symmetry. 2023; 15(6):1213. https://doi.org/10.3390/sym15061213
Chicago/Turabian StyleLi, Si-Wen, and Xiao-Tong Zhang. 2023. "The D4/D8 Model and Holographic QCD" Symmetry 15, no. 6: 1213. https://doi.org/10.3390/sym15061213
APA StyleLi, S.-W., & Zhang, X.-T. (2023). The D4/D8 Model and Holographic QCD. Symmetry, 15(6), 1213. https://doi.org/10.3390/sym15061213