Numerical Approximation of a Time-Fractional Modified Equal-Width Wave Model by Using the B-Spline Weighted Residual Method
Abstract
:1. Introduction
2. Implementation of the Proposed Method for TFMEW Model
3. Numerical Example
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sabatier, J.; Agarwal, O.P.; Machado, J.A.T. Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Baleanu, D.; Guvenc, Z.B.; Machado, J. New Trends in Nanotechnology and Fractional Calculus Applications; Springer: Dordrecht, The Netherland, 2010. [Google Scholar]
- Jassim, H.K.; Shareef, M.A. On approximate solutions for fractional system of differential equations with Caputo-Fabrizio fractional operator. J. Math. Comput. Sci. 2021, 23, 58–66. [Google Scholar] [CrossRef]
- Kalimbetov, B.; Abylkasymova, E.; Beissenova, G. On the asymptotic solutions of singulary perturbed differential systems of fractional order. J. Math. Comput. Sci. 2022, 24, 165–172. [Google Scholar] [CrossRef]
- Cao, Y.; Nikan, O.; Avazzadeh, Z. A localized meshless technique for solving 2D nonlinear integro-differential equation with multi-term kernels. Appl. Numer. Math. 2023, 183, 140–156. [Google Scholar] [CrossRef]
- Al-Ahmad, S.; Sulaiman, I.M.; Nawi, M.M.A.; Mamat, M.; Ahmad, M.Z. Analytical solution of systems of Volterra integro-differential equations using modified differential transform method. J. Math. Comput. Sci. 2022, 26, 19. [Google Scholar] [CrossRef]
- Nikan, O.; Avazzadeh, Z.; Machado, J.A.T. Localized kernel-based meshless method for pricing financial options underlying fractal transmission system. Math. Meth. Appl. Sci. 2021, 7968. [Google Scholar] [CrossRef]
- Guo, T.; Nikan, O.; Avazzadeh, Z.; Qiu, W. Efficient alternating direction implicit numerical approaches for multi-dimensional distributed-order fractional integro differential problems. Comput. Appl. Math. 2022, 41, 236. [Google Scholar] [CrossRef]
- Nikan, O.; Molavi-Arabshai, S.M.; Jafari, H. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discret. Contin. Dyn. Syst. S 2021, 14, 3685. [Google Scholar] [CrossRef]
- Akram, T.; Abbas, M.; Ali, A. A numerical study on time-fractional Fisher equation using an extended cubic B-spline approximation. J. Math. Comput. Sci. 2021, 22, 85–96. [Google Scholar] [CrossRef]
- Golbabai, A.; Nikan, O.; Molavi-Arabshahi, M. Numerical approximation of time fractional advection-dispersion model arising from solute transport in rivers. TWMS J. Pure Appl. Math. 2019, 10, 117–131. [Google Scholar]
- Alia, A.; Abbasb, M.; Akramc, T. New group iterative schemes for solving the two-dimensional anomalous fractional sub-diffusion equation. J. Math. Comput. Sci. 2021, 22, 119–127. [Google Scholar] [CrossRef]
- Golbabai, A.; Nikan, O.; Nikazad, T. Numerical investigation of the time fractional mobile-immobile advection-dispersion model arising from solute transport in porous media. Int. J. Appl. Comput. Math. 2019, 5, 122. [Google Scholar] [CrossRef]
- Can, N.H.; Nikan, O.; Rasoulizadeh, M.N.; Jafari, H.; Gasimov, Y.S. Numerical computation of the time non-linear fractional generalized equal width model arising in shallow water channel. Therm. Sci. 2020, 24, 49–58. [Google Scholar] [CrossRef]
- Nikan, O.; Avazzadeh, Z. An efficient localized meshless technique for approximating nonlinear sinh-Gordon equation arising in surface theory. Eng. Anal. Bound. Elem. 2021, 130, 268–285. [Google Scholar] [CrossRef]
- Nikan, O.; Golbabai, A.; Nikazad, T. Solitary wave solution of the nonlinear KdV-Benjamin-Bona-Mahony-Burgers model via two meshless methods. Eur. Phys. J. Plus 2019, 134, 114. [Google Scholar] [CrossRef]
- Rasoulizadeh, M.; Nikan, O.; Avazzadeh, Z. The impact of LRBF-FD on the solutions of the nonlinear regularized long wave equation. Math. Sci. 2021, 15, 365–376. [Google Scholar] [CrossRef]
- Rasoulizadeh, M.; Ebadi, M.; Avazzadeh, Z.; Nikan, O. An efficient local meshless method for the equal width equation in fluid mechanics. Eng. Anal. Bound. Elem. 2021, 131, 258–268. [Google Scholar] [CrossRef]
- Nikan, O.; Avazzadeh, Z.; Rasoulizadeh, M. Soliton solutions of the nonlinear sine-Gordon model with Neumann boundary conditions arising in crystal dislocation theory. Nonlinear Dyn. 2021, 106, 783–813. [Google Scholar] [CrossRef]
- Avazzadeh, Z.; Nikan, O.; Machado, J.A.T. Solitary wave solutions of the generalized Rosenau-KdV-RLW equation. Mathematics 2020, 8, 1601. [Google Scholar] [CrossRef]
- Nikan, O.; Avazzadeh, Z.; Rasoulizadeh, M. Soliton wave solutions of nonlinear mathematical models in elastic rods and bistable surfaces. Eng. Anal. Bound. Elem. 2022, 143, 14–27. [Google Scholar] [CrossRef]
- Nikan, O.; Avazzadeh, Z. A locally stabilized radial basis function partition of unity technique for the sine–Gordon system in nonlinear optics. Math. Comput. Simul. 2022, 199, 394–413. [Google Scholar] [CrossRef]
- Morrison, P.J.; Meiss, J.D.; Cary, J.R. Scattering of regularized-long-wave solitary waves. Phys. D Nonlinear Phenom. 1984, 11, 324–336. [Google Scholar] [CrossRef]
- Abdulloev, K.O.; Bogolubsky, I.L.; Makhankov, V.G. One more example of inelastic soliton interaction. Phys. Lett. 1976, 56, 427–428. [Google Scholar] [CrossRef]
- Gardner, L.R.T.; Gardner, G.A.; Geyikli, T. The Boundary Forced MKdV Equation. J. Comput. Phys. 1994, 113, 5–12. [Google Scholar] [CrossRef]
- Geyikli, T.; Karakoc, S.B.G. Septic B-Spline Collocation Method for the Numerical Solution of the Modified Equal Width Wave Equation. Appl. Math. 2011, 2, 739–749. [Google Scholar] [CrossRef] [Green Version]
- Geyikli, T.; Karakoç, S.B.G. Petrov-Galerkin method with cubic B-splines for solving the MEW equation. Bull. Belgian Math. Soc.-Simon Stevin 2012, 19, 215–227. [Google Scholar] [CrossRef]
- Esen, A. A numerical solution of the equal width wave equation by a lumped Galerkin method. Appl. Math. Comput. 2005, 168, 270–282. [Google Scholar] [CrossRef]
- Esen, A. A lumped Galerkin method for the numerical solution of the modified equal-width wave equation using quadratic B-splines. Int. J. Comput. Math. 2006, 83, 449–459. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The tanh and the sine-cosine methods for a reliable treatment of the modified equal width equation and its variants. Commun. Nonlinear Sci. Numer. Simul. 2006, 11, 148–160. [Google Scholar] [CrossRef]
- Lu, J. He’s variational iteration method for the modified equal width equation. Chaos Solitons Fractals 2009, 39, 2102–2109. [Google Scholar] [CrossRef]
- Esen, A.; Kutluay, S. Solitary wave solutions of the modified equal width wave equation. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 1538–1546. [Google Scholar] [CrossRef]
- Olver, P.J. Euler operators and conservation laws of the BBM equation. Math. Proc. Cambridge Philos. Soc. 1979, 85, 143–160. [Google Scholar] [CrossRef] [Green Version]
- Tavares, D.; Almeida, R.; Torres, D.F.M. Caputo derivatives of fractional variable order: Numerical approximations. Commun. Nonlinear Sci. Numer. Simul. 2016, 35, 69–87. [Google Scholar] [CrossRef] [Green Version]
- Prenter, P.M. Spline and Variational Methods; Wiley: New York, NY, USA, 1975. [Google Scholar]
- Chen, Z. (Ed.) The Finite Element Method: Its Fundamentals and Applications. In Engineering; World Scientific: Hackensack, NJ, USA, 2011. [Google Scholar]
- Daǧ, İ.; Özer, M.N. Approximation of the RLW equation by the least square cubic B-spline finite element method. Appl. Math. Model. 2001, 25, 221–231. [Google Scholar] [CrossRef]
- Esen, A.; Ucar, Y.; Yagmurlu, N.; Tasbozan, O. A Galerkin Finite Element Method to Solve Fractional Diffusion and Fractional Diffusion-Wave Equations. Math. Model. Anal. 2013, 18, 260–273. [Google Scholar] [CrossRef]
- Li, M.; Ding, X.; Xu, Q. Non-polynomial spline method for the time-fractional nonlinear Schrödinger equation. Adv. Differ. Equ. 2018, 2018, 1–15. [Google Scholar] [CrossRef]
- Zaki, S.I. Solitary wave interactions for the modified equal width equation. Comput. Phys. Commun. 2000, 126, 219–231. [Google Scholar] [CrossRef]
- Al-humedi, H.O.; Akee Abd Al-wahed, L. Combine of B-Spline Galerkin Schemes with Change Weight Function Combine of B-Spline Galerkin Schemes with Change Weight Function. Int. J. Eng. Innov. Res. 2016, 2, 340–349. [Google Scholar]
- Siraj-ul-Islam; Khattak, A.J.; Tirmizi, I.A. A meshfree method for numerical solution of KdV equation. Eng. Anal. Bound. Elem. 2008, 32, 849–855. [Google Scholar] [CrossRef]
- Geyikli, T. Numerical Solution of the Modified Equal Width. Int. J. Differ. Equ. 2012, 2012, 587208. [Google Scholar] [CrossRef] [Green Version]
Time (t) | Comparative Studies | |||||
---|---|---|---|---|---|---|
0.00 | 0.19796010 | 0.01983155 | 0.00012916 | 0.000000 | 0.000000 | |
0.01 | 0.19796010 | 0.01983155 | 0.00012916 | 1.33 × 10−15 | 0.58 × 10−16 | |
0.02 | 0.19796010 | 0.01983155 | 0.00012916 | 1.11 × 10−15 | 0.41 × 10−16 | |
0.03 | 0.19796010 | 0.01983155 | 0.00012916 | 1.20 × 10−15 | 0.49 × 10−16 | |
0.04 | 0.19796010 | 0.01983155 | 0.00012916 | 1.34 × 10−15 | 0.55 × 10−16 | |
0.05 | 0.19796007 | 0.01983155 | 0.00012916 | 1.55 × 10−15 | 0.63 × 10−16 | |
0.06 | 0.19796007 | 0.01983156 | 0.00012916 | 2.00 × 10−15 | 0.71 × 10−16 | |
0.07 | 0.19796006 | 0.01983156 | 0.00012916 | 2.10 × 10−15 | 0.79 × 10−16 | |
0.08 | 0.19796005 | 0.01983156 | 0.00012916 | 2.15 × 10−15 | 0.89 × 10−16 | |
0.09 | 0.19796003 | 0.01983157 | 0.00012916 | 2.24 × 10−15 | 1.02 × 10−16 | |
0.10 | 0.19796003 | 0.01983157 | 0.00012916 | 2.33 × 10−15 | 1.15 × 10−16 | |
0.10 | [40] | 0.7854000 | 0.12500000 | 0.00520000 | 1.99 × 10−15 | 5.82 × 10−16 |
0.10 | [43] | 0.7853967 | 0.16666633 | 0.00520830 | 0.0800980 | 0.0460618 |
0.10 | [29] | 0.7849545 | 0.16647652 | 0.00519955 | 0.29051667 | 0.24989254 |
Time (t) | |||||
---|---|---|---|---|---|
0.00 | 0.19796016 | 0.01983155 | 0.00012916 | 0.000000 | 0.000000 |
0.01 | 0.19796016 | 0.01983155 | 0.00012916 | 1.52 × 10−15 | 1.98 × 10−16 |
0.02 | 0.19796015 | 0.01983155 | 0.00012916 | 1.38 × 10−15 | 1.73 × 10−16 |
0.03 | 0.19796015 | 0.01983155 | 0.00012916 | 1.55 × 10−15 | 1.88 × 10−16 |
0.04 | 0.19796015 | 0.01983155 | 0.00012916 | 1.34 × 10−15 | 1.94 × 10−16 |
0.05 | 0.19796014 | 0.01983155 | 0.00012916 | 1.55 × 10−15 | 2.01 × 10−16 |
0.06 | 0.19796013 | 0.01983156 | 0.00012916 | 1.89 × 10−15 | 2.12 × 10−16 |
0.07 | 0.19796013 | 0.01983156 | 0.00012916 | 2.18 × 10−15 | 2.19 × 10−16 |
0.08 | 0.19796013 | 0.01983156 | 0.00012916 | 2.15 × 10−15 | 2.28 × 10−16 |
0.09 | 0.19796012 | 0.01983157 | 0.00012916 | 2.53 × 10−15 | 2.40 × 10−16 |
0.10 | 0.19796011 | 0.01983157 | 0.00012916 | 2.45 × 10−15 | 2.55 × 10−16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AL-saedi, A.A.; Rashidinia, J. Numerical Approximation of a Time-Fractional Modified Equal-Width Wave Model by Using the B-Spline Weighted Residual Method. Symmetry 2023, 15, 891. https://doi.org/10.3390/sym15040891
AL-saedi AA, Rashidinia J. Numerical Approximation of a Time-Fractional Modified Equal-Width Wave Model by Using the B-Spline Weighted Residual Method. Symmetry. 2023; 15(4):891. https://doi.org/10.3390/sym15040891
Chicago/Turabian StyleAL-saedi, Akeel A., and Jalil Rashidinia. 2023. "Numerical Approximation of a Time-Fractional Modified Equal-Width Wave Model by Using the B-Spline Weighted Residual Method" Symmetry 15, no. 4: 891. https://doi.org/10.3390/sym15040891
APA StyleAL-saedi, A. A., & Rashidinia, J. (2023). Numerical Approximation of a Time-Fractional Modified Equal-Width Wave Model by Using the B-Spline Weighted Residual Method. Symmetry, 15(4), 891. https://doi.org/10.3390/sym15040891