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Abstract: As a top-down holographic approach, the D4/D8 model is expected to be a holographic
version of QCD, since it almost includes all the elementary features of QCD based on string theory.
In this manuscript, we review the fundamental properties of the D4/D8 model with respect to the
D4-brane background and the embedding of the flavor branes, holographic quark, gluon, meson,
baryon and glueball with various symmetries; then, we take a look at some interesting applications
and developments based on this model.
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1. Introduction

Although it has been about 25 years since the proposal of AdS/CFT and gauge–
gravity duality with holography [1–3], it continues to attract great interest today. The most
significant part of AdS/CFT and gauge–gravity duality is that people can evaluate strongly
coupled quantum field theory (QFT) by quantitatively analyzing its associated gravity
theory in the weak coupling region. Thus, it provides a holographic way to study strongly
coupled QFT, in which traditional QFT based on the perturbation method is out of reach.
Accordingly, a large number of publications on strongly coupled QFT through AdS/CFT
and gauge–gravity duality have appeared, for example, on the Wilson loop and quark
potential [4–6], the transport coefficient [7–9], the fermionic correlation function [10,11], the
Schwinger effect [12], quantum entanglement entropy [13,14] and quantum information on
black holes [15], which have become most remarkable works in this field.

On the other hand, QCD (quantum chromodynamics), as the fundamental theory
describing the property of strong interaction, is extremely complex in the strong coupling
region, especially at a finite temperature with dense matter, due to its asymptotic free-
dom [16,17]; hence, the holographic version of QCD is naturally becoming an interesting
topic. While there are several models and theories attempting to give a holographic ver-
sion of QCD (e.g., bottom-up approaches [18–20], the D3/D7 approach [21], the D4/D6
approach [22]), one of the most successful achievements in holography is the D4/D8
model (also called the Witten–Sakai–Sugimoto model) [23–25], which includes almost
all the elementary features of QCD in a very simple way, e.g., mesons, baryons [26–28],
glueballs [29–32], deconfinement transition [33–35], a chiral phase [36,37], a heavy fla-
vor [38–40], a θ term and QCD axion [41–45], and a nucleon interaction [46–52]. The D4/D8
model is based on the holographic duality between the 11-dimensional (11d) M-theory on
AdS7 × S4 and the N = (2, 0) super conformal field theory (SCFT) on Nc M5-branes [53].
By using the dimensional reduction in [23,54], it reduces to the correspondence of the pure
Yang–Mills theory on Nc D4-branes compactified on a circle and 10d IIA supergravity
(SUGRA). Flavors as N f pairs of D8- and anti-D8-branes (D8/D8) can be further introduced
into the geometric background produced by the Nc D4-branes, so the dual theory includes
flavored fundamental quarks, which would be more close to the realistic QCD. Moreover,
as the D4/D8 model is a T-dualized version of the D3/D9 system [55], the fundamental
quark and meson in the D4/D8 model can therefore be identified to the 4–8 (The 4–8 string
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refers to the open string connecting the Nc D4-brane and N f D8-branes; it is similar for, e.g.,
the 8–8 or 4–8 string.) and 8–8 strings, respectively, by following the same discussion in
the D3/D9 system [55]. Moreover, the baryon vertex is identified as a D4-brane wrapped
on S4 [26], and the glueball is recognized to be the bulk gravitational polarization [29,30].
The chiral phase is determined by the embedding configuration of the D8/D8-branes due
to the gauge symmetry on their worldvolume [56], while the deconfinement transition is
suggested to be the Hawking–Page transition in this model [33–36]. Altogether, this model
includes all the fundamental elements of QCD; thus, it can be treated as a holographic
version of QCD.

In this review, we revisit the above properties of the D4/D8 model, then take a brief
look at some recently relevant developments and holographic approaches with this model.
The outline of this review is as follows. In Section 2, we review the relation of 11d M-theory
and IIA SUGRA with respect to the case of the M5-brane and D4-brane. Afterwards, we
review the embedding configuration of the D8/D8-branes to the D4-brane background and
the holographic quark, gluon, meson, baryon and glueball with various symmetries, which
are all the relevant objects in hadron physics. In Section 3, we review several topics about
the developments and holographic approaches of this model, which include deconfinement
transition, chiral transition, the Higgs mechanism and heavy–light mesons or baryons,
interactions involving glueballs and the QCD θ term in holography. In the Appendixs A, B
and C, we give the general form of the black brane solution in type II SUGRA, the relevant
dimensional reduction for spinors and discussion about supersymmetric mesons, which
are useful to the main content of this paper.

2. The D4/D8 Model

In this section, we revisit the D4-brane background and the embedding of the probe
D8/D8-branes. Then, we review how to identify quarks, gluons, mesons, baryons and
glueballs with various symmetries in this model.

2.1. Eleven-Dimensional Supergravity and D4-Brane Background

The D4-brane background of the D4/D8 model is based on the holographic duality
between the type N = (2, 0) super conformal field theory (SCFT) on coincident Nc M5-
branes and 11-dimensional (11d) M-theory on AdS7× S4 [53]. In order to obtain a geometric
solution, the effective action of the M-theory is necessary, which is known as the 11d
supergravity action. In the large-Nc limit, the geometric background can be obtained by
solving its bosonic part, which consists of a metric (elfbein) and a three-form C3: [57],

S11d
SUGRA =

1
2κ2

11

∫
d11x

√
−g
[
R(11) − 1

2
|F4|2

]
− 1

12κ2
11

∫
C3 ∧ F4 ∧ F4, (1)

where F4 = dC3. The convention in (1) is as follows. R(11) refers to the 11d scalar curvature;
κ11 is the 11d gravity coupling constant, given by

2κ2
11 = 16πG11 =

1
2π

(
2πlp

)9, (2)

where G11 is 11d Newton’s constant and lp is the Planck length. The quantity |F4|2 can be
obtained by a general notation of an n-form Fn:

|Fn|2 =
1
n!

gA1B1 gA2B2 ...gAnBn FA1 A2...An FB1B2...Bn , (3)

where gAB refers to the metric on the manifold. We note that in (1), the last term is a
Chern–Simons structure. which is independent on the metric or elfbein, while the first term
depends on the metric or elfbein through the metric combination

gAB = ea
Aηabeb

B. (4)
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The solution for extremal coincident Nc M5-branes is obtained:

ds2
11d = H5(r)

− 1
3 ηMNdxMdxN + H5(r)

2
3
(
dr2 + r2dΩ2

4
)
,

H5(r) = 1 + r3
5

r3 , (∗F4)r012...5 = − 3r3
5

r4 H2
5

,
(5)

where r denotes the radial coordinate to the M5-branes and M, N run over the M5-branes.
Using the BPS condition for M5-brane,

2κ2
11TM5Nc =

∫
S4

F4, (6)

which leads to

r3
5 = πNcl3

p, (7)

where TM5 = 1
(2π)5l6

p
refers to the tension of the M5-brane. Taking the near-horizon limit

H5 →
r3

5
r3 and replacing the variables{

r, r5, xi, Ω4

}
→
{

r2,
L
2

,
1√
L

xi,
1√
L

Ω4

}
, (8)

the metric presented in (5) reduces to

ds2
11d =

r2

L2 ηMNdxMdxN +
L2

r2

(
dr2 +

r2

4
dΩ2

4

)
, (9)

describing the standard form of AdS7 × S4, where the radius of S4 is L/2. In addition,
the action (1) also allows for the near-extremal M5-brane solution, which, after taking
near-horizon limit and replacement (8), is

ds2
11d = r2

L2

[
− f (r)

(
dx0)2

+ ∑5
i=1 dxidxi

]
+ L2

r2

[
dr2

f (r) +
r2

4 dΩ2
4

]
,

f (r) = 1− r6
H

r6 ,
(10)

The constant rH refers to the location of the horizon, which can be determined by
omitting the conical singularity,

βT =
2πL2

3rH
, (11)

where βT is the size of the compactified direction x0.
In order to obtain a QCD-like low-energy theory in holography, Witten proposed

a scheme in [23] based on the above M5-brane solution. Specifically, the first step is to
compactify one spacial direction (denoted by x5) of M5-branes on a circle with periodic
condition for fermions, which means the supersymmetry remains. Accordingly, the resul-
tant theory is a supersymmetric gauge theory above the size of the circle. Then, recalling
the relation between M-theory and IIA string theory, the 11d metric presented in (9) or (10)
reduces to a 10d metric,

ds2
11d = e−

2
3 φds2

10d + e
4
3 φ
(

dx5
)2

, (12)

with the nontrivial dilaton eφ = (r/L)3/2. For later use, let us introduce another radial
coordinate, U ∈ [UH , ∞), as follows:

U =
r2

2L
, L = 2R. (13)

So, in the large Nc limit, the 11th direction x5 presented in (12) vanishes due to (7) and (8),
which means the coincident Nc M5-branes correspond to coincident Nc D4-branes for
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Nc → ∞. In addition, the remaining 10d metric in (12) becomes the near-extremal black
D4-brane solution (the extremal D4-brane solution can be obtained by setting UH → 0):

ds2
10d =

(
U
R

)3/2[
− fT(U)

(
dx0)2

+ ∑4
i=1 dxidxi

]
+
(

R
U

)3/2[ dU2

fT(U)
+ U2dΩ2

4

]
,

fT(U) = 1− U3
H

U3 , F4 = 3R3g−1
s ε4, eφ =

(
U
R

)3/4
, R3 = πgsNcl3

s

(14)

where ε4 refers to the volume form of a unit S4. Once the formula (12) is imposed to action
(1), the 11d SUGRA action reduces to the 10d type IIA SUGRA action exactly, which is
given as follows (there could be a Chern–Simons term to the IIA SUGRA action (15), such
as S10d

CS = − 1
4κ2

10

∫
B2 ∧ F4 ∧ F4 with Bmn = Amn5. For the purely black brane solution, the

B2 field can be gauged away by setting B2 = 0, which implies that this CS term could be
absent in 10d action [53,57]):

S10d
IIA =

1
2κ2

10

∫
d10x
√
−Ge−2φ

[
R(10) + 4∂µφ∂φ

]
− 1

4κ2
10

∫
d10x
√
−G|F4|2, (15)

where 2κ2
10 = 16πG10 = (2π)7l8

s g2
s is the 10d gravity coupling constant. It would be

straightforward to verify that the solution (14) satisfies the equation of motion obtained by
varying action (15).

The next step is to perform the double Wick rotation
{

x0 → −ix4, x4 → −ix0} on the
metric (14), leading to a bubble D4-brane solution,

ds2
10d =

(
U
R

)3/2[
ηµνdxµdxν + f (U)

(
dx4)2

]
+
(

R
U

)3/2[ dU2

f (U)
+ U2dΩ2

4

]
,

f (U) = 1− U3
KK

U3 ,
(16)

which is defined only for U ∈ [UKK, ∞). We renamed UH as UKK in (16), since there is not a
horizon in the bubble solution, as illustrated in Figure 1.

U = UKK

U → ∞

U = UH

U → ∞

x4
x4

U U

Figure 1. The compactified D4-brane geometry on U − x4 plane. (Left) The black D4-brane back-
ground geometry. (Right) The D4 bubble geometry.

Now, the direction of x4 is periodic:

x4 ∼ x4 + δx4, δx4 =
2π

MKK
=

4πR3/2

3U1/2
KK

, (17)
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because it is identified as the time direction in the black brane solution (14). MKK refers to
the Klein–Kaluza (KK) energy scale, and the supersymmetry on the D4-branes breaks down
below MKK by imposing the antiperiodic condition to the supersymmetric fermions along
x4. Accordingly, the low-energy zero modes on the D4-branes are the massless gauge field
on the D4-branes and the scalar fields as the transverse modes of the D4-branes. While the
scalar fields acquire mass via one-loop corrections, the trace part of the scalars φi and gauge
field along x4 direction a4 remain massless. As they give irrelevant coupling terms in the
low-energy effective theory on the D4-branes, it means that the dual theory below MKK only
contains 4d pure Yang–Mills gauge field, as expected. Note that the three-form C3 in 11d
SUGRA (1) corresponds to the Ramond–Ramond (R-R) three-form in type IIA string theory.

Moreover, as the wrap factor (U/R)3/2 in (16) never goes to zero, the dual theory
will be able to exhibit confinement according to the behavior of the Wilson loop in this
geometry. Since the solution (16) allows for an arbitrarily large period for x0, it implies
that the dual theory on the D4-brane could be defined at a temperature of zero (or very
low). Furthermore, in order to obtain a deconfined version of holographic QCD based on
(16) at finite temperature, it is also possible to compactify one spacial direction (denoted
by x4) of the D4-branes in the background (14) with the antiperiodic condition for the
supersymmetric fermions (there might be an issue if we identify the black brane background
(14) to the deconfinement phase exactly since Wilson loop on this background may not match
to the deconfinement QCD [58,59]. Nevertheless, we can identify the black brane background
(14) to QCD phase at high temperature in which the deconfinement will occur), as is displayed
in (17) and Figure 1. In this case, the Hawking temperature T in compactified background (14)
is given by (11) as

βT =
1
T

=
4πR3/2

3U1/2
H

, (18)

which can, therefore, be identified as the temperature in the dual theory. The variables in
terms of the dual theory are summarized as

R3 =
1
2

g2
YMNcl2

s
MKK

, UKK =
2
3

g2
YMNc MKK l2

s , gs =
1

2π

g2
YM

MKK ls
, (19)

where gYM is the Yang–Mills (YM) coupling constant.

2.2. Embedding the Probe D8/D8-Branes

In the D4/D8 model, there is a stack of coincident N f pairs of D8- and (anti-D8) D8-
branes as probes embedded into the bulk geometry illustrated in Figure 1. The relevant
D-brane configuration is given in Table 1.

Table 1. The D-brane configuration in the D4/D8 model. “-” denotes that the D-brane extends along
this direction.

0 1 2 3 4 5(U) 6 7 8 9

Nc D4-branes - - - - -

N f D8/D8-branes - - - - - - - - -

The embedding configuration of D8/D8-branes is determined by solving the bosonic
action for Dp-branes, which consists of Dirac–Born–Infeld (DBI) and Wess–Zumino (WZ)
terms. The action reads as follows [60]:

SDp = SDBI + SWZ,

SDBI = −TDp

∫
Dp

dp+1xe−φSTr
[√
−det[Eab + EaI(QI J − δI J)EIb + 2πα′Fab]

√
det
(

QI
J

)]
,

SWZ = gsTDp

∫
Dp

∑n=0,1... Cp−2n+1 ∧ 1
n! (2πα′)nTrFn,

(20)
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with the D-brane tension TDp = g−1
s (2π)−pl−p−1

s and eΦ = gseφ,

Eab = (GMN + BMN)∂aXM∂bXN , EaI = (GMI + BMI)∂aXM,
QI

J = δI
J + i2πα′

[
ΨI , ΨJ], Fab = ∂a Ab − ∂b Aa + i[Aa, Ab],

a, b = 0, 1...p, M, N = 0, 1...d, I, J = p + 1, p + 2...d.
(21)

Here GMN , BMN and Φ refer, respectively, to the metric, the antisymmetric tensor
and the dilaton field in the background spacetime. ΨI refers to the transverse mode of
the Dp-brane under the T-duality. By choosing p = 8, the action (20) leads to the action
for D8-brane on the Nc D4-brane background as follows (in the D4/D8 approach, the
antisymmetric tensor BMN has been gauged away):

SD8 = −TD8

∫
D8

d9xe−φSTr
√
−det[gab + (2πα′)Fab] +

gs

3!
(
2πα′

)3TD8

∫
D8

C3 ∧ Tr(F ∧ F ∧ F). (22)

Using the induced metric on D8/D8-branes with respect to the bubble D4 back-
ground (16),

ds2
D8 =

(
U
R

)3/2
ηµνdxµdxν +

(
U
R

)3/2
[

f (U)
(

x4′
)2

+

(
R
U

)3 1
f (U)

]
dU2 + R3/2U1/2dΩ2

4, (23)

and the black D4-brane background (14),

ds2
D8 =

(
U
R

)3/2[
− fT(U)

(
dx0)2

+ δijdxidxj
]

+
(

U
R

)3/2
[(

x4′
)2

+
(

R
U

)3 1
fT(U)

]
dU2 + R3/2U1/2dΩ2

4,
(24)

the DBI action for D8-branes becomes, respectively,

SDBI = −gsTD8V3β4Ω4

∫ ∞

UKK

dUU4

[
f (U)

(
x4′
)2

+

(
R
U

)3 1
f (U)

]1/2

, (25)

and

SDBI = −gsTD8V3βTΩ4

∫ ∞

UH

dUU4

[(
x4′
)2

fT(U) +

(
R
U

)3
]1/2

. (26)

Here, we use Ω4 = 8π2/3 to refer to the volume of a unit S4. Note that the WZ action
is independent on the metric or elfbein. Varying actions (25) and (26) with respect to x4, the
associated equations of motion are, respectively, obtained as

d
dU

 U4 f (U)x4′√
f (U)

(
x4′
)2

+
(

R
U

)3 1
f (U)

 = 0, (27)

and

d
dU

 U4 fT(U)x4′√(
x4′
)2 fT(U) +

(
R
U

)3

 = 0. (28)

As the D8- and D8-branes are the only probe branes, they could be connected smoothly
at the location U = U0, which means x4|U=U0 → ∞. With this boundary condition,
(27) and (28) reduce, respectively, to the following solutions:(

x4′
)2

=
U8

0 f (U0)

U3 f (U)2
R3

U8 f (U)−U8
0 f (U0)

, (29)



Symmetry 2023, 15, 1213 7 of 46

and (
x4′
)2

=
U8

0 fT(U0)

U3 fT(U)

R3

U8 fT(U)−U8
0 fT(U0)

. (30)

In particular, in the bubble D4-brane background, solution (29) implies x4|U→∞,U0→UKK =

β4/4 and x4′ |U0=UKK = 0. Thus, x4 = β4/4 is a solution to (29) representing D8- and
D8-branes located at the antipodal points of S1, while they are connected at U = UKK,
because the size of x4 shrinks to zero at U = UKK. On the other hand, in the black D4-brane
background, if U0 = UH , (30) also implies a constant solution for x4, while the separation
of the D8- and D8-branes could be arbitrary, but no more than β4/2. For U0 > UKK, UH ,
solutions (28) and (29) represent D8- and D8-branes joined into a single brane at U = U0.
The configuration of the D8- and D8-branes in bubble and black D4-brane backgrounds is
illustrated in Figures 2 and 3.

U = UKK

U → ∞

x4

U

x4

U
U = U0

D8
D8

D8

D8

Figure 2. The D8-brane configuration in the bubble D4-brane background. (Left) D8- and D8-branes
are located at the antipodal points of x4. (Right) D8- and D8-branes are located at the nonantipodal
points of x4.

U = UH

U → ∞

x4

U

x4

U
U = U0

D8

D8
D8

D8

Figure 3. The D8-brane configuration in the black D4-brane background. (Left) D8- and D8-branes
are parallelly located. (Right) D8- and D8-branes are connected at U = U0.

2.3. Gluon, Quark and Symmetries

As the dual theory in the D4/D8 model is expected to be QCD in the large Nc limit, it
is natural to identify the effective theory on Nc D4-branes below MKK to the color sector in
QCD, which implies that the gauge field A(D4)

µ on the D4-branes can be interpreted as gluon
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in holography. The reason is that the low-energy theory on Nc D4-branes is U(Nc) pure Yang–
Mills theory, and it has a SUGRA duality in the strong coupling region in the large Nc limit, as
discussed in Section 2.1. We note that the Lorentz symmetry of the 10d spacetime breaks down
to SO(1+ 4)× SO(5) when a stack of D4-branes is introduced. However, the worldvolume
symmetry of the D4-branes becomes SO(1+ 3), since the D4-branes are compactified on
a circle in the D4/D8 model. Furthermore, when the flavors, as D8- and D8-branes, are
introduced, it is possible to create chiral fermions in the low-energy theory, which can be
obtained by analyzing the spectrum of 4–8 or 4–8 strings in R-sector (Ramond-sector). Both the
spectra of 4–8 and 4–8 strings in R-sector contain spinors with positive and negative chirality
as the representations of the Lorentz group SO(1, 3). Since the GSO (Gliozzi–Scherk–Olive)
projection removes the spinor with one of the chiralities in string theory, we can choose the
spinor with positive and negative chirality as the massless fermionic modes (denoted by qL,R)
of 4–8 and 4–8 strings, respectively, which accordingly can be identified as the fundamental
chiral quarks in the dual theory. We note that these chirally fermionic fields are complex
spinors since the 4–8 and 4–8 strings have two orientations. They are also the fundamental
representation of U(Nc) and U

(
Nf

)
. The massless modes and symmetries in the D4/D8

system are collected in Table 2.

Table 2. The fields in the D4/D8 model. Here 2+, 2−denote the positive and negative chirality spinor
representations of SO(1, 3). a4 and φi are the trace parts of the gauge field along x4 direction on the
Nc D4-branes and the transverse modes of the Nc D4-branes, which are decoupled to the gluon and
fundamental quarks in the low-energy theory.

Fields U(Nc) SO(1, 3) SO(5) U
(

N f
)

L × U
(

N f
)

R

A(D4)
µ adj. 4 1 (1, 1)

qL fund. 2+ 1 (fund., 1)

qR fund. 2− 1 (1, fund.)

a4 1 1 1 (1, 1)

φi 1 1 5 (1, 1)

Due to the above holographic correspondence, the chirally symmetric and broken
phase in the dual theory can be identified, respectively, to the disconnected and connected
configuration of the D8/D8-branes. This would be clear if we employed the configuration
presented in Figure 2, for example. The effective action for the gauge fields A(D4)

µ and
fundamental fermions qL,R on the Nc D4-branes with N f D8/D8-branes can be evaluated
by expanding the DBI action, which leads to

S =
∫

D4 d5x
√−g

[
δ
(

x4 − XL
)
q†

Lσ̄µ
(
i∇µ + Aµ

)
qL + δ

(
x4 − XR

)
q†

Rσ̄µ
(
i∇µ + Aµ

)
qR
]

− 1
4g2

YM

∫
D4 d5x

√−gTrFMN , M, N = 0, 1...4, (31)

where XL,R denotes the intersection of the D4- and D8-branes as well as the D4- and D8-
branes, and we omit the notation “D4” in Aµ. As all the fields depend on

{
xµ, x4}, qL

is identified to be qR if XL = XR, which leads to an action with single flavor symmetry
U
(

N f

)
. For the connected configurations, we can therefore see that the D8- and D8-branes

are separated at high energy (U → ∞, XL 6= XR) according to the solutions (29) and (30),
which leads to an approximated U

(
N f

)
L
×U

(
N f

)
R

chiral symmetry. However, at low

energy (U → U0, XL → XR), D8- and D8-branes are joined into a single pair of D8-branes at
U = U0 (XL = XR) which implies that the U

(
N f

)
L
×U

(
N f

)
R

symmetry breaks down to

a single U
(

N f

)
. This configuration of D8/D8-branes provides a geometric interpretation

of chiral symmetry in this model [56].
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2.4. Mesons on the Flavor Brane

As meson is the bound state in the adjoint representation of the chiral symmetry group,
it is identified as the gauge field on the flavor branes, which is the massless mode excited
by 8–8 string (massless mode excited by 8–8 string is therefore identified as antimeson.).
The reason is that the gauge field is excited by 8–8 (and 8–8) is the generator of U

(
N f

)
L

(and U
(

N f

)
R

). Hence, we consider the gauge field on the flavor branes with nonzero

components as AM =
{

Aµ(x, z), Az(x, z)
}

, µ = 0, 1...3 in the bubble D4-brane background
(16). We note that while the supersymmetry on Nc D4-branes breaks down by compactifying
x4 on a circle, there is no mechanism to break down the supersymmetry on D8/D8-branes,
since D8/D8-branes are vertical to x4. Therefore, the 8–8 string is supersymmetric, leading
to a super partner fermion Ψ of the gauge field AM in the low-energy theory. As we see in
Appendix ??, this supersymmetric fermion is Majorana spinor, which leads to the fermionic
meson (mesino), while they are absent in the realistic QCD.

Nonetheless, let us assume that the supersymmetry on the flavor branes somehow
breaks down and the supersymmetric meson can be turned off in order to continue the
discussion about the QCD sector of this model. Since the D8-branes are probes, the
worldvolume gauge field is fluctuation. Thus, the effective action for AM can be obtained
by expanding (22), which for Abelian case N f = 1 is

SD8 = −TD8
∫

D8 d9xe−φ
√
−det[gab + (2πα′)Fab]

= −TD8
∫

D8 d9x
√−ge−φ

[
1 + 1

4 (2πα′)2FMN FMN +O
(

F4)], (32)

leading to the Yang–Mills (YM) action

SYM = −TD8
∫

D8 d9x
√−ge−φ 1

4 (2πα′)2FMN FMN

= − 2
3 R3/2U1/2

KK (2πα′)2TD8Ω4
∫

d4xdz
(

R3

4U ηµρηνσFµνFρσ +
9U3

8UKK
ηµνFµzFνz

)
= −κ

∫
d4xdZ

(
1
2 K−1/3ηµρηνσFµνFρσ + KM2

KKηµνFµZFνZ

)
,

(33)

where we use the Cartesian coordinates z and dimensionless Z, defined as

U3 = U3
KK + UKKz2, Z =

z
UKK

, K(Z) = 1 + Z2 =
U3

U3
KK

, (34)

and
κ =

1
3

R9/2U1/2
KK
(
2πα′

)2TD8Ω4 =
λNc

216π3 , λ = g2
YMNc, (35)

with the induced metric on the D8-branes,

ds2
D8 =

(
U
R

)3/2
ηµνdxµdxν +

4R3/2UKK

9U5/2 dz2 + R3/2U1/2dΩ2
4. (36)

We employ the configuration that D8/D8-branes are located at the antipodal points of
S1. Then, in order to obtain a 4d mesonic action, let us assume that Aµ(x, z), Az(x, z) can
be expanded in terms of complete sets {ψn(z), φn(z)}:

Aµ(x, z) = ∑
n

B(n)
µ (x)ψn(z), Az(x, z) = ∑

n
ϕ(n)(x)φn(z), (37)

where B(n)
µ (x), ϕ(n)(x) refers to the 4d meson field. To obtain a finite action, the normaliza-

tion condition for ψn(z) is chosen as

2κ
∫

dZK−1/3ψnψm = δmn, (38)
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with the eigen equation (n ≥ 1),

−K1/3∂Z(K∂Zψn) = λnψn, (39)

where λn is the associated eigenvalue. In this sense, the basic function φn(z) can be chosen
as (n ≥ 1):

φ0 =
1√
2πκ

1
UKK MKK

1
K

, φn = m−1
n ∂Zψn, mn = λn MKK. (40)

Keeping these in hand, imposing (38)–(40) into (33), then defining the vector field
V(n)

µ (x) by a gauge transformation,

V(n)
µ = B(n)

µ −m−1
n ∂µ ϕ(n), (41)

the Yang–Mills action (33) reduces to a 4d effective action for mesons:

SYM = −κ
∫

d4x

(
1
2

∂µ ϕ(0)∂µ ϕ(0) +
∞

∑
n=1

[
1
4

F(n)
µν F(n)µν +

1
2

m2
nV(n)

µ V(n)µ
])

, (42)

where F(n)
µν = ∂µV(n)

ν − ∂νV(n)
µ . Accordingly, ϕ(0) can be interpreted as pion meson, which is

the Nambu–Goldstone boson associated with the chiral symmetry breaking. By analyzing
the parity, it turns out that ϕ(0) is a pseudoscalar field, as expected.

The above discussion implicitly assumes that the gauge field AM and its field strength
FMN should vanish at |z| → ∞ in order to obtain a finite 4d mesonic action. However, there
is an alternative gauge choice Az = 0, which is recognized as a gauge transformation:

AM → AM − ∂MΛ, (43)

to (37). Here, Λ is solved:

Λ(x, z) = ϕ(0)(x)ψ0(z) +
∞

∑
n=1

m−1
n ϕ(n)(x)ψn(z), (44)

where

ψ0(z) =
∫

dzφ0(z) =
1√
2πκ

1
MKK

arctan
(

z
UKK

)
. (45)

Thus, the components of AM under gauge condition Az = 0 become

Aµ(x, z) = −∂µ ϕ(0)(x)ψ0(z) + ∑∞
n=1

[
B(n)

µ (x)−m−1
n ∂µ ϕ(n)

]
ψn(z)

= −∂µ ϕ(0)(x)ψ0(z) + ∑∞
n=1 V(n)

µ (x)ψn(z),
Az(x, z) = 0.

(46)

In the region |z| → ∞, the gauge potential Aµ(x, z)→ ±
√

π
8κ

1
MKK

, which implies that
the gauge field strength remains vanished and the effective 4d action remains finite.

The above setup for mesons can be generalized into multiflavor case by taking into
account the non-Abelian version of (33),

S(
N f )

YM = −κN f

∫
d4xdZ

[
1
2

K−1/3ηµρηνσTr
(

FµνFρσ

)
+ KM2

KKηµνTr
(

FµZFνZ
)]

, (47)

where FMN = ∂M AN − ∂N AM + [AM, AN ], M, N = 0, 1, 2, 3, z is the gauge field strength
of U

(
N f

)
. As has been discussed, in order to obtain a finite 4d action, the gauge field
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strength must vanish in the limit |z| → ∞. Under the gauge condition Az = 0, Aµ must
asymptotically take a pure gauge configuration for |z| → ∞:

Aµ(x, z)|z→±∞ → ξ±(x)∂µξ−1
± (x). (48)

Compare this with (46); the gauge potential can be expanded with boundary condi-
tion (48),

Aµ(x, z) = ξ+(x)∂µξ−1
+ (x)ψ+(z) + ξ−(x)∂µξ−1

− (x)ψ−(z) + ∑∞
n=1 V(n)

µ (x)ψn(z)
≡ αµ(x)ψ̂0(z) + βµ(x) + ∑∞

n=1 V(n)
µ (x)ψn(z),

(49)

with

ψ± = 1
2 ± ψ̂0, ψ̂0 = 1

π arctan
(

z
UKK

)
.

αµ(x) = ξ+(x)∂µξ−1
+ (x)− ξ−(x)∂µξ−1

− (x)
βµ(x) = 1

2

[
ξ+(x)∂µξ−1

+ (x) + ξ−(x)∂µξ−1
− (x)

]
.

(50)

To obtain the chiral Lagrangian for mesons from the Yang–Mills action (47), we identify
the lowest vector meson field V(n)

µ as the ρ meson V(1)
µ = ρµ and choose the following

gauge conditions:

ξ−1
+ (x) = U(x), ξ−(x) = 1, (51)

or

ξ−1
+ (x) = ξ−(x) = exp[iπ(x)/ fπ ]. (52)

Inserting (49) into action (47) with the gauge condition (51), the 4d Yang–Mills action
(47) includes a part of Skyrme model [61],

S(
N f )

YM =
∫

d4x
[

f 2
π

4
Tr
(

U−1∂µU
)2

+
1

32e2 Tr
(

U−1∂µU, U−1∂µU
)2

+ ...
]

, (53)

where the coupling constants fπ , e are given as

f 2
π = 6R3/2U1/2

KK TD8Ω4(2πα′)2 ∫ dz U(z)3

UKK
(∂zψ+)

2 = λMKK Nc
54π2 ,

e2 =
[

32
3 R3/2U1/2

KK TD8Ω4(2πα′)2 ∫ dz R3

U(z)ψ2
+(ψ+ − 1)2

]−1
= 27π7

2bλNc
,

b =
∫ dZ

(1+Z2)
1/3

(
arctan Z + π

2
)2(arctan Z− π

2
)2 ' 15.25.

(54)

Moreover, the interaction terms of π, ρ mesons would be determined by the Yang–Mills
action (47) with the gauge condition (52), as

S(
N f )

YM =
∫

d4xTr
[
−∂µπ∂µπ + 1

2 W2
µν + m2

vρ2
µ + aρ3

[
ρµ, ρν

]
Wµν + aρπ2

[
∂µπ, ∂νπ

]
Wµν

]
+O

(
π4, ρ4

µ

)
,

(55)

where Wµν is the gauge field strength of ρµ, and the associated coupling constants are given as

m2
ρ = Λ1M2

KK, aρ3 = (6π)3/2
√

λNc
bρ3 , aρπ2 = π(3π)3/2

M2
KK
√

2λNc
bρπ2 ,

bρ3 ' 0.45, bρπ2 ' 1.6, Λ1 ' 0.67.
(56)

Therefore, we can reach the meson tower or chiral Lagrangian starting with the D8-
brane action, which provides a description of the meson in holography.
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To close this section, let us finally take a look at the WZ term presented in action (22),
which can be integrated as

SD8
WZ = gs

3! (2πα′)3TD8
∫

D8 C3 ∧ Tr(F ∧ F ∧ F)
= gs

3! (2πα′)3TD8
∫

D8 F4 ∧ω5
= Nc

24π2 Tr
∫

M4×R ω5(A).
(57)

Here, F4 = dC3 is the Ramond–Ramond field given in (14), and ω5(A) is the Chern–
Simons (CS) 5-form, given as

ω5(A) = AF2 − 1
2

A3F +
1

10
A5, (58)

where F = dA + 1
2 [A, A] is the gauge field strength. Under the gauge transformation on

the D8-brane,

δΛ A = dΛ + [A, Λ], δΛF = [F, Λ], (59)

we can compute

Tr(δΛω5) = Tr
[
dΛd

(
AdA + 1

2 A3
)]

= d
(

Tr
[
Λd
(

AdA + 1
2 A3

)])
≡ dχ4(Λ, A).

(60)

Hence, by defining the boundary value of the gauge potential as

AL
µ(x) = lim

z→+∞
Aµ(x, z), AR

µ (x) = lim
z→−∞

AR
µ (x, z), (61)

the WZ term is reduced to the chiral anomaly of U
(

N f

)
L
×U

(
N f

)
R

in QCD,

δΛSD8
WZ = Nc

24π2 Tr
∫

M4×R δΛω5(A) = Nc
24π2

∫
M4

χ4(Λ, A)
∣∣z→+∞
z→−∞

= Nc
24π2

∫
M4

[χ4(ΛL, AL)− χ4(ΛR, AR)].
(62)

Moreover, the formula for the chiral anomaly can also be expressed in the gauge
condition Az = 0, which is used to perform the gauge transformation

Ag = gAg−1 + gdg−1. (63)

Then, the CS 5-form is reduced to

ω5(Ag) = ω5(A) +
1
10

(
gdg−1

)5
+ dα4, (64)

where

α4 = −1
2

W1

(
AdA + dAA + A3

)
+

1
4

W1 AW1 A−W3
1 A,

W1 = dg−1g. (65)

Recalling Formulas (49) in the gauge Az = 0 and choosing gauge condition (51), the
WZ term (57) can be rewritten, after somewhat lengthy but straightforward calculations, as

SD8
WZ = − Nc

48π2 Tr
∫

M4

LWZW −
Nc

240π2 Tr
∫

M4×R

(
gdg−1

)5
, (66)
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where LWZW is the Wess–Zumino–Witten (WZW) term in [62,63], given as

LWZW =
[(

ARdAR + dAR AR + A3
R
)(

U−1 ALU + U−1dU
)
− p.c.

]
+
(
dARdU−1 ALU − p.c.

)
+
[

AR
(
dU−1U

)3 − p.c.
]

+ 1
2

[(
ARdU−1U

)2 − p.c.
]
+
[
UARU−1 ALdUdU−1 − p.c.

]
−
[
ARdU−1UARU−1 ALU − p.c.

]
+ 1

2
(

ARU−1 ALU
)2.

(67)

Note that “p.c.” refers to the terms by exchanging AL ↔ AR, U ↔ U−1. One can
further work out the couplings to the vector mesons by using (49) with Az = 0.

2.5. The Wrapped D4-Brane and Baryon Vertex

In the SU(Nc) gauge theory, a baryon vertex connects to Nc external fundamental
quarks with the color wave function combined together by an Nc-th antisymmetric tensor
of SU(Nc) group. Accordingly, the baryon vertex in gauge–gravity duality is recognized as
a D-brane wrapped on the internal sphere [26,64]. To clarify this briefly, let us first recall
the baryon vertex in the holographic duality between N = 4 super Yang–Mills theory
and IIB string theory on AdS5 × S5. As the fundamental quark in the super Yang–Mills
theory is created by the Nc elementary superstrings in AdS5 × S5, it is represented by
the endpoints of elementary superstrings at the boundary of AdS5. Hence, we need Nc
elementary superstrings with the same orientation to somehow terminate in the AdS5 × S5.

On the other hand, since the baryon current must be conserved, one needs to find
a source to cancel the Nc charges (baryon charge) contributed by the Nc elementary su-
perstrings. To figure out these problems and work out a baryon vertex, a probe D5-brane
wrapped on S5 provides us with a good answer. The Nc elementary superstrings ending on
the D5-brane contribute Nc to the D5-brane; however, the WZ action for such a wrapped
D5-brane,

S(D5)
WZ ∼

∫
S5×R

C4F ∼
∫

S5×R
F5 A ∼ Nc

∫
R

A, (68)

where F5 = dC4 is the Ramond–Ramond field strength, nicely provides Nc charges to cancel
the charges given by Nc elementary superstrings (the sign of the Nc charge depends on the
orientation of the elementary superstrings and D5-branes.). Therefore, the A current would
be conserved, which implies that the D5-brane is a baryon vertex.

The construction of the baryon vertex can also been employed in the D4/D8 model,
which is identified as a D4-brane (to distinguish the D4-branes as the baryon vertex from
the Nc D4-branes, we denote the baryon vertex as D4′-brane in the rest of this paper)
wrapped on S4 with Nc elementary superstrings ending on it. A remarkable point here
is that the D4′-branes can be described equivalently by the instanton configuration of the
gauge field on the D8-branes [65,66]. To see this clearly, let us consider a Dp-brane with its
worldvolume gauge field strength F. According to (20), The WZ action for such a Dp-brane
includes a term as a source,

SWZ ∼ gsTDp

(
2πα′

)2
∫

Cp−3TrF2. (69)

For the single instanton configuration, the gauge field strength can be integrated as
follows:

Tr
∫

F2 = 8π2. (70)

Hence, (69) can be written as

gsTDp

(
2πα′

)2
∫

Cp−3TrF2 = gsTDp−4

∫
Cp−3,

giving rise to a same source included by a Dp−4-brane. Accordingly, we obtain a simple
and interesting conclusion here, that is, the instanton in the Dp-brane is the same object as
a Dp−4-brane inside it.
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Let us return to the D4/D8 model; it implies that the D4′-branes as the baryon vertex are
equivalent to the instanton in the D8/D8-branes. For multiple instantons, (70) is replaced by

Tr
∫

F2 = 8π2n, (71)

where n refers to the instanton number. Inserting the instanton configuration of the gauge field
denoted as Acl with a U

(
N f

)
V

fluctuation Ã into the WZ action (57) of D8-brane, it reduces to

Nc

8π2

∫
ÃTrF2 = nNc

∫
Ã, (72)

which implies that the instantons take U(1)V charge nNc. Since the baryon number is defined

as 1/Nc times the charge of the diagonal U(1)V subgroup of the U
(

N f

)
V

symmetry, it is
obvious that the instanton number is equivalent to the baryon number in this holographic
system.

Moreover, when (71) is integrated out to be a Chern–Simons 3-form ω3, as∫
M4

TrF2 =
∫

∂M4

Trω3 =
∫

Tr
(

AF− 1
3

A3
)

, (73)

the baryon number can be obtained:

n =
1

8π2 Tr
∫
R4

F2 = Tr
∫
R3

ω3|z→+∞
z→−∞ = − 1

24π2 Tr
∫
R3

(
U−1dU

)3
, (74)

where we impose a similar boundary condition as is given in (51):

lim
z→+∞

Aµ(xµ, z) = U−1
(

xi
)

∂iU
(

xi
)

, lim
z→−∞

Aµ(xµ, z) = 0. (75)

Equation (74) gives the winding number of U, which means the homotopy is
π3

[
U
(

N f

)]
' Z. This agrees with the baryon number charge in the Skyrme model [62,67].

The baryon mass mB can be roughly obtained by evaluating the energy carried by the
D4′-branes, which can be read from its DBI action as

SD4′ = −TD4
∫

dx0dΩ4e−φ√−g00gS4

= − 1
27 MKKλN2

c
∫
R dx0,

= −mB
∫
R dx0

(76)

where the bubble D4-brane background has been chosen for the confined property of baryon,
and gS4 refers to the metric on S4 presented in (16). This formula illustrates a stable position
of the baryonic D4′-brane by minimizing its energy, which is U = UKK, since the bubble
geometry shrinks at U = UKK. In the black D4-brane, one can follow the same formula (76) to
evaluate the baryon mass. However, if the baryonic D4′-brane is the only probe brane, it can
not stay at U = UH stably in the black D4-brane background, since gravity will pull it into the
horizon. In this sense, the baryon vertex exists in the bubble D4-brane background only, and it
is consistent with its property of confinement. When the probe D8/D8-branes are embedded
into the bulk geometry, due to the balance condition, the baryonic D4′-brane can be restricted
inside the D8-branes if D8/D8-branes are connected, as is displayed in Figure 4 (the authors
of [68] claim thataccording to the numerical calculation, there is not a wrapped configuration
for the baryonic D4′-brane in the black D4-brane background; thus, this background may
correspond to the deconfinement phase of QCD. We note that this issue is not figured out,
even if the baryon vertex is introduced into the black D4-brane background).
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D8D8
D8

D8

D8

D8D8D8

(a) (b) (c) (d)

Figure 4. Various D-brane configurations in the D4/D8 model. Purple refers to the baryon vertex
(D4′-brane) located at the stable position. When the D8/D8-branes are connected as in (a–c), the
baryon vertex can be located stably at the connected position inside the D8/D8-branes. There is no
stable position for baryon vertex if D8/D8-branes are parallel, as in (d).

Therefore, it can be described equivalently by the instanton configuration on the D8-
branes.

To obtain the baryon mass or baryon spectrum in this model, it is worth searching
for an exact instanton solution for the gauge field on the D8-branes. As baryon lives in
the low-energy region of QCD, we may find an approximated solution for the instanton
configuration in the strong coupling limit, i.e., λ→ ∞. To achieve this goal, let us take a look
at the gauge field on the D8-branes, whose dynamic is described by the Yang–Mills action
(33) and the Chern–Simons action presented in (57) (as the size of instanton takes order of
λ−1/2, it may lead to a puzzle if the Yang–Mills action is taken into account, only because the
high-order derivatives in the DBI action contribute more importantly. However, according
to the holographic duality, taking the near-horizon limit requires α′ → 0, which implies that
the Yang–Mills action dominates the dynamics in the DBI action. This puzzle is not figured
out completely in [27,28], and we may additionally set α′λ → 0 when Yang–Mills action is
taken into account only in this setup.). Since the size of instanton is of order λ−1/2, it would
be convenient to rescale the coordinate

{
x0, xi, z

}
and the gauge potential A as

xM → λ−1/2xM, x0 → x0

AM → λ1/2 AM, A0 → A0
FMN → λFMN , F0M → λ1/2F0M,

(77)

where M, N = 1, 2, 3, z. In the large λ limit, the Yang–Mills action (33) can be expanded as
follows:

SYM = − κ
λ

∫
d4xdzTr

[
λ
2 F2

MN +
(
− z2

6 F2
ij + z2F2

iz − F2
0M

)
+O

(
λ−1)]

− κ
2λ

∫
d4xdz

[
λ
2 F̂2

MN +
(
− z2

6 F̂2
ij + z2 F̂2

iz − F̂2
0M

)
+O

(
λ−1)], (78)

while the Chern–Simons action (57) remains under the rescaling (77). We employed the D-
brane configuration presented in Figure 4a. The U

(
N f

)
group is decomposed as U

(
N f

)
'

U(1)× SU
(

N f

)
, and correspondingly, its generator is decomposed as follows:

A +
1√
2N f

Â = Aata +
1√
2N f

Â, (79)

where Â, A refers to the generators of U(1), SU
(

N f

)
, respectively, and ta (a = 1, 2...N2

f − 1)
are the normalized bases, satisfying

Tr
(

tatb
)
=

1
2

δab. (80)
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So, the Chern–Simons action (57) can be derived as follows:

SCS = Nc
24π2

∫
ω

SU(N f )
5 (A) + Nc

24π2

√
2

N f
εMNPQ

∫
d4xdz

[
3
8 Â0Tr

(
FMN FPQ

)
− 3

2 ÂMTr
(
∂0 AN FPQ

)
+ 3

4 F̂MNTr
(

A0FPQ
)
+ 1

16 Â0 F̂MN F̂PQ − 1
4 ÂM F̂0N F̂PQ

+(total derivatives)
]

.

(81)

Furthermore, the equation of motion for Â, A can be derived by varying actions (78)
and (81), which allows for an instanton solution as follows:

Acl
M = −i f (ξ)g(x)∂Mg−1, (82)

where

f (ξ) = ξ2

ξ2+ρ2 , ξ =
√
(xM − XM)

2,

g(x) =

(
gSU(2)(x) 0

0 1N f−2

)
, gSU(2)(x) = 1

ξ

[
(z− Z)12 − i

(
xi − Xi)τi]. (83)

Here, 1N is an N × N identity matrix and τi’s are the Pauli matrices. The position and
the size of the instanton are denoted by the constants XM =

{
Xi, Z

}
and ρ, respectively

which have been rescaled as (77). The configuration (82) and (83) is the Belavin–Polyakov–
Schwartz–Tyupkin (BPST) solution embedding into SU

(
N f

)
, which represents the SU(2)

Euclidean instanton, and one may verify that this solution satisfies (70). Then, the U(1)
part of the gauge field is solved as follows:

Âcl
0 =

√
2

N f

1
8π2a

1
ξ2

[
1− ρ4

(ξ2 + ρ2)
2

]
, Âcl

M = 0. (84)

which leads to a nonzero A0,

Acl
0 =

1
16π2a

1
ξ2

[
1− ρ4

(ξ2 + ρ2)
2

](
P2 −

2
N f

1N f

)
, (85)

where P2 is an N f × N f matrix P2 = diag(1, 1, 0, ...0).
Keeping these in hand, it is possible to evaluate the classical baryon mass through

the soliton mass M with respect to the D8-brane action as S
[

Acl
]
= −

∫
Mdt, which is

obtained as follows:

M = 8π2κ +
8π2κ

λ

(
ρ2

6
+

Z2

3
+

1
320π4a2ρ2

)
, (86)

by inserting (82)–(85) into action (78) plus (81). On the other hand, since the low-energy
effective theory on the D8-branes can reduce to Skyrme model, we can further employ the
idea in the Skyrme model of baryon, which is identified as the excitation of the collective
modes, in order to search for the baryon spectrum. The classically effective Lagrangian for
baryon describes the dynamics of the collective coordinates X α in the moduli space by the
one instanton solution, which refers to the world line element with a baryonic potential
U(X α) in the moduli space:

L(X α) =
mX
2
GαβẊ αẊ β −U(X α) +O

(
λ−1

)
, (87)

where “·” refers to the derivative respected to time; the collective coordinates X α denote{
XM, ρ, ya}; and W = yata is the SU

(
N f

)
orientation of the instanton. The potential
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U(X α) is the classical soliton mass given by S
[

Acl
]
= −

∫
dtU(X α). The basic idea to

quantize the classical Lagrangian (87) is to slowly move the classical soliton so that the
collective coordinates X α are promoted to be time-dependent [69]. Approximately, the
SU
(

N f

)
gauge field potential becomes time-dependent by a gauge transformation,

AM(t, x) = W(t)Acl
M(x,X α)W(t)−1 − iW(t)∂MW(t)−1,

A0(t, x) = W(t)Acl
0 (x,X α)W(t)−1 + ∆A0,

ÂM(t, x) = 0, Â0(t, x) = Âcl
0 (t, x),

(88)

and the associated field strength becomes

FMN = W(t)Fcl
MNW(t)−1,

F0M = W(t)
(
Ẋ α ∂

∂X α Acl
M − Dcl

MΣ− Dcl
M Acl

0

)
W(t)−1,

F̂0M = F̂cl
0M, F̂MN = F̂cl

MN ,

(89)

where

Dcl
M A0 = ∂M A0 + i

[
Acl

M, A0

]
,

Σ = W(t)−1∆A0W(t)− iẆ(t)−1W(t).
(90)

∆A0 must be determined by its equation of motion:

Dcl
M

(
ẊN ∂

∂XN Acl
M + ρ̇

∂

∂ρ
Acl

M − Dcl
MΣ
)
= 0. (91)

While for generic N f , the exact solution for Σ may be out of reach, the solution with
N f = 2, 3 is collected, respectively, in [27,28]. Accordingly, the Lagrangian of the collective
modes is given by

S[A]− S
[
Acl
]

=
∫

dt[LYM(X α) + LCS(X α)] =
∫

dtL(X α)

SYM[A]− SYM

[
Acl
]

=
∫

dtLYM(X α),

SCS[A]− SCS

[
Acl
]

=
∫

dtLCS(X α),

(92)

which leads to

L(X α) = −M + aNcTr
∫

d3xdz
(

ẊN Fcl
MN + ρ̇ ∂

∂ρ AM − ẊN Dcl
M Acl

N − Dcl
MΣ
)2

+O
(
λ−1)

= −M0 +
mX
2 δijẊiẊ j + LZ + Lρ + LρW +O

(
λ−1), (93)

where

LZ = mZ
2
(
Ż2 −ω2

ZZ2), Lρ =
mρ

2

(
ρ̇−ω2

ρρ2
)
− K

mρρ2 ,

LρW =
mρρ2

2 ∑a Ca
[
Tr
(
−iW−1Ẇta)]2, a = 1, 2...N2

f − 1
(94)

and
M0 = 8π2κ, mX = mZ =

mρ

2
= 8π2κλ−1, K =

2
5

N2
c , ω2

Z = 4ω2
ρ =

2
3

. (95)

Here, we note that the formulas in the unit of MKK = 1, Ca’s are constants dependent
on the SU

(
N f

)
instanton, solution and the metric of the moduli space can be further

obtained by comparing (93) with (87). For example, we have C1,2,3 = 1 for N f = 2, and
C1,2,3 = 1, C4,5,6,7 = 1/2, C8 = 0 for N f = 3. Afterwards, the baryon states can be obtained
by quantizing the Lagrangian (93), that is, to replace the derivative term by Ẋα → − i

mX
∂α

straightforwardly. Hence, the quantized Hamiltonian associated with (93) is collected as
follows (we note that for generic N f , the baryonic Hamiltonian must be supported by
additional constraint, according to [70] although it may not change the baryon spectrum):
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H = M0 + HZ + Hρ + HρW ,
HZ = − 1

2mZ
∂2

Z + 1
2 mZω2

ZZ2,
Hρ = − 1

2mρ

1
ρη ∂ρ

(
ρη∂ρ

)
+ 1

2 mρω2
ρρ2 + K

mρρ2 ,

HρW =
mρρ2

2 ∑a Ca
[
Tr
(
−iW−1Ẇta)]2 = 2

mρρ2 ∑a Ca(Ja)2,

(96)

where η = N2
f − 1 and Ja’s are the operators of the angular momentum of SU

(
N f

)
. The

baryon spectrum can be finally obtained by evaluating the eigenvalues of the Hamiltonian
(96), which fortunately takes an analytical formula [27,28].

2.6. Gravitational Wave as Glueball

According to AdS/CFT and gauge–gravity duality [29–32], the glueball operator Ô
can be identified as the source of gravitational fluctuation in bulk, since it is included in
energy–momentum tensor of Yang–Mills theory in the dual theory as Ô ∼ FµνFµν ∼ Tµν

coupling to metric. Thus, due to the confined property of glueball, we can choose the
bubble D4-brane background (16) compactified on a circle with gravitational fluctuation in
order to investigate glueball in holography.

The dual field to the glueball operator is the gravitational fluctuation coupling the
energy–momentum, which therefore refers to the gravitational polarization. By employing
the relation of 11d M-theory and 10d type IIA string theory in Section 2.1, it would be con-
venient to find the gravitational polarization in 11d theory. For example, the lowest exotic
scalar glueball with quantum number JCP = 0++ corresponds to the exotic polarizations of
the bulk gravitational polarization, and its 11d components are given as (µ, ν = 0, 1, 2, 3):

δg44 = − r2

L2 f (r)HE(r)GE(x),

δgµν = r2

L2 HE(r)
[

1
4 ηµν −

(
1
4 +

3r6
KK

5r6−2r6
KK

)
∂µ∂ν

M2
E

]
GE(x),

δg55 = r2

4L2 HE(r)GE(x),

δgrr = − L2

r2
1

f (r)
3r6

KK
5r6−2r6

KK
HE(r)GE(x),

δgrµ =
90r7r6

KK

M2
E L2(5r6−2r6

KK)
2 HE(r)∂µGE(x),

(97)

where HE(r) must be determined by its eigen equation, given as

1
r3

d
dr

[
r
(

r6 − r6
KK

) d
dr

HE(r)
]
+

[
432r2r12

KK(
5r6 − 2r6

KK
)2 + L4M2

E

]
HE(r) = 0, (98)

and GE(x) refers to the 4d glueball field. By imposing the metric with gravitational
fluctuation (97) as gMN = g(0)MN + δgMN and solution of C3 into 11d SUGRA action (1), we
can obtain

S11d
SUGRA = −1

2
CEβ4β5

∫
d4x
[(

∂µGE
)2

+ M2
EG2

E

]
, (99)

representing the standard kinetic action for scalar glueball field GE, where β5, g(0)MN refer,
respectively, to the size of x5 and the bubble version of (10). CE is a numerical constant, given as

CE = 0.057396[HE(rKK)]
2 r4

KK
L3 ,

[HE(rKK)]
−1 = 0.0069183λ1/2Nc MKK.

(100)
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Hence, the eigenvalue of (98) determines the mass spectrum of exotic scalar glueball.
The mass spectrum for various glueballs can be obtained by taking into account different
gravitational polarizations, e.g., dilatonic scalar glueball with JCP = 0++,

δG11,11 = −3 r2

L2 HD(r)GD(x),

δGµν = r2

L2 HD(r)
[

ηµν − ∂µ∂ν

M2
D

]
GD(x),

(101)

and tensor glueball with JCP = 2++,

δGµν = − r2

L2 HT(r)Tµν(x). (102)

The eigen equations for HD(r) and HT(r) are given as

1
r3

d
dr

[
r
(

r6 − r6
KK

) d
dr

HD,T(r)
]
+ L4M2

D,T HD,T(r) = 0, (103)

which determines the mass spectrum of dilatonic scalar and tensor glueball. The mass
spectrum of various glueballs are collected in Table 3 for the reader’s convenience. The
labels S, T, V, N, M, L refer to the solutions for six independent wave equations for various
scalar, vector and tensor modes of glueballs.

Table 3. Glueball mass spectrum m2
n of AdS7 in the units of r2

KK/L4 = M2
KK/9 in [32].

Mode S4 T4 V4 N4 M4 L4
JPC 0++ 0++/2++ 0−+ 1+− 1−− 0++

n = 0 7.30835 22.0966 31.9853 53.3758 83.0449 115.002

n = 1 46.9855 55.5833 72.4793 109.446 143.581 189.632

n = 2 94.4816 102.452 126.144 177.231 217.397 227.283

n = 3 154.963 162.699 193.133 257.959 304.531 378.099

n = 4 228.709 236.328 273.482 351.895 405.011 492.171

This model predicts the properties of glueballs in a very simple and powerful way.

3. Developments and Holographic Approaches to QCD

In this section, we will review some holographic approaches to QCD by using the D4/D8
model and some developments of this model in recent years, which includes the topics of
phase transition, heavy flavor, hadron interaction and the theta angle in QCD.

3.1. QCD Deconfinement Transition

While the confinement phase of QCD corresponds to the bubble D4-brane geometry
given in (16), it is less clear whether the black D4-brane background (14) corresponds exactly
to the deconfinement phase in holography [58,59]. This issue is recognized by investigating
the associated Wilson loop in the bubble (16) and black brane backgrounds, (14) respectively.
Nonetheless, it would be interesting to compare the deconfinement transition in QCD with
the Hawking–Page transition in the D4-brane system through the gauge–gravity duality
to find an exact holographic description of the deconfinement transition. To achieve this
goal, let us first recall the holographic relation between the partition functions Z of the bulk
gravity and its dual field theory,

Z = e−F = e−Sren
SUGRA , (104)
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which implies that the classical (onshell) renormalized SUGRA action Sren
SUGRA is equivalent

to the free energy F of the dual theory (in the Euclidean version). The classical SUGRA
action Sren

SUGRA can be collected by

Sren
SUGRA = SE

IIA + SGH + Sbulk
CT , (105)

where SE
IIA refers to the Euclidean version of the IIA SUGRA action given in (15), and SGH

refers to the standard Gibbons–Hawking term given as [71]

SGH =
1

κ2
10

∫
∂M

e−2Φ
√

hK, (106)

where hMN refers to the metric on the holographic boundary ∂Mwith ∂M = {r = ε}, and

K = hMN∇MnN = − 1√
|g|

∂r

(√
|g|
√

grr

)∣∣
r=ε

, (107)

is the trace of the extrinsic curvature. Sbulk
CT refers to the counterterm of the bulk fields

presented in action (15), given as [72]

Sbulk
CT = − 5

2κ2
10

g1/3
s
R

∫
d9xe−7Φ/3

√
h. (108)

Using (105)–(108), by picking up the bubble (16) and black brane background (14) solu-
tions, respectively, we can obtain the free energy of the dual theory by a simple formula:

Fconf. = Sren,bub
SUGRA = −

2N2
c M4

KKλV4

37π2 ,

Fdeconf. = Sren,black
SUGRA = −27N2

c T6π4λV4

37M2
KK

, (109)

where V4 refers to the volume of R4; T is the Hawking temperature in the black D4-brane
solution (16). Comparing the free energies given in (109), we obtain the critical temperature
with Fconf. = Fdeconf.(T = Tc) for the Hawking–Page transition as follows:

Tc =
MKK
2π

, (110)

which is expected to be the deconfinement transition in QCD in the large Nc limit. While
this may be a trivial result for QCD, it is theoretically expected in the gravity side since,
the bubble solution (14) is obtained by a double Wick rotation to the black brane solution
(16), i.e., (110) means exactly β4 = βT . However, this does not mean that the Hawking–
Page transition has nothing to do with the QCD deconfinement transition, because the
fundamental flavored matter has not been taken into account.

In order to obtain a critical temperature close to the realistic QCD with the D4/D8
model, the flavored matter on the D8-branes must somehow contribute to the free energy.
This means that in the gravity side, flavor branes have to back-react to the bulk geometry;
thus, they would not be probes. For such a holographic setup, we require N f /Nc to be
fixed in the large Nc limit in order to go beyond the probe approximation for the flavor
branes. Moreover, we further need N f /Nc � 1, otherwise the dynamics of the dual theory
is determined by flavors instead of colors, and in the gravity side, N f /Nc � 1 is also
necessary, since Nc D4-branes must dominate the bulk geometry, otherwise the holographic
duality given in the previous sections would not be valid (see similar setups in [73–75] for
the D3/D7 system).

Then, the next step is to confirm the embedding configuration of the D8/D8-branes.
Since the configuration of the D8/D8-branes relates to the chiral symmetry discussed
in Sections 2.2 and 2.3, we can identify, respectively, the bubble D4-brane background,
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where D8/D8-branes are located at the antipodal points of x4 (the left one in Figure 2) to
the confined phase with broken chiral symmetry; and the black D4-brane background,
where D8/D8-branes are parallel (the left one in Figure 3) to the deconfined phase with
the restored chiral symmetry. does not exactly distinguish the chiral transition from the
deconfinement transition and is not unique, it is the most simple setup to include the
elementary features in the QCD deconfinement transition. However, keeping the above
requirements in hand, it is not enough to give a holographic setup quantitatively, because
when the flavored backreaction is considered, it would be extremely challenging to search for
a SUGRA solution technologically with respect to the D-brane configuration in the D4/D8
model as in Table 1. To simplify the calculation and keep the fundamental features of QCD,
the authors of [34,35] suggest to consider the case that the D8/D8-branes are smeared on the
x4 direction homogeneously so that the harmonic function for the D8-branes is identified
uniquely; thus, it is possible to search for a geometric solution in this setup.

Altogether, let us write down the IIA SUGRA action plus the dynamics of N f D8-
branes smeared on x4 as the total action S,

S = 1
2κ2

10

∫
d10x
√
−Ge−2φ

[
R(10) + 4∂µφ∂φ

]
− 1

4κ2
10

∫
d10x
√
−G|F4|2

− gs N f TD8 MKK
π

∫
d10x
√
−det[g+(2πα′)F]√

g44
e−φ.

(111)

To search for an approximate solution under the condition N f /Nc � 1, the solution with
N f = 0 is therefore the zero-th order solution to the equations of motion from (111), which
is nothing but the bubble and black D4-brane solution given in (14) and (16). Then, let us
attempt to find a solution ofO

(
N f /Nc

)
to the bubble D4-brane (16) first. For a homogeneous

solution, the ansatz of the metric to solve the action (111) can be chosen as [33–35]

ds2 = e2λ̂
(
−dt2 + dxidxi)+ e2λ̃

(
dx4)2

+ l2
s e−2ϕdρ2 + l2

s e2νdΩ2
4,

ϕ = 2Φ− 4λ− λ̃− 4ν,
(112)

where Φ refers to the dilaton field; λ̂, λ̃, ϕ, ν are unknown functions depending on the
holographic coordinate ρ only. ρ is the logarithmic coordinate, defined as

e−3aρ = 1−
U3

KK
U3 , a =

√
2QcU3

KK
3R3gs

=
U3

KK
l3
s g2

s
. (113)

Impose the ansatz (112) into (111); it reduces to a 1d effective action,

S = V
∫

dρ
[
−4 ˙̂λ2 − ˙̃λ2 − 4ν̇2 + ϕ̇2 + V

]
,

V = 12e−2ν−2ϕ −Q2
c e4λ̂+λ̃−4ν−4ϕ −Q f e2λ̂− λ̃

2 +2ν− 3
2 ϕ,

(114)

which has to be supported by the zero-energy constraint (dot refers to the derivative with
respect to ρ)

−4 ˙̂λ2 − ˙̃λ2 − 4ν̇2 + ϕ̇2 −V = 0, (115)

with

Qc =
3πNc√

2
=

3√
2gs

R3

l3
s

, Q f =
2κ2

10N f gsTD8MKK l2
s

π
,V =

1
2κ2

10
V3Ω4βT

2π

MKK
l3
s . (116)

Here, βT is the size of x0, representing the temperature in the dual theory βT = 1/T,
and the only nonzero component of the gauge field potential on the D8-branes is a constant
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A0, representing the chemical potential in the dual theory. Next, we expand all the relevant
functions λ̂, λ̃, ϕ, ν up to N f /Nc, as follows:

Ψ = Ψ0 + ε f Ψ1 +O
(

ε2
f

)
, (117)

where

ε f =
R3/2u1/2

0 gs

ls
Q f =

1
12π3 λ2 N f

Nc
� 1. (118)

So, the zero-th order solution of λ̂, λ̃, ϕ, ν reads by comparing the metric ansatz (112)
with the bubble D4-brane solution (16) as follows:

λ̂0 = f0 +
3
4 log UKK

R ,
λ̃0 = f0 − 3

2 aρ + 3
4 log UKK

R ,
Φ0 = f0 +

3
4 log UKK

R + log gs,
ν0 = 1

3 f0 +
1
4 log UKK

R + log R
ls

,
f0 = − 1

4 log
(
1− e−3aρ

)
,

(119)

Putting (117)–(119) back into the equation of motion varied from action (114), we can
obtain a series of equations for λ̂1, λ̃1, ϕ1, ν1:

¨̂λ1
a2 − 9

2
e−3aρ

(1−e−3aρ)
2

(
4λ̂1 + λ̃1 −Φ1

)
= 1

4
e−

3
2 aρ

(1−e−3aρ)
13/6 ,

¨̃λ1
a2 − 9

2
e−3aρ

(1−e−3aρ)
2

(
4λ̂1 + λ̃1 −Φ1

)
= − 1

4
e−

3
2 aρ

(1−e−3aρ)
13/6 ,

Φ̈1
a2 − 9

2
e−3aρ

(1−e−3aρ)
2

(
4λ̂1 + λ̃1 −Φ1

)
= 5

4
e−

3
2 aρ

(1−e−3aρ)
13/6 ,

ν̈1
a2 − 3

2
e−3aρ

(1−e−3aρ)
2

(
4λ̂1 + λ̃1 − 5Φ1 + 12ν1

)
= 1

4
e−

3
2 aρ

(1−e−3aρ)
13/6 ,

(120)

which can be solved analytically by

λ̂1 = 3
8 f + y− 1

4 (A2 − A1)− 1
4 (B2 − B1)aρ,

λ̃1 = − 1
8 f + y− 1

4 (A2 + B2aρ)− 3
4 (A1 + B1aρ),

Φ1 = 11
8 f + y + 1

4 (A1 + B1aρ)− 5
4 (A2 + B2aρ),

ν1 = 11
24 f + q,

(121)

with hypergeometrical functions

f = 4
9 e−3aρ/2

3F2

(
1
2 , 1

2 , 13
6 ; 3

2 , 3
2 ; e−3aρ

)
,

y = C2 − coth
(

3aρ
2

)[
C1 + C2

( 3
2 aρ + 1

)]
+ z,

q = 1
12 [A1 − 5A2 + aρ(B1 − 5B2)] +

5
3 z− coth

(
3aρ

2

)
[M1 + M2(3aρ + 2)] + 2M2,

z = − e−9aρ/2(e−3aρ+1)[9e3aρ
3F2( 1

2 , 1
2 , 19

6 ; 3
2 , 3

2 ;e−3aρ)+ 3F2( 3
2 , 3

2 , 19
6 ; 5

2 , 5
2 ;e−3aρ)]

162(1−e−3aρ)

− 8e−3aρ/2(10e−3aρ+3)
819(1−e−3aρ) 2F1

(
1
6 , 1

2 ; 3
2 ; e−3aρ

)
+− e−15aρ/2(38e3aρ+8e6aρ−40)

273(1−e−3aρ)
13/6 ,

(122)

where A1,2, B1,2, C1,2, M1,2 are integration constants. The integration constants can be
determined by analyzing the asymptotics and using the zero-energy constraint (115),
which leads to

A2 = −2A1, A1 =
81
√

3π2(−9+
√

3π−12 log 2+9 log 3)
43120(2)2/3Γ(−14/3)Γ(−2/3)2 ,

k = C1 + C2 =
π3/2(3+

√
3π−12 log 2+9 log 3)

78Γ(−2/3)Γ(1/6) ,
5k
3 = M1 + M2,

(123)
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while the other constants must be confirmed by imposing additional physical conditions.
Nevertheless, one may find that the phase transition depends only on the integration
constants given in (123).

Following the same step, it is also possible to obtain a solution of order N f /Nc to the
black D4-brane solution by using the metric ansatz:

ds2 = −e2λ̃dt2 + e2λ̂dxidxi + e2λs
(
dx4)2

+ l2
s e−2ϕdρ2 + l2

s e2νdΩ2
4,

ϕ = 2Φ− 3λ̂− λ̃− λs − 4ν,
(124)

with a nonzero dynamical chemical potential:

2πα′A = Atdt. (125)

We note that UKK is replaced by UH in the black brane case. Putting (124) and (125)
into action (111), it leads to a 1d action:

S = V
∫

dρ
[
−3 ˙̂λ2 − ˙̃λ2 − λ̇2

s − 4ν̇2 + ϕ̇2 + V
]
,

V = 12e−2ν−2ϕ −Q2
c e3λ̂+λ̃+λs−4ν−4ϕ −Q f e

3
2 λ̂− 1

2 λs+
λ̃
2 +2ν− 3

2 ϕ
√

1− 1
l2
s

e−2λ̃+2ϕ Ȧ2
t .

(126)

Taking into account the near-horizon geometry, the DBI action presented in (126) can
be expanded with respect to small gauge field potential. Then, keeping the quadratic
action for At, we can obtain an analytical leading-order solution by the equations of motion
derived from (126):

At = 2
3 qUH

(
1−
√

1− e−3aρ
)

, q = gs l4
s

R3/2U5/2
H

n

λ̂1 = f
28 −

3
16 q2g + y− 1

4 (a2 − a1 − a3)− 1
4 (b2 − b1 − b3)aρ,

λs1 = λ̂1 − f
21 + q

4 g− a1 − b1aρ,

λ̃1 = λ̂1 +
q2

2 g− a3 − b3aρ,
Φ1 = λ̂1 +

2
21 f − a2 − b2aρ,

ν1 = 11
252 f − q2

16 g + w,

(127)

with

f = 6

(1−e−3aρ)
1/6 +

√
3 tan−1

[
2(1−e−3aρ)

1/6−1√
3

]
+
√

3 tan−1
[

2(1−e−3aρ)
1/6

+1√
3

]
−2 tanh−1

[(
1− e−3aρ

)1/6
]
− coth−1

[(
1− e−3aρ

)1/6
+ 1

(1−e−3aρ)
1/6

]
,

g = 4
9 log

(
e−3aρ/2

√
e3aρ − 1 + 1

)
− 4

9 e−3aρ/2
√

e3aρ − 1,

y = c2 −
[
c1 +

(
1 + 3

2 aρ
)
c2
]

coth
(

3aρ
2

)
+ q2 j + z,

w = 2m2 − [m1 + (2 + 3r)m2] coth
(

3aρ
2

)
+ 1

12 (a1 − 5a2 + a3 + b1aρ− 5b2aρ + b3aρ)

+ 5
3 z− q2 j,

j = 1
72

[
4
√

1− e−3aρ +
(
−9aρ + 6

√
1− e−3aρ − 6 log

(√
1− e−3aρ + 1

))
coth

(
3aρ

2

)]
,

z =
3e3aρ(1−e−3aρ)

5/6−
√

3
2 (e3aρ+1)

[
tan−1

(
2

6√
1−e−3aρ−1√

3

)
+tan−1

(
2

6√
1−e−3aρ+1√

3

)]
546(e3aρ−1)

+ 1
2
(
e3aρ + 1

) 2 tan−1
(

2
6√

1−e−3aρ−1√
3

)
+coth−1

(1−e−3aρ)
1/6

+ 1

(1−e−3aρ)
1/6


546(e3aρ−1)

,

(128)

where a1,2,3, b1,2,3, c1,2, m1,2 are integration constants and n refers to the U(1) charge density.
The zero-energy constraint is given by
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−3 ˙̂λ2 − λ̇2
s − ˙̃λ2 − 4ν̇2 + ϕ̇2 +

Q f

2ls
e

3
2 λ̂− 1

2 λs+
3λ̃
2 +2ν+ 1

2 ϕ Ȧ2
t −P = 0, (129)

with

P = 12e−2ν−2ϕ −Q2
c e3λ̂+λ̃+λs−4ν−4ϕ −Q f e

3
2 λ̂− 1

2 λs+
λ̃
2 +2ν− 3

2 ϕ. (130)

Now. it is possible to obtain the free energy of the dual theory involving the flavored
matters by imposing the above leading-order solutions into the action given in (111) after
holographic renormalization. Before this, we need to add an additional holographic
counterterm to (105) in order to cancel the divergence in the DBI action presented in (111),
which turned out to be [34,76–78]

SD8
CT =

Q f

κ2
10l2

s

∫
∂M

d9x

√
h√

h44

[
R

g1/3
s

χ1e−2Φ/3 − 2R2

g2/3
s

χ2e−Φ/3

(
K− 8

3
n · ∇Φ− n ·

∇
(√

g44
)

√
g44

)]
. (131)

Here, n refers to the normal vector of ∂M, and χ1,2 are renormalized constants. For
example, with the back reaction from D8-branes to the bubble background, it leads to

χ1 = − 631
5005

, χ2 = − 2
2145

. (132)

For the black brane background, it leads to

χ1 = − 607
5005

, χ2 = − 4
15015

. (133)

Hence, we finally obtained the renormalized SUGRA action,

F = Sren
SUGRA = SE

IIA + SGH + Sbulk
CT + SD8

CT, (134)

with suitable choice of χ1,2. Respectively, the confined and deconfined free energy with flavors
can be computed straightforwardly by plugging the solutions of order N f /Nc into (134)

Fconf. = − 2N2
c M4

KKλV4
37π2

[
1− 48

7 ε f
π3/2

Γ(−2/3)Γ(1/6)

]
,

Fdeconf. = − 27 N2
c T6π4λV4
37 M2

KK

[
1 + 4

7 ε f T
(
1 + 7

6 q2)], (135)

where

ε f T =
R3/2U1/2

H gsQ f

l2
s

=
λ2

12π3
2πT
MKK

N f

Nc
� 1, (136)

and we use the choice of the relevant constants given in (123). Therefore, comparing the
free energy given in (135), we can obtain the critical temperature with flavors as follows:

2πTc

MKK
= 1− 1

126π3 λ2 N f

Nc

[
1 +

12π3/2

Γ(−2/3)Γ(1/6)

]
− 27

16π

N f

Nc

µ2

M2
KK

, (137)

where µ is the chemical potential in the dual theory given by At
∣∣
U→∞ = µ. The behavior of

the Hawking–Page transition given in (137) agrees qualitatively with the QCD deconfine-
ment transition [79–82].

Moreover, when the backreaction to the bulk geometry of the flavor branes is picked
up, it is also possible to evaluate QCD deconfinement transition under an external magnetic
field, because extremely strong magnetic field may also give rise to deconfinement transition
in QCD [83–86]. The setup mostly follows the same discussion given above, while we need
to turn on a constant magnetic field in the DBI action is presented in (111), as the only
nonzero component of the gauge field strength. Then, we can derive the effective 1d action
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by using the metric ansatz (112) and (124) with respect to the bubble and black D4-brane
background. Fortunately, it is possible to find an analytical solution, which leads to critical
temperature Tc as

2πTc

MKK
= 1 +

N f

Nc

(
Xλ2 +

B2

M4
KK

Y

)
, (138)

by comparing free energy in the same way. Here, B refers to the external magnetic field,
and X, Y are numerical numbers. For the probe approximation limit of the D8-brane, X, Y
are calculated as

X = − 1
126π3

[
1− 8π3/2

3Γ(1/6)Γ(4/3)

]
' 5× 10−4,

Y = − 81
16π

[
1− 2π3/2

3Γ(1/6)Γ(4/3)

]
' −0.408.

(139)

By considering the backreaction of the D8-branes, X, Y are calculated as

X ' 5× 10−4, Y ' −2.44. (140)

The behavior of the critical temperature illustrated in (138) also coincides qualitatively
with the QCD deconfinement transition under external magnetic field predicted by lattice
QCD [83]. We plot out the behavior of the critical temperature given in (137) and (138) in
Figure 5. In this sense, we could conclude, at least, that investigating the Hawking–Page
transition in the D4/D8 model is very suggestive to study the QCD deconfinement transition
in holography, which also partly covers the discussion in some bottom-up approaches [87,88].

D8D8

D8
D8

T

μ,Bconfined

deconfined

Figure 5. The critical temperature of Hawking–Page transition as the temperature of QCD deconfine-
ment transition in the D4/D8 model with chemical potential µ or magnetic field B.

3.2. Phase Diagram with Chiral Transition

As we have reviewed the deconfinement transition in the D4/D8 model, which can
not be distinguished from the chiral transition, let us focus on the chiral transition in the
D4/D8 model, since QCD has various phases with chiral symmetry.

Recalling the relation of D8/D8-brane configuration and chiral symmetry, the chiral
transition is identified as the transition from connected to disconnected configuration of
the D8/D8-branes. Hence, we need to choose the black D4-brane background in order to
include both the connected and disconnected D8/D8-brane configurations. The main idea
for evaluating the phase transition follows Section 3.1, which is to compute the free energy
in holography. As we will work with respect to the black D4-brane background only, the
contribution from the bulk geometry would be irrelevant, because the difference of the
free energy determines the phase transition. Keeping this in mind, we can quickly write
down the D8-brane action for mesonic (broken chiral symmetry) and quark matter phases
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(restored chiral symmetry) with a U(1) chemical potential Â0, which corresponds to the
connected and disconnected D8-brane configuration, respectively, in Figure 3 as follows
(we note that in this setup, the Chern–Simons action vanishes):

SD8
DBI = N

V3

T

∫ ∞

u0

duu5/2
√

1 + u3 fT
(
x′4
)2 − â′20 , (141)

where the variables in (141) are dimensionless, as follows:

x4 = x4MKK, u =
U
R

1

(MKKR)2 , â0 = Â0
4π

λMKK
,N = 2TD8Ω4R5(MKKR)7. (142)

The equation of motion can be obtained by varying (141) with respect to x4 and â0,
which are

u5/2 â′0√
1+u3 fT x′24 −â′20

= nI ,

u11/2 fT x′4√
1+u3 fT x′24 −â′20

= f 1/2
T (u0)u4

0,
(143)

where “′” refers to the derivative with respect to u. The constant nI corresponds to the U(1)
charge density, which is therefore the baryon number in this setup. In the mesonic phase, the
baryon number is zero, i.e., nI = 0, and the equations of motion in (143) can be solved by the
following boundary condition, according to the connected configuration in Figure 3:

â′0(u0) = 0, â0(∞) = µ,
x′4(u0) = ∞, l

2 =
∫ ∞

u0
dux′4, (144)

where constant µ refers to the chemical potential in the dual theory; constant l refers to the
separation of the D8/D8-branes at boundary u→ ∞. Thus, the solution is

â0 = µ, x′4 =
f 1/2
T (u0)u4

0

f 1/2
T (u)u3/2

√
u8 fT(u)− u8

0 fT(u0)
. (145)

Putting the solution (145) back into action (141), we can obtain the free energy as
follows:

Fmesonic = N
∫ ∞

u0

duu5/2 u4 f 1/2
T (u)√

u8 fT(u)− u8
0 fT(u0)

. (146)

For the quark matter phase, the boundary condition reads from the disconnected
configuration in Figure 3 as

â0(uH) = 0, â0(∞) = µ, x′4 = 0, (147)

which leads to a solution with the hypergeometrical functions

â0(u) = µ−
n2/5

I Γ(3/10)Γ(6/5)√
π

+ u 2F1

(
1
5

,
1
2

,
6
5

,−u5

n2
I

)
. (148)

Therefore, the free energy is computed as follows:

Fquarkmatter = N
∫ ∞

uH

du
u5√

u5 + n5
I

. (149)
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We note that the condition â0(uH) = 0 implies that nI is a function of µ:

0 = µ−
n2/5

I Γ(3/10)Γ(6/5)√
π

+ uH 2F1

(
1
5

,
1
2

,
6
5

,−
u5

H
n2

I

)
. (150)

Then, the phase diagram can be obtained by comparing the free energies given in (146)
and (150) with constraint (149). Notice that while the free energies given in (146) and (150)
are divergent, their difference, which determines the phase diagram, remains finite. Thus,
it is not necessary to perform holographic renormalization in this case.

For a more ambitious approach, let us include the baryonic phase in the black D4-
brane background, that is, to take into account the configuration (c) in Figure 4, which has
broken chiral symmetry with baryon vertex. Since baryon vertex is identified as D4′-brane,
described equivalently by instantons on the D8-branes, we employ the BPST instanton
solution given in (83) to represent baryon on the flavor brane. For multiple baryons, we
can summarize the instanton field strength as what we have discussed in Section 2.5; in
this sense, baryons are treated as instanton gas on the flavor brane. On the other hand,
as the instanton size takes order of λ−1/2 and the DBI action (20) does not define how to
treat it with non-Abelian gauge field (the symmetrized trace in DBI action is usually used
for all terms of O

(
F4) and higher; however, it is known to be incomplete, starting from

O
(

F6) [89]), we may generalize the DBI action by taking all orders of gauge field strength
into non-Abelian case through the identity of Abelian gauge field strength F̂ as√

det
(

g + 2πα′ F̂
)
= U4

(
R
U

)3/4{
(2πα′)2 fT F̂2

iU +
(
1 + u3 fTx′24 − â′20

)[
1 +

(
R
U

)3 (2πα′)2

2 F̂2
ij

]
+
(

R
U

)3 (2πα′)4 fT(F̂ij F̂kUεijk)
2

4
}1/2.

(151)

For non-Abelian generalization, we follow [90] to replace the quadratic terms of F̂ by
its non-Abelian version F, then take trace of each term separately, as follows:

F̂2
iU → TrF2

iU , F̂2
ij → TrF2

ij, F̂ij F̂kU → TrFijFkU . (152)

Afterwards, we impose the BPST instanton solution (83) with multiple numbers nI
to F in order to represent baryons (Refs. [27,28] illustrate that in the case of N f = 2, the
non-Abelian part of A0 presented in (85) vanishes. We do not attempt to consider baryons
with N f > 2 in this section.). Altogether, we reach a generalized version of action for
baryonic phase,

Fbaryonic = SD8 = N V3

T

∫ ∞

uc

[√(
1 + g1 + u3 fTx′24 − â′20

)
(1 + g2)− nI â0(u)q(u)

]
, (153)

where

g1(u) = fT(u)u1/2

3u2
c
√

fc(u)
nIq(u), fc(u) = 1− u3

c
u3 ,

g2(u) =
u2

c
√

fc(u)
3u7/2 nIq(u), q(Z) = 3ρ4

4(Z2+ρ2)
5/2 .

(154)

We note that the last term in (153) is the Chern–Simons action and q(Z) is the average
instanton field strength defined by the summary of the BPST instanton (83), as [91]

1
V3

NI

∑
n=1

∫
d3X

4(ρ/γ)4[(
~X− ~X0n

)2
+ (Z/γ)2 + (ρ/γ)2

]4 =
2
3

π2γq(Z)nI , (155)

with the normalization condition ∫ +∞

−∞
q(Z)dZ = 1. (156)
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~X0n refers to the center of the n-th instanton. Z is the Cartesian coordinate, in the case
in Figure 4c, it is defined as

U3 = U3
c + UcZ2, (157)

where we use Uc to denote the connected position of D8/D8-branes with instantons to
distinguish it from U0, in which instantons are absent. NI is the instanton number, which
relates to its number density nI , as nI = NI96π4/

(
λ2M3

KK
)
. With the boundary condition

l
2
=
∫ ∞

uc
dux′4, â0(∞) = µ, (158)

the equations of motion obtained by varying (153) are

u5/2 â′0
√

1+g2√
1+g1+u3 fT x′24 −â′20

= nI Q

u11/2 fT x′4
√

1+g2√
1+g1+u3 fT x′24 −â′20

= k,
(159)

where k is an integration constant to be determined, and

Q(u) =
∫ u

uc
q(v)dv =

u3/2
√

fc

2
3ρ2uc + 2

(
u3 − u3

c
)(

u3 − u3
c + ρ2uc

)3/2 , (160)

can be solved as

â′20 = (nI Q)2

u5
1+g1

1+g2− k2
u8 fT

+
(nI Q)2

u5

,

x′24 = k2

u11 f 2
T

1+g1

1+g2− k2
u8 fT

+
(nI Q)2

u5

.
(161)

Plugging solution (161) back into (153), we can obtain the free energy of the baryonic
phase. In order to obtain the phase transition, we need to further minimize the free energy
given in (153) with respect to nI , ρ, uc as the parameters, which leads to three constraints:

0 =
∫ ∞

uc

[
u5/2

2

(
∂g1
∂nI

ζ−1 + ∂g2
∂nI

ζ
)
+ â′0Q

]
− µ,

0 =
∫ ∞

uc

[
u5/2

2

(
∂g1
∂ρ ζ−1 + ∂g2

∂ρ ζ
)
+ nI â′0

∂Q
∂ρ

]
,

u5/2
c

√
[1 + g1(uc)]

[
1 + g2(uc)− k2

u8
c fT(uc)

]
=

∫ ∞
uc

[
u5/2

2

(
∂g1
∂uc

ζ−1 + ∂g2
∂uc

ζ
)
+ nI â′0

∂Q
∂uc

]
,

(162)

where

ζ =

√
1 + g1√

1 + g2 − k2

u8 fT
+ (nI Q)2

u5

. (163)

With all of the above in hand, we can numerically obtain a holographic diagram
including mesonic, baryonic and quark matter phases of QCD by comparing the associated
free energies given in (146), (149) and (153). The resultant phase diagram is given in
Figure 6.

We can see that the holographic diagram includes all the elementary phases in realistic
QCD, although the confined geometry is not included in the current discussion.

We note that it is very difficult to work out a reasonable model describing QCD matter
over a very wide density regime with traditional models or theories of QCD. For example,
the quark–meson model (e.g., [92,93]) and the Nambu–Jona–Lasinio (NJL) model [94–98]
are very useful to obtain some insight into the chiral and deconfinement phase transitions
and quark matter phases; however, nuclear matter is usually not included in these models.
In addition, nucleon–meson models, e.g., [99–102] are based on the properties of nuclear



Symmetry 2023, 15, 1213 29 of 46

matter, and may be able to describe moderately dense nuclear matter realistically, but they
give a poor description of quark matter with restored chiral symmetry. In this sense, this
holographic model provides a very powerful way to study QCD phase diagrams in a very
wide density regime based on string theory.

Figure 6. Holographic QCD phase diagram vs. realistic QCD phase diagram in the T − µ plane.

3.3. Higgs Mechanism and Heavy–Light Meson Field

One of the interesting developments of the D4/D8 model is including heavy flavor
by using the Higgs mechanism in D-brane system. Recall that the fundamental quarks in
the D4/D8 model are identified to be the 4–8 and 4–8 strings; since Nc D4-branes and N f

D8-branes are coincident, we find that the 4–8 and 4–8 strings have a vanishing vacuum
expectation value (VEV). Therefore, the fundamental quarks created by 4–8 and 4–8 strings
are massless, which implies that this model can describe the mesons with light flavors
only. Hence, it is naturally motivated to include the massive heavy flavor in this model. To
achieve this goal, in this section, we review the Higgs mechanism in D-brane system and
see how to use it to introduce heavy flavor.

First, we take a look at the Higgs mechanism in D-brane system by considering
the configuration of an open string connecting two stacks of the separated D-branes, as
illustrated in Figure 7a.

In this D-brane configuration, the worldvolume symmetry U(N1 + N2) breaks down
to U(N1)×U(N2) when the D-branes move separately, where we use N1, N2 to refer to
the D-branes number in each stack. Accordingly, the transverse modes of the D-brane
acquire a nonzero VEV due to the separation of the D-branes. Hence, the multiplets
created by the open string connecting the separated D-branes become massive, just like
the Higgs mechanism in the standard model of particle physics [53,60]. Let us investigate
this mechanism quantitatively by recalling the D-brane action in (20). In the holographic
approach, we need the near-horizon limit, i.e., α′ → 0; thus, the D-brane action can be
expanded to be a Yang–Mills plus Wess–Zumino action, as it is in Section 2.4. Now, we pick
up the transverse modes in the DBI action; it reduces to an additional quadratic action for
the transverse modes ΨI with α′ → 0:

S
[
ΨI] = −TDp

(2πα′)2

4

∫
Dp

dp+1x
√
−det ge−φTr

{
2DaΨI DaΨI +

[
ΨI , ΨJ]2},

a = 0, 1...p, I, J = p + 1...d,
(164)

where the covariant derivative is

DaΨI = ∂aΨI + i
[
Aa, ΨI

]
, (165)

and Aa is the gauge field potential on the D-brane. Consider a stack of coincident N1 + N2
D-branes; Aa could be the U(N1 + N2) generator as an (N1 + N2) × (N1 + N2) matrix.
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However, if the coincident N1 + N2 D-branes move apart to become two stacks of N1 and
N2 D-branes, the gauge potential Aa becomes

Aa =

(
Aa Φa
Φ†

a 0

)
, (166)

where Aa is the U(N1) gauge potential as an N1 × N1 matrix. Φa is the multiplet created by
the open string connecting to the two stacks of the D-brane, which is an N1 × N2 matrix-
valued field, and the last element can be gauged away by residual symmetry. On the other
hand, when the D-branes are separated, the transverse mode ΨI will have a nonzero VEV,
since the open string connecting the separated D-branes cannot shrink to zero. Therefore,
we can write ΨI with a VEV as

ΨI → ΨI + V I , (167)

where

V I ∼
(

V 0
0 v

)
, (168)

to represent U(N1 + N2) → U(N1)×U(N2). Thus, plugging (165)–(168) into (164), one
obtains a mass term in the action as follows:

Tr
(

V2Φ†
aΦa + v2ΦaΦ†

a

)
, (169)

and Φa can be interpreted as the heavy–light field acquiring a mass through the VEV of the
transverse mode ΨI .

D8

D8

D8H

D8H

Baryon vertexN1+N2 N1 N2

(a) (b)

Figure 7. The Higgs mechanism in string theory (a) and the configuration of heavy flavor in D4/D8
model (b). (a) Higgs mechanism in string theory: The gauge symmetry on a stack of coincident
N1 + N2 D-branes could be U(N1 + N2), while it breaks down to U(N1)×U(N2) if the D-branes
somehow move apart to become two stacks of coincident N1 and N2 D-branes. The open string
connecting the two stacks of the D-branes has a nonzero VEV; hence, its ground states acquire nonzero
mass, which corresponds to the separation of the D-branes. (b) Configuration of heavy flavor in
D4/D8 model: Red line refers to the stack of N f D8/D8-branes in the original model, which now
is identified as light flavor. Blue line refers to another pair of D8/D8-branes separated from N f
D8/D8-branes, which is identified as heavy flavor. The green line refers to the open string connecting
the light and heavy brane, which is the heavy–light string, and it acquires nonzero VEV to create
massive ground states.

With this Higgs mechanism in string theory, let us employ it in the D4/D8 model by
considering Figure 7b. In this configuration, there is one pair of D8/D8-branes separated
from N f D8/D8-branes, which are identified as heavy flavor branes with an open string
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(the heavy–light string) connecting them. We note that the configuration in Figure 7b is a
generalized version of Figure 7a in the curved spacetime. Then, we can write down the
D8-brane action with heavy flavor by imposing the following replacement:

Aa → Aa =

(
Aa Φa
Φ†

a 0

)
, Fab → Fab =

(
Fab + iαab fab

f †
ab iβab

)
, (170)

to (33), where Aa, Fab are N f × N f matrix-valued fields, as we have specified in Section 2.
Φa is an N f × 1 matrix-valued multiplet created by the heavy–light string, which is inter-
preted as the heavy–light meson field, and the index in the square brackets is ranked as
T[ab] =

1
2! (Tab − Tba), and we choose the gauge field as Hermitian field A†

a = Aa:

αab = 2Φ[aΦ†
b], βab = 2Φ†

[aΦb],
fab = 2∂[aΦb] + 2iA[aΦb] ≡ 2D[aΦb],

(171)

we obtain the action (164) for Φa as follows:

S
[
Φµ,z

]
= −2κTr

∫
dzdx4 f (z)

(
∂µΦ†

ν − ∂νΦ†
µ

)
(∂µΦν − ∂νΦµ)

−κTr
∫

dzdx4g(z)
(

∂µΦ†
z − ∂zΦ†

µ

)
(∂µΦz − ∂zΦµ)

−ṽTr
∫

dzdx4a(z)
[
2 f (z)Φ†µΦµ + g(z)Φ†

z Φz
]
,

(172)

where z is the Cartesian coordinates given in (34), and the VEV of T-dualized Ψ4 = 2πα′x4

is chosen as [103]

Ψ4 =

(
− v

N f−1 1N f−1 0

0 v

)
, (173)

with

ṽ = vκ/
(
2πα′

)2, f (z) =
R3

4U(z)
, g(z) =

9
8

U(z)3

UKK
, a(z) =

[
U(z)

R

]3/2
. (174)

Note that Ψ4 is the only transverse mode of D8-brane. The heavy–light meson tower
can be obtained by expanding Φµ,z, as specified in Section 2.4. For example, the transverse
modes of heavy–light meson field are suggested, given as [38,39]

Φµ = ∑
n

φH
(n)(z)B(n)

µ (x), Φz = 0, (175)

which leads to

S
[
Φµ,z

]
= ∑

n

∫
d4x
[

1
2

∂[µB(n)†
ν]

∂[µB(n)ν] + m2
nB(n)†

µ B(n)µ
]

, (176)

with the normalization

4κ
∫

dz f (z)φH
(n)φ

H
(m) = δmn, (177)

and eigenvalue equation

− d
dz

(
g

dφH
(n)

dz

)
+ 2 f (z)

[
−m2

n + ṽ2a(z)
]
φH

n = 0. (178)

For the transverse modes and longitudinal modes, the expansion is suggested as

Φµ = −∑n
1

2a(z) f (z)m2
n

d
dz [a(z)g(z)εn(z)]∂µDν(x),

Φz = ∑n εn(z)Dn(x),
(179)
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leading to

S
[
Φµ,z

]
= ∑

n

∫
d4x
(

∂µD†
n∂µDn + m2

nD†
nDn

)
, (180)

with the normalization

2κ =
∫

dza(z)g(z)εn(z)εm(z) =
m2

n
ṽ2 δmn. (181)

We note that with the replacement (170), the Chern–Simons action (57) for the D8-
branes reduces to additional terms as follows:

LCS
[
Φµ,z

]
= − Nc

24π2

(
dΦ† AdΦ + dΦ†dAΦ + Φ†dAdΦ

)
+ iNc

16π2

(
dΦ† A2Φ + Φ† A2dΦ + Φ† AdAΦ + Φ†dAAΦ

)
+ 5Nc

48π2 Φ† A3Φ +O
(
Φ4, A

)
.

(182)

Using the expansions (175), (179) and (46), the DBI and CS term includes the interaction
between light and heavy–light mesons.

It is also possible to obtain the baryon spectrum with heavy flavor by considering
the baryon vertex as the instantons on the flavor brane [104–106]. Following the steps in
Section 2.5, the equations of motion for the heavy–light meson field are derived as follows:

DMDMΦN − DN DMΦM + 2iFMNΦM +O
(
λ−1) = 0,

DM(D0ΦM − DMΦ0)− iF0MΦM
− 1

64π2a εMNPQKMNPQ +O
(
λ−1) = 0,

(183)

where M, N = 1, 2, 3, z, and

KMNPQ = i∂M AN∂PΦQ − AM AN∂PΦQ − ∂M AN APΦQ −
5i
6

AM AN APΦQ, (184)

where F = dA + i
2 [A, A] is computed by the BPST instanton solution given in (82)–(85).

Thus, Φµ,z can be solved as Φµ,z = e±imH tφµ,z(x) with

φ0 = − 1
1024aπ2

[
25ρ

2(x2+ρ2)
5/2 +

7
ρ(x2+ρ2)

3/2

]
χ,

φM = ρ

(x2+ρ2)
3/2 σMχ,

(185)

where σM is the embedded Pauli matrices, as σM/2 =
(

ti,−1N f

)
, and χ is the SU

(
N f

)
spinor independent on x, z. The soliton mass as the baryonic potential can be evaluated by
inserting (185) and the BPST solution (82)–(85) to the full action for the D8-branes. After-
wards, one reaches to an effective Hamiltonian for baryon state by following Section 2.5, as
given in [105,106]. We note that [40] also gives another generalization with heavy flavor
into black D4-brane background.

3.4. Interactions of Hadrons and Glueballs

The interaction of hadrons relates to many significant topics in QCD and nuclear
physics, and its holographic description by the D4/D8 model was reviewed briefly in
Section 2 and [24,25]. In this section, we will take a look at the interactions in hadron
physics involving glueballs, since the D4/D8 model provides explicit definitions of mesons,
baryons and glueballs.

The main idea to include the interactions of mesons and glueballs is to consider the D8-
brane action with a gravitational fluctuation. Recalling the discussion in Sections 2.4 and 2.6,
since meson is identified as the gauge field on the D8-branes (created by 8–8 string) and
glueball is identified as the gravitational polarization (closed string), the interaction of
meson and glueball is nothing but the interaction of open and closed strings, which can
therefore be included into the D8-brane action when the metric fluctuation is picked up.
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For example, when we put the gravitational polarization (97) into the D8-brane action (32)
with the meson tower given in (37), by integrating out the z dependence (the holographic
coordinate), it reduces to an interaction action involving π, ρ meson and exotic glueball GE,
after some straightforward but messy calculations, as follows:

Sπ−ρ
GE

= −Tr
∫

d4x
{

c1

[
1
2 ∂µπ∂νπ ∂µ∂ν

M2
E

GE + 1
4
(
∂µπ

)2
(

1− ∂2

M2
E

)
GE

]
+c2M2

KK

[
1
2 ρµρν

∂µ∂ν

M2
E

GE + 1
4
(
ρµ

)2
(

1− ∂2

M2
E

)
GE

]
+c3

[
1
2 ησλ∂[µρσ]∂[νρλ]

∂µ∂ν

M2
E

GE − 1
8 ∂[µρν]∂

[µρν]

(
1 + ∂2

M2
E

)
GE

]
+ c4

3
2M2

E
ρµ∂[µρν]∂νGE

+c5

[
∂µπ[π, ρν]

∂µ∂ν

M2
E

GE + 1
2 ∂µπ[π, ρµ]

(
1− ∂2

M2
E

)
GE

]
+
[

1
2 c̃1
(
∂µπ

)2
+ 1

2 c̃2M2
KK
(
ρµ

)2
+ 1

4 c̃3∂[µρν]∂
[µρν] + c̃5∂µπ[π, ρµ]

]
GE

}
,

(186)

where the ci and c̃i coefficients are coupling constants and are numerically computed as (in
the unit of λ−1/2N−1

c M−1
KK)

c1 =
∫

dZ H̄E
πK = 62.6, c2 = 2κ

∫
dZK

(
ψ′1
)

H̄E = 7.1,
c3 = 2κ

∫
dZK−1/3(ψ1)

2H̄E = 69.7,
c4 = 2κM2

KK
∫

dZ 20ZK
(5K−2)2 ψ1ψ′1HE = 10.6M2

KK,

c5 =
∫

dZ ψ1 H̄E
πK = 2019.6N−1/2

c ,
c̃1 =

∫
dZ HE

4πK = 16.4, c̃2 = 1
2 κ
∫

dZK
(
ψ′1
)2HE = 3.0,

c̃3 = 1
2 κ
∫

dZK−1/3(ψ1)
2HE = 18.1, c̃5 =

∫
dZ ψ1 HE

4πK = 508.2N−1/2
c .

(187)

Then, the associated amplitude of glueball decay can be further evaluated by using
the effective action Sπ−ρ

GE
with the coupling constants. One can also compute the effective

action of meson involving other types of glueball by changing the formulas of the bulk
gravitational polarization, as discussed in [29–32].

The current setup to obtain an effective action of meson and glueball interaction can
also be generalized by including heavy flavor [107], which is to take into account the
configuration in Figure 7b and the heavy–light meson field. The main idea is to pick up the
gravitational polarization in bulk metric when we write down the D8-brane action with
heavy flavor brane (i.e., with the replacement given in (170)). For example, by considering
the gravitational polarization for the exotic glueball GE in (97), the effective action of
heavy–light meson and glueball provides such terms as

∂2GE∂µQ†
ν∂µQν, ∂2GEQ†

µQµ, ∂2GE∂µQ†∂µQ, ∂2GEQ†Q,
∂µ∂ρGE∂µQ†

ν∂ρQν, ∂µ∂νGE∂µQ†∂νQ, ∂µ∂νGEQ†
µ,Qν,

GE∂µQ†
ν∂µQν, GEQ†

µQν, GEQ†Q,
∂σGE∂ρQσ†∂ρQ, ∂σGE∂ρQσ†Qρ, ∂µGEQ†

µQ,

(188)

which are the same types as the interaction given in (186). Here, we use Qµ, Q to denote the
vector and scalar heavy–light meson field, and the lowest heavy–light meson is identified
to be D-meson with a charm quark. Accordingly, the effective action with heavy flavor and
glueball may be useful to study the oscillation of D-meson pairs (D− D̄) or B-meson pairs
(B− B̄) [108,109]. Note that since the heavy–light multiplet is created by the heavy–light
string, even if the heavy flavor is taken into account, the interaction of heavy–light meson
and glueball remains an open/closed string interaction through holography. Moreover,
in the presence of the heavy–light meson and glueball, the effective action also mixes the
interaction terms of glueball, light and heavy–light meson, which may describe the various
interactions in hadron physics.

It is also possible to include the interaction of baryon (or baryonic meson) and glueball
in a parallel way, that is, to consider the interaction of baryonic D4′-branes and bulk closed
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string [110]. Specifically, one can derive the Yang–Mills action presented in (32) with
the gravitational polarization (97), then insert the BPST instanton configuration (82)–(85)
as baryon under the large λ rescaling (77). Afterwards, by following the discussion in
Section 2.5, we can obtain additional terms to the collective Hamiltonian (96) as follows:

∆H(t) ' cos(ωt)

{
−27

2
π2 +

[
−59049π4

20ρ2 +
27M2

E + 468
16

π2
(

2Z2 + ρ2
)]

λ−1 +O
(

λ−2
)}

. (189)

Using the standard technique in quantum mechanics for the time-dependent perturbed
Hamiltonian, it is possible to work out the decay rate of baryon involving glueball and its
associated select rule. We note that when the heavy flavor is included, as in Section 2.3, the
decay rate of heavy–light baryon or baryonic meson involving glueball can be achieved.
For example, considering the exotic gravitational polarization (97), we can reach the time-
dependent perturbed Hamiltonian, given as [111]:

∆H(t) ' λ−1/2M−1
KK

(
5

216π
m2

H +
15mH

32ρ2

)
GEχ†χ, (190)

where we take the limit mH → ∞ followed λ→ ∞ to simplify the formula, and χ†χ = NQ
refers to the number of heavy flavor quarks in the heavy–light meson. Then, the decay of
heavy–light baryonic matter involving glueball can be evaluated using (190) to the quantum
mechanical system (96) with heavy flavors. To close this section, we summarize the strings
as various hadrons in the D4/D8 model in Figure 8, and we can see the various interactions
of hadrons are interactions of strings through gauge–gravity duality in this model.

Nf D8 Nf D8

light meson
anti light meson

glue

quark

anti quark

glueball

glueball
glueball

baryon vertex
heavy-light meson

Nc D4

Figure 8. Strings as various hadrons in the D4/D8 model.

3.5. Theta Dependence in QCD

In Yang–Mills theory, there could be an topological term proportional to the θ an-
gle [112]. In the large Nc limit, the full Lagrangian takes the following form:

S =
Nc

2λ
Tr
∫

?F ∧ F− i
λ

8π2
θ

Nc
Tr
∫

F ∧ F. (191)

While the value of angle θ may be experimentally small, it leads to many interesting
effects, e.g., glueball spectrum [113], deconfinement transition [114,115], chiral magnetic
effect [116,117], especially its large Nc limit [118]. Since the D4/D8 model is a holographic
version of QCD, it is possible to introduce the θ term to the dual theory through the
gauge–gravity duality.
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The main goal of including a Yang–Mills θ term in holography is to introduce coinci-
dent N0 D0-branes acting to the Nc D4-brane background (14). In this sense, we have to
require N0/Nc to be fixed when Nc → ∞. For the SUGRA approach, the dynamics of the
Ramond–Ramond 1-form C1 must be picked up into the IIA SUGRA action (15) in order to
include the charge in the D0-branes:

S10d
IIA =

1
2κ2

10

∫
d10x
√
−Ge−2φ

[
R(10) + 4∂µφ∂φ

]
− 1

4κ2
10

∫
d10x
√
−G

(
|F4|2 + |F2|2

)
, (192)

where F2 = dC1. To obtain an analytical solution, we assume that the D0-branes are
smeared homogeneously along x4; hence, the associated equations of motion to (192) can
be solved as follows:

ds2 = H−1/2
4

[
−H−1/2

0 fT(U)
(
dx0)2

+ H1/2
0 dxidxi

]
+ H1/2

4 H1/2
0

[
dU2

fT(U)
+ U2dΩ2

4

]
,

H4 = 1 + R3

U3 , H0 = 1− U3
H

U3
Θ2

1+Θ2 , eφ = H−1/4
4 H3/4

0 , C1 = Θ
gs

fT
H0

dx4, F4 = 3R3g−1
s ,

(193)

where Θ is a constant parameter. Taking the near-horizon limit so that H4 → R3/U3 and
imposing the double Wick rotation, as discussed in Section 2.1, we can obtain a D0–D4
bubble background associated to (16), as follows:

ds2 = H−1/2
4

[
H1/2

0 ηµνdxµdxν + H−1/2
0 f (U)

(
dx4)2

]
+ H1/2

4 H1/2
0

[
dU2

fT(U)
+ U2dΩ2

4

]
,

H4 = R3

U3 , H0 = 1− U3
KK

U3
Θ2

1+Θ2 , eφ = H−1/4
4 H3/4

0 , C1 = −i Θ
gs

f
H0

dx4, F4 = 3R3g−1
s .

(194)

Due to the presence of the D0-branes, we can see that the dual theory of (194) is pure
Yang–Mills theory, with a θ term if a probe D4-brane located at the holographic boundary
is taken into account:

SD4 =
[
− TD4STr

∫
d4xdτe−φ

√
−det(G + 2πα′F) + gsTD4

∫
C5

+ 1
2 (2πα′)2gsTD4

∫
C1 ∧ F ∧ F

]
|U→∞

' − 1
2g2

YM
Tr
∫ ∗F ∧ F + i g2

YM
8π2 θTr

∫
F ∧ F +O

(
F4), (195)

which further implies that the bare θ angle relates to the Θ parameter in the solution (194)
by

Θ =
λ

8π2

(
θ + 2kπ

Nc

)
, k ∈ Z (196)

as a fixed constant in the large Nc limit.
With the geometry background (194), it is possible to evaluate several properties of

Yang–Mills theory with a θ term by following the discussions in previous sections; let us
take a brief look at them for examples. First, we focus on the the ground state energy, which
can be evaluated by using (104)–(108) as follows:

F(Θ) = −2N2
c λ

37π2
M4

KK

(1 + Θ2)
3 . (197)

In the expansion with respect to small Θ, (197) reduces to the minimized free energy dif-
ference,

min
k

[F(Θ)− F(0)] ' 1
2

χgθ2
[

1 + b̄2
θ2

N2
c
+ b̄4

θ4

N4
c
+O

(
θ6
)]

, (198)

as the energy of the θ vacuum, and the topological susceptibility reads as

χg =
λ3M4

KK

32(3π)6 , (199)
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with

b̄2 = − λ2

32π4 , b̄4 = − 5λ4

3× 211π8 . (200)

Moreover, one can consider a constant C1 in the black D4-brane background (14), so
that F2 = dC1 = 0. Hence, the ground state energy of deconfined Yang–Mills theory with a
constant θ term can be identified as Fdeconf., presented in (109).

Then, the QCD deconfinement phase transition can be obtained by comparing the free
energy (197) with Fdeconf. in (109) which leads to the critical temperature

Tc(Θ) =
MKK
2π

1√
1 + Θ2

' MKK
2π

[
1− λ2

128π4
θ2

N2
c
+

3λ4

215π8
θ4

N4
c
+O

(
θ6

N6
c

)]
. (201)

Second, the QCD string tension also takes a correction due to the presence of θ term.
Consider an open string stretched in the background (194) ending on a probe D4-brane at
boundary. Using the AdS/CFT dictionary, the Wilson loop in the dual theory relates to the
classical Nambu–Goto (NG) action SNG of the open string corresponding to the tension T
with quark potential V, as follows:

〈W(C)〉 ∼ e−SNG ∼ e−TV . (202)

In the static gauge, the relevant string embedding can be chosen as follows:

τ = x0 ∈ [0, T], σ = x ∈ [−l/2, l/2], U = U(x), (203)

then the NG action is given as

SNG = − 1
2πα′

∫
dτdσ

√
−gττ gσσ = − 1

2πα′

∫
dτdσ

√
−g00

[
gxx + gUUU′(x)2

]
, (204)

To quickly evaluate the QCD tension, let us consider the limit l → ∞. In this limit, the
open string must minimize its energy as much as possible; it forces the factor

√−g00gxx
to become minimal to take the value at U = UKK, since the size of x4 shrinks at U = UKK.
Therefore, the QCD tension Ts is obtained from

SNG ' −
1

2πα′
Tl
√
−g00gxx|U=UKK = −TsTl, (205)

as
Ts =

1
2πα′

√
−g00gxx|U=UKK =

λ

27π
M2

KK
1

(1 + Θ2)
2 . (206)

Next, let us investigate the glueball mass with the background (194). As the glue-
ball corresponds to the gravitational fluctuation, by adding a perturbation to the metric
presented in (194) as gMN → gMN + hMN , it reduces to an equation of motion for hMN ,
given as

1
2
∇M∇NhK

K +
1
2
∇2hMN −

(
∇K∇MhNK +∇K∇NhMK

)
− 3

2
hMN = 0. (207)

Here, since IIA SUGRA can be obtained by the dimension reduction from 11d M-
theory, hMN refers to the fluctuation on AdS7, which means M, N runs over 0–6. Setting
hMN = HMN(U)e−ik·x with the ansatz

HMN(U) =
U
R

H(U)diag
(

0, 1, 1, 1, 0,− 3
1 + Θ2 , 0

)
, (208)
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it gives the eigen equation for H(U) as

H′′(U) +
4U3 −U3

KK
U
(
U3 −U3

KK
)H′(U)− M2R2

U3 −U3
KK

H(U) = 0, (209)

which implies that the mass spectrum M with a correction due to Θ is

M ' M(0)√
1 + Θ2

. (210)

The presence of θ also decreases the baryon mass mB,

mB =
λ

27π
Nc MKK

1

(1 + Θ2)
3/2 , (211)

by imposing the metric presented in (194) into (76), which implies the evidence of metastable
particles in QCD. By further analyzing the entanglement entropy on (194), it agrees consis-
tently with the property of the possible metastable states in this model. Moreover, when we
follow the discussion in Section 2.2, it is possible to introduce flavored meson in the D0–D4
background. The meson mass also acquires the correction by the θ angle, as in [41,42].
Further, following the instantonic description for baryon in Section 2.5, one can see the
metastable baryonic spectrum in this model, as in [119]. In this sense, the Witten–Sakai–
Sugimoto model in the D0-D4 brane background is recognized as a holographic version of
QCD with a θ term.

4. Summary and Outlook

In this review, we look back to the fundamental properties of the D4/D8 model, which
include the D4-brane background, the embedding of the D8/D8-branes, and how to identify
mesons, baryons and glueballs in this model. Moreover, we revisit some interesting topics
about QCD by using this model, which relate to the deconfinement transition, chiral phase,
heavy flavor, various interactions of hadrons and the θ term in QCD. This review illustrates
that string theory can provide a powerful method for studying the strongly coupled regime of
QCD, which is out of the reach of the traditional methods of perturbative QFT. We particularly
note here that there are additional interesting approaches based on this model that are absent
in the main text of this review; they relate to the holographic Schwinger effect [120–123], the
fluid/gravity correspondence [124–128], corrections to the instanton as baryon [129,130], the
approaches to the D3/D7 model [131,132] and applications in studying neutron stars [133,134].
With all of these achievements, it may be possible to work out an exact holographic version of
QCD based on the D4/D8 model in future work, to reinterpret the fundamental element of
strong interactions according to gauge–gravity duality.
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Appendix A. The Type II Supergravity Solution

In this appendix, let us collect the Dp-brane solution in the type II SUGRA. We note
that all the discussion in this appendix is valid to the gravity solution presented in the main
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text if we set p = 4. In the string frame, the action for type II SUGRA sourced by a stack of
Np coincident Dp-branes can be written as

SII =
1

2κ2
10

∫
d10x

√
−g
[

e−2φ
(
R+ 4∂Mφ∂Mφ

)
− g2

s
2

∣∣Fp+2
∣∣2], (A1)

where 2κ2
10 = 16πG10 = (2π)7l8

s g2
s is the 10d gravity coupling constant, R, φ, Cp+1 are,

respectively the 10d curvature, dilaton and Ramond–Ramond p + 1-form field with Fp+2 =
dCp+1. Note that in string theory, the dilaton field may also be defined as Φ by

Φ−Φ0 = φ, eΦ0 = gs. (A2)

Since a Dp-brane for p = 4, 5, 6 is magnetically dual to the Dp-brane for p = 2, 1, 0 and
the D3-brane is self-dual, we only consider the case for p < 7 in (A1). Varying action (A1)
with respect to gMN , φ, Cp+1, the associated equations of motion are collected as follows:

0 = R+ 4∇2φ− 4(∇φ)2,
0 = ∂N

(√−gFNM1...Mp+1
)

,

0 = RMN − 1
2 gMNR+ 2∇M∇Nφ + 2gMN(∇φ)2 − 2gMN∇2φ

= g2
s

2(p+1)! e
2φ
[

F
K1...Kp+1

M FNK1...Kp+1 −
(p+1)!

2 gMN
∣∣Fp+2

∣∣2].
(A3)

The solution for (A3) can be obtained by using the simply homogeneous ansatz,

ds2 = H−
1
2

p ηabdxadxb + H
1
2
p

(
dr2 + r2dΩ2

8−p

)
, a, b = 0, 1...p

eφ = H−
p−3

4
p , C01...p = g−1

s H−1
p , Fr01...p =

(7−p)g−1
s h7−p

p

r8−p H2
p

,
(A4)

where the harmonic function Hp is solved through (A3) as follows:

Hp(r) = 1 +
h7−p

p

r7−p . (A5)

Here, r refers to the radial coordinate vertical to the Dp-brane; Ω8−p is the associated
angle coordinate in the transverse space. The constant hp relates to the charge of the
Dp-brane, computed as follows:

h7−p
p =

(
2
√

π
)5−pgsNpΓ

(
7− p

2

)
l7−p
s . (A6)

Solution (A4), representing extremal black Dp-branes, reduces to the BPS condition as
follows:

2κ2
10gsTDp Np =

∫
S8−p

?Fp+2, (A7)

due to the action for the Ramond–Ramond (R-R) field Cp+1 with a source of Np coincident
Dp-branes,

SR−R = − 1
4κ2

10

∫
Fp+2 ∧ ?Fp+2 + gsTDp

∫
p+1

Cp+1. (A8)

The equations of motion (A3) also allow for the near-extremal solution, as follows:

ds2 = H−
1
2

p
[

f (r)dt2 + δijdxidxj]+ H
1
2
p

[
dr2

f (r) + r2dΩ2
8−p

]
,

eφ = H−
p−3

4
p , C01...p = g−1

s H−1
p , Fr01...p =

(7−p)g−1
s h7−p

p

r8−p H2
p

,
(A9)
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where i, j run over the spacial index of the Dp-branes. The functions f (r), Hp(r) are solved,
respectively, as follows:

f (r) = 1−
r7−p

H
r7−p , Hp(r) = 1 +

r7−p
p

r7−p , (A10)

where rH refers to the horizon of the Dp-branes. Notice that the equation of motion (A3)
reduces to a constraint,

4∇Mφ∇Mφ− 2∇2φ =
p− 3

2
g2

s e2φ
∣∣Fp+2

∣∣2, (A11)

which implies that

r7−p
p =

√√√√h2(7−p)
p +

(
r7−p

H
2

)2

−
r7−p

H
2

. (A12)

So, we have rp → hp if rH → 0; thus, the near-extremal solution will return to the
extremal solution in this limit.

Appendix B. Dimensional Reduction for Spinors

In this section, we collect the dimensional reduction for spinors, and one can see
that various boundary conditions determine the associated mass of fermion in the lower
dimension. Consider a complex massless spinor Ψ in Rd+1 satisfying the Dirac equation

γM∂MΨ = 0, (A13)

where M runs over Rd+1. When one of the spatial directions is compactified on a circle S1,
Rd+1 becomes Rd × S1. Let us denote the coordinates on Rd, S1 as xµ, y, respectively. Then
Fourier series of Ψ can be written as the summary of its modes on S1 as

Ψ(xµ, y) = ∑
k

e
iky
L ψk(xµ), (A14)

where L refers to the radius of S1 and k is integer or half-integer. Thus, the boundary of the
spinor Ψ can be periodic or antiperiodic:

Ψ(xµ, y) = ±Ψ(xµ, y + 2πL), (A15)

where k is integer and half-integer, respectively. Mostly, the antiperiodic boundary con-
dition for fermion is permitted, since observables are usually the combination of an even
power of spinors. Inserting (A14) into (A13), it leads to(

γµ∂µ − iγ∗
k
L

)
ψk(xµ) = 0, (A16)

where γ∗ = γy. So, we can see that ψk(xµ) is massive spinor in Rd with an effective mass
iγ∗ k

L , unless k = 0. This implies that under the dimension reduction, the spinor in the lower
dimension is always massive if the antiperiodic boundary condition is imposed. Note
that in the low-energy theory, only the mode with minimal k is of concern; thus, it means
that the fermion is massless/massive with periodic and antiperiodic boundary conditions,
respectively, in the low-energy theory.

Appendix C. Supersymmetric Meson on the Flavor Brane

While the D4/D8 model achieves great success, it contains issues. The most important
issue is that due to the remaining supersymmetry on the D8-branes, the D4/D8 model
contains supersymmetrically fermionic mesons (mesino) on the flavor N f D8/D8-branes,
which should not be presented in QCD [135]. As we specified in Section 2.1, the super-
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symmetry on Nc D4-branes breaks down due to its compactified direction x4; however,
there is no mechanism to break down the supersymmetry on the flavor branes, since the N f

D8/D8-branes are perpendicular to the compactified direction x4. Therefore, in principle,
there is no reason to neglect the supersymmetric fermions in this model. So, let us pick up
the fermionic action for the D8-branes in addition to their bosonic action (22). Up to the
quadratic order, the fermionic action for the D8-brane reads as follows [136–138]:

S( f )
D8 = i

TD8

2

∫
d9xe−φSTr

√
−det[gab + (2πα′)Fab]Ψ̄(1− ΓD8)

(
ΓcD̂c − ∆ + L̂D8

)
Ψ, (A17)

where Ψ refers to 32-component Majorana spinor in 10d spacetime, and

ΓD8 =

√
−det[gab ]√

−det[gab+(2πα′)Fab ]
Γ(0)

D8 Γ11 ∑q
(−Γ11)

q

q!2q Γa1...a2qFa1a2 ...Fa2q−1a2q ,

L̂D8 = −
√
−det[gab ]√

−det[gab+(2πα′)Fab ]
Γ(0)

D8 ∑q≥1
(−Γ11)

q−1

(q−1)!2q−1 Γa1...a2q−1Fa1a2 ...Fa2q−1cgbcD̂b,

Γ(0)
D8 = εa1...a9

9!
√
−det[gab ]

Γa1...a9 = −Γ11Γ5,

∆ = 1
2 ΓM∂Mφ− 1

8
1
4! gseφFMNPQΓMNPQ,

D̂M = ∇M − 1
8

1
4! gseφFMNPQΓMNPQΓM,

∇M = ∂M + 1
4 ω NP

M ΓNP.

(A18)

Action (A17) is the fermionic action for D8-brane obtained under T-duality. The
notation in (A17) and (A18) is given as follows. The index labeled by capital letters
M, N, P, Q runs over 10d spacetime, and that labeled by lowercase letters runs over D8-
brane. The index with underline corresponds to index in the flat tangent space used by
elfbein, e.g., gMN = eM

MηMNeN
N ; so, we have, e.g., Γa = gab∂bXMeN

MΓN . ΓM refers to the
Dirac matrix, satisfying

{
ΓM, ΓN} = 2gMN , and ω NP

M refers to the spin connection. FMNPQ
refers to the components of the Ramond–Ramond F4 and φ is the dilaton field, which are
all given in Section 2. The gamma matrix ΓMNPQ is given by ΓMNPQ = Γ[MΓNΓPΓQ]. Here,
Fab = Fab + Bab, where Fab is the gauge field strength on the flavor brane and Bab is the
antisymmetric tensor BMN induced on the flavor brane, which can be set to zero.

Imposing the bubble solution given in (16) and supergravity solutions for the dilaton
φ and Ramond–Ramond F4 to (A17), after some calculations, it becomes

S( f )
D8 =

iT

(2πα′)2Ω4

∫
d4xdZdΩ4Ψ̃P−

[
2
3

MKKK−
1
2 Γm∇S4

m + K−2/3Γµ∂µ + MKKΓ4∂Z

]
Ψ, (A19)

where Γm∇S4
m is the Dirac operator on S4, i.e., the index m runs over S4, and

Ψ̃ = K−13/24Ψ, K(Z) = 1 + Z2, T =

(
3
2

)4
TD8Ω4

(
2πα′

)2
( 2

3 MKKR
)21/2

M5
KK

, P− =
1
2
(1− ΓD8). (A20)

Since we are interested in the fermionic part, the gauge field included by Fab is turned
off, i.e., Fab = 0. Afterwards, in order to obtain a 5d effective action, such as the mesonic
action given in (33), we can decompose the spinor Ψ into a 3+1-dimensional part ψ(x, Z) as
mesino, an S4 part χ and a remaining 2d part λ, as follows:

Ψ = ψ⊗ χ
(

S4
)
⊗ λ. (A21)
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The associated gamma matrices can be chosen as

Γµ = σ1 ⊗ γµ ⊗ 1, µ = 0, 1, 2, 3
Γ4 = σ1 ⊗ γ⊗ 1,
Γ5 = σ2 ⊗ 1⊗ γ̃,
Γm = σ2 ⊗ 1⊗ γ̃m, m = 6, 7, 8, 9,
γ = iγ0γ1γ2γ3,
γ̃ = iγ6γ7γ8γ9,

(A22)

where σ1,2,3 refer to the Pauli matrices. In this decomposition, the 10d chirality matrix
takes a very simple form as Γ11 = σ3 ⊗ 1⊗ 1. If we chose the σ3 representation, λ can be
decomposed by the eigenstates of σ3 with

σ3λ± = λ±, σ1λ± = λ∓, σ2λ± = ±iλ∓, (A23)

where λ± refers to the two eigenstates of σ3. Since the kappa symmetry fixes the condition
Γ11Ψ = Ψ, we have to chose λ = λ+. Moreover, as χ must satisfy the Dirac equation on S4,
it can be decomposed by the spherical harmonic function. So, the eigenstates of Γm∇S4

m can
be chosen as [139],

Γm∇S4

m χ±l,s = iΛ±l χ±l,s; Λ±l = ±(2 + l), l = 0, 1... (A24)

where s, l are angular quantum numbers carried by spherical harmonic function.
Putting (A21) into (A19) with the decomposition (A22)–(A24) for χ and λ, we finally

reach a 5d effective action for then mesino field:

S = iT
∫

d4xdZψ̄

(
−2

3
MKKλK−1/2 + K−2/3γµ∂µ + MKKγ∂Z

)
ψ. (A25)

The 5d mesino ψ can be further decomposed by working with

ψ(x, Z) =
(

ψ+

ψ−

)
= ∑

n

[
ψ
(n)
+ (x) f (n)+ (Z)

ψ
(n)
− (x) f (n)− (Z)

]
, (A26)

where f (n)± (Z) are real eigenfunctions of the coupled equations

− 2λ
3 K−1/2 f (n)+ + ∂Z f (n)+ = Λn MKKK−2/3 f (n)− ,

− 2λ
3 K−1/2 f (n)− − ∂Z f (n)− = Λn MKKK−2/3 f (n)+ ,

(A27)

with the normalizations

T
∫

dZK−2/3 f (n)i f (m)
j = δmnδij, i, j = +,−, (A28)

Plugging (A26)–(A28) into (A25), the action takes the canonical form of (Mn = Λn MKK)

S = −
∫

d4x ∑
n

{
ψ
(n)†
− iσµ∂µψ

(n)
− + ψ

(n)†
+ iσ̄µ∂µψ

(n)
+ + Mn

[
ψ
(n)†
− ψ

(n)
+ + ψ

(n)†
+ ψ

(n)
−

]}
. (A29)

Defining the Dirac spinor written in the Wely basis as

ψ(n) =

(
ψ
(n)
+ (x)

ψ
(n)
− (x)

)
, (A30)

action (A29) can be rewritten as ({γµ, γν} = 2ηµν)

S = i
∫

d4x ∑
n

[
ψ̄(n)γµ∂µψ(n) + Mnψ̄(n)ψ(n)

]
, (A31)
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leading to a standard action for fermion. As we can see, the fermionic action illustrates that
the mesino mass takes the same order of meson mass; hence, it should be not neglected in
principle, and the authors of [140] also confirm this conclusion, which is consistent with
the remaining supersymmetry on D8-branes.

Moreover, when the bosonic gauge field is turned on, action (A17) reduces to interac-
tion terms of meson and mesino up to O

(
F , Ψ2), as follows:

Sint = i TD8
4

∫
d9x
√−ge−φΨ̄Γ5Γ11ΓabFab

(
ΓcD̂c − ∆

)
Ψ

−i TD8
2

∫
d9x
√−ge−φΨ̄

(
1− Γ5

)
Γ5Γ11ΓaF b

a D̂bΨ.
(A32)

Using decomposition (46) for Aa and (A22)–(A24) for Ψ, action (A32) includes interac-
tion of π meson and mesino as follows:

Sint =
MKK

fπ M2
int

∑n,p
∫

d4x∂µπ
[
MKKtπ,n,pψ̄(n)iγµγn+p+1ψ(p)]

+lπ,n,pψ̄(n)(−γ)n+p+1∂µψ(p),
(A33)

where the coupling constant is evaluated numerically as

tπ,n,p = 1
2

∫
dZK−5/6

[
f (n)+ f (p)′

+ − f (p)
+ f (n)′+ + iK−1/2 f (n)+ f (p)

+

]
,

lπ,n,p =
∫

dZK−3/2 f (n)+ f (p)
− .

(A34)

One can further work out the interaction terms of ρ meson and mesino similarly. Since
there is no mechanism to suppress the interaction of meson and mesino or break down the
supersymmetry on the D8-brane, we have to take into account these interactions in this
model in principle while they are absent in realistic QCD.

Although we do not attempt to figure out this issue completely in this review, we give
some comments that may be suggestive. The way to break down the supersymmetry on D8-
branes may follow the discussion in [23], that is, to compactify one of the directions of the
D8-brane (which is vertical to the Nc D4-branes) on another circle, then impose the periodic
and antiperiodic boundary condition to the meson and mesino, respectively. Afterwards,
the supersymmetry on the D8-branes breaks down, then the spectrum of meson and mesino
is separated by a energy scale 1/βs, where βs refers to the size of the compactified direction
of the D8-brane. Another alternative scheme is to consider that the bubble solution (16)
has a period βT with βT � 1; hence, the dual theory is nonsupersymmetric above the
size βT if we perform the same dimension reduction as [23]. Therefore, it means that the
supersymmetry gets to rise only at a temperature of exactly zero due to βT = 1/T, which
is the ideal case, out of reach physically. So, the dual theory on the D8-brane would be
nonsupersymmetrical at any finite temperature.
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