Numerical Approximation of a Time-Fractional Modified Equal-Width Wave Model by Using the B-Spline Weighted Residual Method
Abstract
1. Introduction
2. Implementation of the Proposed Method for TFMEW Model
3. Numerical Example
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sabatier, J.; Agarwal, O.P.; Machado, J.A.T. Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Baleanu, D.; Guvenc, Z.B.; Machado, J. New Trends in Nanotechnology and Fractional Calculus Applications; Springer: Dordrecht, The Netherland, 2010. [Google Scholar]
- Jassim, H.K.; Shareef, M.A. On approximate solutions for fractional system of differential equations with Caputo-Fabrizio fractional operator. J. Math. Comput. Sci. 2021, 23, 58–66. [Google Scholar] [CrossRef]
- Kalimbetov, B.; Abylkasymova, E.; Beissenova, G. On the asymptotic solutions of singulary perturbed differential systems of fractional order. J. Math. Comput. Sci. 2022, 24, 165–172. [Google Scholar] [CrossRef]
- Cao, Y.; Nikan, O.; Avazzadeh, Z. A localized meshless technique for solving 2D nonlinear integro-differential equation with multi-term kernels. Appl. Numer. Math. 2023, 183, 140–156. [Google Scholar] [CrossRef]
- Al-Ahmad, S.; Sulaiman, I.M.; Nawi, M.M.A.; Mamat, M.; Ahmad, M.Z. Analytical solution of systems of Volterra integro-differential equations using modified differential transform method. J. Math. Comput. Sci. 2022, 26, 19. [Google Scholar] [CrossRef]
- Nikan, O.; Avazzadeh, Z.; Machado, J.A.T. Localized kernel-based meshless method for pricing financial options underlying fractal transmission system. Math. Meth. Appl. Sci. 2021, 7968. [Google Scholar] [CrossRef]
- Guo, T.; Nikan, O.; Avazzadeh, Z.; Qiu, W. Efficient alternating direction implicit numerical approaches for multi-dimensional distributed-order fractional integro differential problems. Comput. Appl. Math. 2022, 41, 236. [Google Scholar] [CrossRef]
- Nikan, O.; Molavi-Arabshai, S.M.; Jafari, H. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discret. Contin. Dyn. Syst. S 2021, 14, 3685. [Google Scholar] [CrossRef]
- Akram, T.; Abbas, M.; Ali, A. A numerical study on time-fractional Fisher equation using an extended cubic B-spline approximation. J. Math. Comput. Sci. 2021, 22, 85–96. [Google Scholar] [CrossRef]
- Golbabai, A.; Nikan, O.; Molavi-Arabshahi, M. Numerical approximation of time fractional advection-dispersion model arising from solute transport in rivers. TWMS J. Pure Appl. Math. 2019, 10, 117–131. [Google Scholar]
- Alia, A.; Abbasb, M.; Akramc, T. New group iterative schemes for solving the two-dimensional anomalous fractional sub-diffusion equation. J. Math. Comput. Sci. 2021, 22, 119–127. [Google Scholar] [CrossRef]
- Golbabai, A.; Nikan, O.; Nikazad, T. Numerical investigation of the time fractional mobile-immobile advection-dispersion model arising from solute transport in porous media. Int. J. Appl. Comput. Math. 2019, 5, 122. [Google Scholar] [CrossRef]
- Can, N.H.; Nikan, O.; Rasoulizadeh, M.N.; Jafari, H.; Gasimov, Y.S. Numerical computation of the time non-linear fractional generalized equal width model arising in shallow water channel. Therm. Sci. 2020, 24, 49–58. [Google Scholar] [CrossRef]
- Nikan, O.; Avazzadeh, Z. An efficient localized meshless technique for approximating nonlinear sinh-Gordon equation arising in surface theory. Eng. Anal. Bound. Elem. 2021, 130, 268–285. [Google Scholar] [CrossRef]
- Nikan, O.; Golbabai, A.; Nikazad, T. Solitary wave solution of the nonlinear KdV-Benjamin-Bona-Mahony-Burgers model via two meshless methods. Eur. Phys. J. Plus 2019, 134, 114. [Google Scholar] [CrossRef]
- Rasoulizadeh, M.; Nikan, O.; Avazzadeh, Z. The impact of LRBF-FD on the solutions of the nonlinear regularized long wave equation. Math. Sci. 2021, 15, 365–376. [Google Scholar] [CrossRef]
- Rasoulizadeh, M.; Ebadi, M.; Avazzadeh, Z.; Nikan, O. An efficient local meshless method for the equal width equation in fluid mechanics. Eng. Anal. Bound. Elem. 2021, 131, 258–268. [Google Scholar] [CrossRef]
- Nikan, O.; Avazzadeh, Z.; Rasoulizadeh, M. Soliton solutions of the nonlinear sine-Gordon model with Neumann boundary conditions arising in crystal dislocation theory. Nonlinear Dyn. 2021, 106, 783–813. [Google Scholar] [CrossRef]
- Avazzadeh, Z.; Nikan, O.; Machado, J.A.T. Solitary wave solutions of the generalized Rosenau-KdV-RLW equation. Mathematics 2020, 8, 1601. [Google Scholar] [CrossRef]
- Nikan, O.; Avazzadeh, Z.; Rasoulizadeh, M. Soliton wave solutions of nonlinear mathematical models in elastic rods and bistable surfaces. Eng. Anal. Bound. Elem. 2022, 143, 14–27. [Google Scholar] [CrossRef]
- Nikan, O.; Avazzadeh, Z. A locally stabilized radial basis function partition of unity technique for the sine–Gordon system in nonlinear optics. Math. Comput. Simul. 2022, 199, 394–413. [Google Scholar] [CrossRef]
- Morrison, P.J.; Meiss, J.D.; Cary, J.R. Scattering of regularized-long-wave solitary waves. Phys. D Nonlinear Phenom. 1984, 11, 324–336. [Google Scholar] [CrossRef]
- Abdulloev, K.O.; Bogolubsky, I.L.; Makhankov, V.G. One more example of inelastic soliton interaction. Phys. Lett. 1976, 56, 427–428. [Google Scholar] [CrossRef]
- Gardner, L.R.T.; Gardner, G.A.; Geyikli, T. The Boundary Forced MKdV Equation. J. Comput. Phys. 1994, 113, 5–12. [Google Scholar] [CrossRef]
- Geyikli, T.; Karakoc, S.B.G. Septic B-Spline Collocation Method for the Numerical Solution of the Modified Equal Width Wave Equation. Appl. Math. 2011, 2, 739–749. [Google Scholar] [CrossRef]
- Geyikli, T.; Karakoç, S.B.G. Petrov-Galerkin method with cubic B-splines for solving the MEW equation. Bull. Belgian Math. Soc.-Simon Stevin 2012, 19, 215–227. [Google Scholar] [CrossRef]
- Esen, A. A numerical solution of the equal width wave equation by a lumped Galerkin method. Appl. Math. Comput. 2005, 168, 270–282. [Google Scholar] [CrossRef]
- Esen, A. A lumped Galerkin method for the numerical solution of the modified equal-width wave equation using quadratic B-splines. Int. J. Comput. Math. 2006, 83, 449–459. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The tanh and the sine-cosine methods for a reliable treatment of the modified equal width equation and its variants. Commun. Nonlinear Sci. Numer. Simul. 2006, 11, 148–160. [Google Scholar] [CrossRef]
- Lu, J. He’s variational iteration method for the modified equal width equation. Chaos Solitons Fractals 2009, 39, 2102–2109. [Google Scholar] [CrossRef]
- Esen, A.; Kutluay, S. Solitary wave solutions of the modified equal width wave equation. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 1538–1546. [Google Scholar] [CrossRef]
- Olver, P.J. Euler operators and conservation laws of the BBM equation. Math. Proc. Cambridge Philos. Soc. 1979, 85, 143–160. [Google Scholar] [CrossRef]
- Tavares, D.; Almeida, R.; Torres, D.F.M. Caputo derivatives of fractional variable order: Numerical approximations. Commun. Nonlinear Sci. Numer. Simul. 2016, 35, 69–87. [Google Scholar] [CrossRef]
- Prenter, P.M. Spline and Variational Methods; Wiley: New York, NY, USA, 1975. [Google Scholar]
- Chen, Z. (Ed.) The Finite Element Method: Its Fundamentals and Applications. In Engineering; World Scientific: Hackensack, NJ, USA, 2011. [Google Scholar]
- Daǧ, İ.; Özer, M.N. Approximation of the RLW equation by the least square cubic B-spline finite element method. Appl. Math. Model. 2001, 25, 221–231. [Google Scholar] [CrossRef]
- Esen, A.; Ucar, Y.; Yagmurlu, N.; Tasbozan, O. A Galerkin Finite Element Method to Solve Fractional Diffusion and Fractional Diffusion-Wave Equations. Math. Model. Anal. 2013, 18, 260–273. [Google Scholar] [CrossRef]
- Li, M.; Ding, X.; Xu, Q. Non-polynomial spline method for the time-fractional nonlinear Schrödinger equation. Adv. Differ. Equ. 2018, 2018, 1–15. [Google Scholar] [CrossRef]
- Zaki, S.I. Solitary wave interactions for the modified equal width equation. Comput. Phys. Commun. 2000, 126, 219–231. [Google Scholar] [CrossRef]
- Al-humedi, H.O.; Akee Abd Al-wahed, L. Combine of B-Spline Galerkin Schemes with Change Weight Function Combine of B-Spline Galerkin Schemes with Change Weight Function. Int. J. Eng. Innov. Res. 2016, 2, 340–349. [Google Scholar]
- Siraj-ul-Islam; Khattak, A.J.; Tirmizi, I.A. A meshfree method for numerical solution of KdV equation. Eng. Anal. Bound. Elem. 2008, 32, 849–855. [Google Scholar] [CrossRef]
- Geyikli, T. Numerical Solution of the Modified Equal Width. Int. J. Differ. Equ. 2012, 2012, 587208. [Google Scholar] [CrossRef]
Time (t) | Comparative Studies | |||||
---|---|---|---|---|---|---|
0.00 | 0.19796010 | 0.01983155 | 0.00012916 | 0.000000 | 0.000000 | |
0.01 | 0.19796010 | 0.01983155 | 0.00012916 | 1.33 × 10−15 | 0.58 × 10−16 | |
0.02 | 0.19796010 | 0.01983155 | 0.00012916 | 1.11 × 10−15 | 0.41 × 10−16 | |
0.03 | 0.19796010 | 0.01983155 | 0.00012916 | 1.20 × 10−15 | 0.49 × 10−16 | |
0.04 | 0.19796010 | 0.01983155 | 0.00012916 | 1.34 × 10−15 | 0.55 × 10−16 | |
0.05 | 0.19796007 | 0.01983155 | 0.00012916 | 1.55 × 10−15 | 0.63 × 10−16 | |
0.06 | 0.19796007 | 0.01983156 | 0.00012916 | 2.00 × 10−15 | 0.71 × 10−16 | |
0.07 | 0.19796006 | 0.01983156 | 0.00012916 | 2.10 × 10−15 | 0.79 × 10−16 | |
0.08 | 0.19796005 | 0.01983156 | 0.00012916 | 2.15 × 10−15 | 0.89 × 10−16 | |
0.09 | 0.19796003 | 0.01983157 | 0.00012916 | 2.24 × 10−15 | 1.02 × 10−16 | |
0.10 | 0.19796003 | 0.01983157 | 0.00012916 | 2.33 × 10−15 | 1.15 × 10−16 | |
0.10 | [40] | 0.7854000 | 0.12500000 | 0.00520000 | 1.99 × 10−15 | 5.82 × 10−16 |
0.10 | [43] | 0.7853967 | 0.16666633 | 0.00520830 | 0.0800980 | 0.0460618 |
0.10 | [29] | 0.7849545 | 0.16647652 | 0.00519955 | 0.29051667 | 0.24989254 |
Time (t) | |||||
---|---|---|---|---|---|
0.00 | 0.19796016 | 0.01983155 | 0.00012916 | 0.000000 | 0.000000 |
0.01 | 0.19796016 | 0.01983155 | 0.00012916 | 1.52 × 10−15 | 1.98 × 10−16 |
0.02 | 0.19796015 | 0.01983155 | 0.00012916 | 1.38 × 10−15 | 1.73 × 10−16 |
0.03 | 0.19796015 | 0.01983155 | 0.00012916 | 1.55 × 10−15 | 1.88 × 10−16 |
0.04 | 0.19796015 | 0.01983155 | 0.00012916 | 1.34 × 10−15 | 1.94 × 10−16 |
0.05 | 0.19796014 | 0.01983155 | 0.00012916 | 1.55 × 10−15 | 2.01 × 10−16 |
0.06 | 0.19796013 | 0.01983156 | 0.00012916 | 1.89 × 10−15 | 2.12 × 10−16 |
0.07 | 0.19796013 | 0.01983156 | 0.00012916 | 2.18 × 10−15 | 2.19 × 10−16 |
0.08 | 0.19796013 | 0.01983156 | 0.00012916 | 2.15 × 10−15 | 2.28 × 10−16 |
0.09 | 0.19796012 | 0.01983157 | 0.00012916 | 2.53 × 10−15 | 2.40 × 10−16 |
0.10 | 0.19796011 | 0.01983157 | 0.00012916 | 2.45 × 10−15 | 2.55 × 10−16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AL-saedi, A.A.; Rashidinia, J. Numerical Approximation of a Time-Fractional Modified Equal-Width Wave Model by Using the B-Spline Weighted Residual Method. Symmetry 2023, 15, 891. https://doi.org/10.3390/sym15040891
AL-saedi AA, Rashidinia J. Numerical Approximation of a Time-Fractional Modified Equal-Width Wave Model by Using the B-Spline Weighted Residual Method. Symmetry. 2023; 15(4):891. https://doi.org/10.3390/sym15040891
Chicago/Turabian StyleAL-saedi, Akeel A., and Jalil Rashidinia. 2023. "Numerical Approximation of a Time-Fractional Modified Equal-Width Wave Model by Using the B-Spline Weighted Residual Method" Symmetry 15, no. 4: 891. https://doi.org/10.3390/sym15040891
APA StyleAL-saedi, A. A., & Rashidinia, J. (2023). Numerical Approximation of a Time-Fractional Modified Equal-Width Wave Model by Using the B-Spline Weighted Residual Method. Symmetry, 15(4), 891. https://doi.org/10.3390/sym15040891