Certain Properties and Applications of Convoluted Δh Multi-Variate Hermite and Appell Sequences
Abstract
:1. Introduction
- (i)
- demonstrate the differential equation
- (ii)
- The explicit form of , can be cast in the form as listed:
- (iii)
- Furthermore, generating relation in exponential form for can be cast in the form
2. Multi-Variate Hermite Appell Polynomials
3. Symmetric Identities
4. Operational Formalism and Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hermite, C. Sur un nouveau dévelopment en séries de functions. C. R. Acad. Sci. Paris 1864, 58, 93–100. [Google Scholar]
- Ozarslan, M.; Yasar, B.Y. Δh-Gould-Hopper Appell polynomials. Acta Math. Sci. 2021, 41, 1196–1222. [Google Scholar] [CrossRef]
- Costabile, F.A.; Longo, E. Δh-Appell sequences and related interpolation problem. Numer. Algor. 2013, 63, 165–186. [Google Scholar] [CrossRef]
- Kim, T. A Note on the Degenerate Type of Complex Appell Polynomials. Symmetry 2019, 11, 1339. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Yao, Y.; Kim, D.S.; Jang, G.-W. Degenerate r-Stirling numbers and r-Bell polynomials. Russ. J. Math. Phys. 2018, 25, 44–58. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T.; Lee, H. A note on degenerate Euler and Bernoulli polynomials of a complex variable. Symmetry 2019, 11, 1168. [Google Scholar] [CrossRef] [Green Version]
- Wani, S.A.; Khan, S.; Naikoo, S. Differential and integral equations for the Laguerre-Gould-Hopper based Appell and related polynomials. Boletín Soc. Matemática Mex. 2020, 26, 617–646. [Google Scholar] [CrossRef]
- Khan, S.; Wani, S.A. Fractional calculus and generalized forms of special polynomials associated with Appell sequences. Georgian Math. J. 2019, 28, 261–270. [Google Scholar] [CrossRef]
- Khan, S.; Wani, S.A. Extended Laguerre-Appell polynomials via fractional operators and their determinant forms. Turk. J. Math. 2018, 42, 1686–1697. [Google Scholar] [CrossRef]
- Wani, S.A.; Nisar, K.S. Quasi-monomiality and convergence theorem for Boas-Buck-Sheffer polynomials. Mathematics 2020, 5, 4432–4453. [Google Scholar] [CrossRef]
- Khan, W.A.; Muhyi, A.; Ali, R.; Alzobydi, K.A.H.; Singh, M.; Agarwal, P. A new family of degenerate poly-Bernoulli polynomials of the second kind with its certain related properties. AIMS Math. 2021, 6, 12680–12697. [Google Scholar] [CrossRef]
- Jordan, C. Calculus of Finite Differences; Chelsea Publishing Company: New York, NY, USA, 1965. [Google Scholar]
- Ryoo, C.S. Notes on degenerate tangent polynomials. Glob. J. Pure Appl. Math. 2015, 11, 3631–3637. [Google Scholar]
- Hwang, K.W.; Ryoo, C.S. Differential equations associated with two variable degenerate Hermite polynomials. Mathematics 2020, 8, 228. [Google Scholar] [CrossRef] [Green Version]
- Steffensen, J.F. The poweriod, an extension of the mathematical notion of power. Acta Math. 1941, 73, 333–366. [Google Scholar] [CrossRef]
- Dattoli, G. Hermite-Bessel and Laguerre-Bessel functions: A by-product of the monomiality principle. Adv. Spec. Funct. Appl. 2000, 1, 147–164. [Google Scholar]
- Appell, P.; Kampé de Fériet, J. Fonctions Hypergéométriques et Hypersphériques: Polynômes d’Hermite; Gauthier-Villars: Paris, France, 1926. [Google Scholar]
- Bretti, G.; Cesarano, C.; Ricci, P.E. Laguerre-type exponentials and generalized Appell polynomials. Comput. Math. Appl. 2004, 48, 833–839. [Google Scholar] [CrossRef] [Green Version]
- Andrews, L.C. Special Functions for Engineers and Applied Mathematicians; Macmillan Publishing Company: New York, NY, USA, 1985. [Google Scholar]
- Dattoli, G. Generalized polynomials operational identities and their applications. J. Comput. Appl. Math. 2000, 118, 111–123. [Google Scholar] [CrossRef] [Green Version]
- Dattoli, G.; Ricci, P.E.; Cesarano, C.; Vázquez, L. Special polynomials and fractional calculas. Math. Comput. Model. 2003, 37, 729–733. [Google Scholar] [CrossRef]
- Dattoli, G.; Lorenzutta, S.; Mancho, A.M.; Torre, A. Generalized polynomials and associated operational identities. J. Comput. Appl. Math. 1999, 108, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Dere, R.; Simsek, Y.; Srivastava, H.M. Unified presentation of three families of generalized Apostol-type polynomials based upon the theory of the umbral calculus and the umbral algebra. J. Number Theory 2013, 13, 3245–3265. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wani, S.A.; Alazman, I.; Alkahtani, B.S.T. Certain Properties and Applications of Convoluted Δh Multi-Variate Hermite and Appell Sequences. Symmetry 2023, 15, 828. https://doi.org/10.3390/sym15040828
Wani SA, Alazman I, Alkahtani BST. Certain Properties and Applications of Convoluted Δh Multi-Variate Hermite and Appell Sequences. Symmetry. 2023; 15(4):828. https://doi.org/10.3390/sym15040828
Chicago/Turabian StyleWani, Shahid Ahmad, Ibtehal Alazman, and Badr Saad T. Alkahtani. 2023. "Certain Properties and Applications of Convoluted Δh Multi-Variate Hermite and Appell Sequences" Symmetry 15, no. 4: 828. https://doi.org/10.3390/sym15040828
APA StyleWani, S. A., Alazman, I., & Alkahtani, B. S. T. (2023). Certain Properties and Applications of Convoluted Δh Multi-Variate Hermite and Appell Sequences. Symmetry, 15(4), 828. https://doi.org/10.3390/sym15040828