Next Article in Journal
Chaotification of 1D Maps by Multiple Remainder Operator Additions—Application to B-Spline Curve Encryption
Next Article in Special Issue
Tangent Bundles of P-Sasakian Manifolds Endowed with a Quarter-Symmetric Metric Connection
Previous Article in Journal
Heat and Mass Transport in Casson Nanofluid Flow over a 3-D Riga Plate with Cattaneo-Christov Double Flux: A Computational Modeling through Analytical Method
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Applying an Extended β-ϕ-Geraghty Contraction for Solving Coupled Ordinary Differential Equations

by
Hasanen A. Hammad
1,2,
Kamaleldin Abodayeh
3,* and
Wasfi Shatanawi
3,4,5,*
1
Department of Mathematics, Unaizah College of Sciences and Arts, Qassim University, Buraydah 52571, Saudi Arabia
2
Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt
3
Department of Mathematics and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
4
Department of Medical Research, China Medical University, Taichung 40402, Taiwan
5
Department of Mathematics, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
*
Authors to whom correspondence should be addressed.
Symmetry 2023, 15(3), 723; https://doi.org/10.3390/sym15030723
Submission received: 1 January 2023 / Revised: 24 January 2023 / Accepted: 17 February 2023 / Published: 14 March 2023
(This article belongs to the Special Issue Symmetry and Its Application in Differential Geometry and Topology II)

Abstract

:
In this paper, we introduce a new class of mappings called “generalized β - ϕ -Geraghty contraction-type mappings”. We use our new class to formulate and prove some coupled fixed points in the setting of partially ordered metric spaces. Our results generalize and unite several findings known in the literature. We also provide some examples to support and illustrate our theoretical results. Furthermore, we apply our results to discuss the existence and uniqueness of a solution to a coupled ordinary differential equation as an application of our finding.

1. Introduction

The natural sciences are completely related to each other, and mathematics plays a crucial role in the development of other sciences. Therefore, mathematicians are always working on developing mechanisms and techniques in order to provide suitable ways to improve other sciences. The fixed-point technique is one of the most powerful methods to help mathematicians provide mechanisms for solving some models in ordinary and partial differential equations prepared by engineers, chemists, or physicists. Also, due to the symmetric property of metric spaces, fixed-point theory is still considered an important tool in developing studies in many fields and various disciplines such as topology, game theory, optimal control, artificial intelligence, logic programming, dynamical systems (and chaos), functional analysis, differential equations, and economics.
The fixed-point technique has been used by some mathematicians to find analytical and numerical solutions to Fredholm integral equations; for example, see [1,2,3,4,5].
It is noteworthy that Banach’s contraction theorem (BCT) [6] was the first discovery in mathematics to initiate the study of fixed points (FPs) for mapping under a specific type of contraction condition. Due to the importance of fixed points, mathematicians began to extend the Banach contraction theorem in many directions; some of them extended and generalized the Banach contraction condition in many ways, while others extended metric spaces to new spaces and generalized the Banach contraction theory to new forms. Moreover, others introduced more general contraction conditions to provide new fixed-point results; for example, see [7,8,9,10,11,12,13,14,15,16,17,18].
In 1973, Geraghty [19] presented an interesting contraction condition called the Geraghty contraction and highlighted some FPs under this condition by generalizing BCT in a complete metric space (CMS). Geraghty’s results have been given much attention by several authors; for example, Caballero et al. [20] studied best proximity point theorems for Geraghty contractions, Bilgili et al. [21] generalized the best proximity point under the same conditions of [20], Bae et al. [11] introduced interesting results concerned with FP consequences via the concept of α -Geraghty contraction-type maps in metric spaces, and Gordji et al. [22] discussed an extension of the result of Geraghty in a partially ordered metric space.
Samet et al. [23] introduced the concept of α -admissible mapping and adopted its concept to present some new fixed-point results to give a generalization of a BFT. Recently, Karapínar et al. [9] introduced the concepts of triangular α -admissible mappings and α - ψ -Meir–Keeler contractive mappings and presented some new fixed-point results. Some other authors obtained several results in this direction; see [10,23,24,25].
The concepts of mixed monotone property and coupled fixed point (CFP) were introduced by Bhaskar and Lakshmikantham [26]. Next, they presented some CFPs for the mapping : Λ × Λ Λ under appropriate contraction conditions. They also supported their main results by providing an application for partial differential equations. Subsequently, some authors have adopted these concepts to give some interesting CFP results; for example, see [27,28,29].
The aim of this paper is to present the concepts of generalized triangular β -admissible mappings and generalized β -admissible mappings. Next, we study some new CFP results. We also support our results by introducing some examples. Next, we present an application of coupled ordinary differential equations (CODEs).

2. Preliminaries

In this section, we consider some basic definitions and previous results that will help us in obtaining our results.
Let Π be a class of all functions π : [ 0 , ) [ 0 , 1 ) such that the condition below holds:
lim i π ( τ i ) = 1 implies lim i τ i = 0 .
Theorem 1 ([19]).
Let ( Λ , ϑ ) be a CMS and : Λ Λ be a given mapping. Then ℧ has a unique FP provided that the following inequality
ϑ ( ϖ , σ ) π ϑ ( ϖ , σ ) ϑ ( ϖ , σ ) ) ,
holds for any ϖ , σ Λ , where π Π .
The notions of α -admissible and α ψ -contractive mappings were introduced by Samet et al. [23] as follows:
Definition 1 ([23]).
For a non-empty set Λ, let : Λ Λ be a given mapping and α : Λ × Λ R be a function. The function ℧ is called an α-admissible if
α ϖ , σ 1 α ϖ , σ ) 1 ,
holds for all σ Λ .
Definition 2 ([23]).
Let ( Λ , ϑ ) be a metric space. A mapping : Λ Λ is said to be an α ψ -contractive mapping, if there exist two functions α : Λ × Λ [ 0 , + ) and π Π such that
α ϖ , σ ψ ϑ ( ϖ , σ ) ψ ϑ ( ϖ , σ ) ,
holds for all ϖ , σ Λ , where ψ Φ (Φ is defined in the next section).
Samet et al. [23] presented and proved the following interesting theorem:
Theorem 2 ([23]).
Let ( Λ , ϑ ) be a metric space and : Λ Λ be an α ψ -contractive mapping. Assume the following hypotheses:
(i) 
is α-admissible.
(ii) 
There is ϖ 0 χ so that α ϖ 0 , ϖ 0 1 .
(iii) 
is continuous.
Then has a FP.
The concept of triangular α -admissible for an α -admissible mapping Λ × Λ [ 0 , + ) was given by Karapinar et al. [9] as follows:
If ϖ , σ , ρ Λ such that α ( ϖ , σ ) 1 , α ( σ , ρ ) 1 , then α ( ϖ , ρ ) 1 .
The concepts of the CFP and mixed monotone property are presented in [26] as follows:
Definition 3 ([26]).
Let Λ be a non-empty set. A pair ( ϖ , σ ) Λ × Λ is called a CFP of the mapping : Λ × Λ Λ if ϖ = ( ϖ , σ ) and σ = ( σ , ϖ ) .
Definition 4 ([26]).
Let ( Λ , ) be a partially ordered set (POS) and : Λ × Λ Λ be a given map. Then has a mixed monotone property if for any ϖ , σ Λ ,
ϖ 1 , ϖ 2 Λ , ϖ 1 ϖ 2 ( ϖ 1 , σ ) ( ϖ 2 , σ ) ,
and
σ 1 , σ 2 Λ , σ 1 σ 2 ( ϖ , σ 1 ) ( ϖ , σ 2 ) .

3. Main Results

We begin our work by considering the following definition.
Definition 5.
Let Λ be a non-empty set, : Λ 2 Λ and β : Λ 2 × Λ 2 R . We say that is a generalized triangular β-admissible mapping (Shortly G T β A M ) if for all ϖ , σ , ϱ , υ , s , t Λ ,
(Gi) 
β ϖ , σ , ϱ , υ 1 implies β ϖ , σ , ϱ , υ 1 and
(Gii) 
β ϖ , σ , ϱ , υ 1 and β ϱ , υ s , t 1 imply β ϖ , σ , s , t 1 .
To support the above definition, we give the following examples:
Example 1.
Let Λ = R . Define : Λ 2 Λ by ( ϖ , σ ) = ϖ σ 3 and β : Λ 2 × Λ 2 R by β ϖ , σ , ϱ , υ = e ϖ σ ϱ υ . If β ϖ , σ , ϱ , υ 1 , then ϖ σ ϱ υ , which implies that ( ϖ , σ ) = ϖ σ 3 ϱ υ 3 = ( ϱ , υ ) ; that is,
β ( ϖ , σ ) , ( ϱ , υ ) = e ϖ σ 3 ϱ υ 3 1 .
Also, if β ϖ , σ , ϱ , υ 1 , β ϱ , υ s , t 1 , then ϖ σ ϱ υ 0 , ϱ υ s t 0 . Hence, ϖ σ s t 0 and so
β ϖ , σ s , t = e ϖ σ s t 1 .
Therefore, is a G T β A M .
Example 2.
Let Λ = R . Define : Λ 2 Λ by ( ϖ , σ ) = e ϖ σ 7 and β : Λ 2 × Λ 2 R by β ϖ , σ , ϱ , υ = ϖ σ ϱ υ 5 + 1 .
If β ϖ , σ , ϱ , υ 1 , then ϖ σ ϱ υ , which leads to ( ϖ , σ ) = e ϖ σ 7 e ϱ υ 7 = ( ϱ , υ ) ; that is,
β ( ϖ , σ ) , ( ϱ , υ ) = e ϖ σ 7 e ϱ υ 7 5 + 1 1 .
Moreover, if β ϖ , σ , ϱ , υ 1 , β ϱ , υ s , t 1 , then ϖ σ ϱ υ 0 , ϱ υ s t 0 ; that is, ϖ σ s t 0 , and hence
β ϖ , σ s , t 1 .
Therefore, is a T C β A M .
Example 3.
Let Λ = R . Define : Λ 2 Λ by ( ϖ , σ ) = ϖ σ 4 + ln 1 + ϖ σ 2 and β : Λ 2 × Λ 2 R by
β ϖ , σ , ϱ , υ = ϖ σ 3 1 + ϖ σ 3 ϱ υ 3 1 + ϱ υ 3 + 1 .
Then is a G T β A M . In fact, if β ϖ , σ , ϱ , υ 1 , then ϖ σ ϱ υ and hence
( ϖ , σ ) = ϖ σ 4 + ln 1 + ϖ σ 2 ϱ υ 4 + ln 1 + ϱ υ 2 = ( ϱ , υ ) .
This implies β ( ϖ , σ ) , ( ϱ , υ ) 1 . Also,
β ϖ , σ , ϱ , υ + β ϱ , υ , s , t = ϖ σ 3 1 + ϖ σ 3 ϱ υ 3 1 + ϱ υ 3 + 1 + ϱ υ 3 1 + ϱ υ 3 s t 3 1 + s t 3 + 1 = ϖ σ 3 1 + ϖ σ 3 s t 3 1 + s t 3 + 2 2 ϖ σ 3 1 + ϖ σ 3 s t 3 1 + s t 3 + 1 = 2 β ϖ , σ , s , t .
Thus,
β ϖ , σ , ϱ , υ + β ϱ , υ , s , t 2 β ϖ , σ , s , t .
Now, if β ϖ , σ , ϱ , υ 1 , β ϱ , υ s , t 1 , , then β ϖ , σ , s , t 1 .
Example 4.
Let Λ = R . Define : Λ 2 Λ by ( ϖ , σ ) = ϖ σ 3 + ϖ σ 7 and β : Λ 2 × Λ 2 R by β ϖ , σ , ϱ , υ = ϖ σ 5 ϱ υ 5 + 1 . Then is a G T β A M .
Example 5.
Let Λ = R + . Define : Λ 2 Λ by ( ϖ , σ ) = ϖ σ 2 + e ϖ σ and β : Λ 2 × Λ 2 R by
β ϖ , σ , ϱ , υ = 1 , i f a , b , u , v [ 0 , 1 ] 2 × [ 0 , 1 ] 2 , 0 , o t h e r w i s e .
Then one can easily show that is a G T β A M .
Lemma 1.
Let ℧ be a G T β A M . Assume that there exists ϖ 0 , σ 0 Λ so that
β ( ϖ 0 , σ 0 ) , ϖ 0 , σ 0 , σ 0 , ϖ 0 1 .
Define two sequences { ϖ i } and { σ i } in Λ by ϖ i = i ϖ 0 , σ 0 and σ i = i σ 0 , ϖ 0 . Then
β ( ϖ j , σ j ) , ϖ i , σ i 1 a n d β ( σ j , ϖ j ) , σ i , ϖ i 1 ,
for i , j N with j < i .
Proof. 
Let ϖ 0 , σ 0 Λ . Then
β ( ϖ 0 , σ 0 ) , ϖ 0 , σ 0 , σ 0 , ϖ 0 1 .
Thus, condition ( G i ) implies that
β ( ϖ 1 , σ 1 ) , ϖ 2 , σ 2 = β ϖ 0 , σ 0 , σ 0 , ϖ 0 , 2 ϖ 0 , σ 0 , 2 σ 0 , ϖ 0 .
Continuing with the same scenario, we conclude that
η ( ϖ i , σ i ) , ϖ i + 1 , σ i + 1 1 , for all i 0 .
Similarly, one can prove that
η ( σ i , ϖ i ) , σ i + 1 , ϖ i + 1 1 , for all i 0 .
Assume that j < i . Since β ϖ j , σ j , ϖ j + 1 , σ j + 1 1 and β ϖ j + 1 , σ j + 1 , ϖ j + 2 , σ j + 2 1 , then ( G i i ) implies β ϖ j , σ j , ϖ j + 2 , σ j + 2 1 .
Also, since β ϖ j , σ j , ϖ j + 2 , σ j + 2 1 and β ϖ j + 2 , σ j + 2 , ϖ j + 3 , σ j + 3 1 , then we have β ϖ j , σ j , ϖ j + 3 , σ j + 3 1 .
Continuing with the same approach, we conclude that β ϖ j , σ j , ϖ i , σ i 1 . Analogously, we can show that β σ j , ϖ j , σ i , ϖ i 1 .  □
Definition 6.
Let : Λ × Λ Λ and β : Λ 2 × Λ 2 [ 0 , ) be two mappings. We say that is a generalized β-admissible if for each ϖ , σ , ϱ , υ Λ ,
β ( ϖ , σ ) , ( ϱ , υ ) 1 β ( ϖ , σ ) , ( σ , ϖ ) , ( ϱ , υ ) , ( υ , ϱ ) 1 .
From now on, Φ denotes the set of all functions ϕ : [ 0 , ) [ 0 , ) such that ϕ satisfies the following hypotheses:
(i)
ϕ ( τ ) = 0 if τ = 0 ;
(ii)
ϕ is continuous;
(iii)
ϕ ( a ) + ϕ ( b ) ϕ ( a + b )
(iii)
ϕ is nondecreasing.
Now, we introduce our contraction mapping as follows:
Definition 7.
Let ( Λ , ξ ) be a partially ordered metric space and : Λ × Λ Λ be a mapping. We say that is an extended β-ϕ-Geraghty contraction (shortly E β - ϕ G C ) if there are two functions β : Λ 2 × Λ 2 [ 0 , ) and ϕ Φ such that
β ( ϖ , σ ) , ( ϱ , υ ) ϕ ξ ( ϖ , σ ) , ( ϱ , υ ) π ϕ ( ϖ , σ , ϱ , υ ) ϕ ( ϖ , σ , ϱ , υ ) ,
for any ϖ , σ , ϱ , υ Λ with ϖ ϱ and σ υ , where π Π and
( ϖ , σ , ϱ , υ ) = max ξ ( ϖ , ϱ ) , ξ ( σ , υ ) , ξ ( ϖ , ( ϖ , σ ) ) , ξ ( σ , ( σ , ϖ ) ) , ξ ( ϱ , ( ϱ , υ ) ) , ξ ( υ , ( υ , ϱ ) ) .
Remark 1.
If ϖ , σ , ϱ , υ Λ with ϖ σ ϱ υ , then
β ( ϖ , σ ) , ( ϱ , υ ) ϕ ξ ( ϖ , σ ) , ( ϱ , υ ) < ϕ ( ϖ , σ , ϱ , υ ) .
We have furnished the necessary background to present and prove our first main result.
Theorem 3.
Let ( Λ , ) be a POS and ( Λ , ξ ) be a complete metric space (CMS). Assume the mapping : Λ × Λ Λ satisfies the following hypotheses:
(i) 
is E β - ϕ G C .
(ii) 
has the mixed monotone property.
(iii) 
is G T β A M .
(iv) 
There are ϖ 0 , σ 0 Λ such that
β ( ϖ 0 , σ 0 ) , ϖ 0 , σ 0 , σ 0 , ϖ 0 1 and β ( σ 0 , ϖ 0 ) , σ 0 , ϖ 0 , ϖ 0 , σ 0 1 .
(v) 
is continuous.
If there are ϖ 0 , σ 0 Λ so that ϖ 0 ϖ 0 , σ 0 and σ 0 σ 0 , ϖ 0 , then has a CFP.
Proof. 
Choose ϖ 0 , σ 0 Λ such that β ( ϖ 0 , σ 0 ) , ϖ 0 , σ 0 , σ 0 , ϖ 0 1 , β ( σ 0 , ϖ 0 ) , σ 0 , ϖ 0 , ϖ 0 , σ 0 1 , ϖ 0 ϖ 0 , σ 0 = ϖ 1 and σ 0 σ 0 , ϖ 0 = σ 1 . Now, we choose ϖ 2 , σ 2 Λ such that ϖ 1 , σ 1 = ϖ 2 and σ 1 , ϖ 1 = σ 2 . Continuing in this way, we can construct two sequences { ϖ i } and { σ i } in Λ such that
ϖ i + 1 = ϖ i , σ i and σ i + 1 = σ i , ϖ i , for all i 0 .
Next, we use the mathematical induction to prove
ϖ i ϖ i + 1 and σ i σ i + 1 , for all i 0 .
(a)
Since ϖ 0 ϖ 0 , σ 0 , σ 0 σ 0 , ϖ 0 , ϖ 0 , σ 0 = ϖ 1 and σ 0 , ϖ 0 = σ 1 , then ϖ 0 ϖ 1 and σ 0 σ 1 . Thus (2) holds for i = 0 .
(b)
Assume (2) holds for some fixed i with i 0 .
(c)
Now, we will prove (2) holds for any i . The mixed monotone property of ℧ and (b) we imply that
ϖ i + 2 = ϖ i + 1 , σ i + 1 ϖ i , σ i + 1 ϖ i , σ i = ϖ i + 1 ,
and
σ i + 2 = σ i + 1 , ϖ i + 1 σ i , ϖ i + 1 σ i , ϖ i = σ i + 1 .
This leads to
ϖ i + 2 ϖ i + 1 and σ i + 2 σ i + 1 .
Thus, we conclude that (2) holds for all i 0 .
If ϖ i + 1 , σ i + 1 = ϖ i , σ i for some i 0 , then ϖ i = ϖ i , σ i and σ i = σ i , ϖ i ; that is, ℧ has a CFP. Thus, we may assume that ϖ i + 1 , σ i + 1 ϖ i , σ i for all i 0 . Since ℧ is a G T β A M , then Lemma 1 implies
β ( ϖ i , σ i ) , ϖ i + 1 , σ i + 1 1 and β ( σ i , ϖ i ) , σ i + 1 , ϖ i + 1 1 for all i 0 .
Taking (1) and (3) into account, we derive
ϕ ξ ϖ i , ϖ i + 1 = ϕ ξ ϖ i 1 , σ i 1 , ϖ i , σ i β ( ϖ i 1 , σ i 1 ) , ( ϖ i , σ i ) ϕ ξ ϖ i 1 , σ i 1 , ϖ i , σ i π ϕ ( ϖ i 1 , σ i 1 , ϖ i , σ i ) ϕ ( ϖ i 1 , σ i 1 , ϖ i , σ i ) ,
where
( ϖ i 1 , σ i 1 , ϖ i , σ i ) = max ξ ( ϖ i 1 , ϖ i ) , ξ ( σ i 1 , σ i ) , ξ ( ϖ i 1 , ϖ i 1 , σ i 1 ) , ξ ( σ i 1 , σ i 1 , ϖ i 1 ) , ξ ( ϖ i , ϖ i , σ i ) , ξ ( σ i , ( σ i , ϖ i ) ) = max ξ ( ϖ i 1 , ϖ i ) , ξ ( σ i 1 , σ i ) , ξ ( ϖ i , ϖ i + 1 ) , ξ ( σ i , σ i + 1 ) .
Again, from (1) and (3), we can write
ϕ ξ σ i , σ i + 1 = ϕ ξ σ i 1 , ϖ i 1 , σ i , ϖ i β ( σ i 1 , ϖ i 1 ) , ( σ i , ϖ i ) ϕ ξ σ i 1 , ϖ i 1 , σ i , ϖ i π ϕ ( σ i 1 , ϖ i 1 , σ i , ϖ i ) ϕ ( σ i 1 , ϖ i 1 , σ i , ϖ i ) ,
where
( σ i 1 , ϖ i 1 , σ i , ϖ i ) = max max ξ ( σ i 1 , σ i ) , ξ ( ϖ i 1 , ϖ i ) , ξ ( σ i 1 , σ i 1 , ϖ i 1 ) , ξ ( ϖ i 1 , ϖ i 1 , σ i 1 ) , ξ ( σ i , σ i , ϖ i ) , ξ ( ϖ i , ( ϖ i , σ i ) ) = max ξ ( ϖ i 1 , ϖ i ) , ξ ( σ i 1 , σ i ) , ξ ( ϖ i , ϖ i + 1 ) , ξ ( σ i , σ i + 1 ) .
Setting
z i = max ξ ϖ i , ϖ i + 1 , ξ σ i , σ i + 1 .
From (4) and (5), we obtain
ϕ z i = ϕ max ξ ϖ i , ϖ i + 1 , ξ σ i , σ i + 1 = max ϕ ξ ϖ i , ϖ i + 1 , ϕ ξ σ i , σ i + 1 max π ϕ ( ϖ i 1 , σ i 1 , ϖ i , σ i ) ϕ ( ϖ i 1 , σ i 1 , ϖ i , σ i ) , π ϕ ( σ i 1 , ϖ i 1 , σ i , ϖ i ) ϕ ( σ i 1 , ϖ i 1 , σ i , ϖ i ) = max π ϕ ( ϖ i 1 , σ i 1 , ϖ i , σ i ) ϕ ( ϖ i 1 , σ i 1 , ϖ i , σ i ) , π ϕ ( σ i 1 , ϖ i 1 , σ i , ϖ i ) ϕ ( σ i 1 , ϖ i 1 , σ i , ϖ i ) .
It is clear that the case of
( ϖ i 1 , σ i 1 , ϖ i , σ i ) = ( σ i 1 , ϖ i 1 , σ i , ϖ i ) = max ξ ϖ i , ϖ i + 1 , ξ σ i , σ i + 1
is impossible due to the definition of π . Indeed,
max ϕ ξ ϖ i , ϖ i + 1 , ϕ ξ σ i , σ i + 1 max π ϕ max ξ ϖ i , ϖ i + 1 , ξ σ i , σ i + 1 ϕ max ξ ϖ i , ϖ i + 1 , ξ σ i , σ i + 1 < max ϕ max ξ ϖ i , ϖ i + 1 , ξ σ i , σ i + 1 = max ϕ ξ ϖ i , ϖ i + 1 , ϕ ξ σ i , σ i + 1 .
So, (6) reduces to
ϕ z i = ϕ max ξ ϖ i , ϖ i + 1 , ξ σ i , σ i + 1 = max ϕ ξ ϖ i , ϖ i + 1 , ϕ ξ σ i , σ i + 1 max π ϕ max ξ ( ϖ i 1 , ϖ i ) , ξ ( σ i 1 , σ i ) ϕ max ξ ( ϖ i 1 , ϖ i ) , ξ ( σ i 1 , σ i ) < ϕ max ξ ( ϖ i 1 , ϖ i ) , ξ ( σ i 1 , σ i ) = ϕ z i 1 .
It follows from definition ϕ that z i < z i 1 , for all i N . Hence ξ ϖ i , ϖ i + 1 < ξ ( ϖ i 1 , ϖ i ) and ξ σ i , σ i + 1 < ξ ( σ i 1 , σ i ) . This implies that { ξ ϖ i , ϖ i + 1 } and { ξ σ i , σ i + 1 } are nonincreasing sequences. Accordingly, there exist , * 0 such that = lim i ξ ϖ i , ϖ i + 1 and * = lim i ξ σ i , σ i + 1 . We shall show that = 0 = * . Suppose the opposite is true; that is, , * > 0 . From (4), we get
ϕ ξ ϖ i , ϖ i + 1 ϕ ( ϖ i 1 , σ i 1 , ϖ i , σ i ) π ϕ ( ϖ i 1 , σ i 1 , ϖ i , σ i ) < 1 .
Consequently, lim i π ϕ ( ϖ i 1 , σ i 1 , ϖ i , σ i ) = 1 . Due to the definition of π , we conclude that lim i ϕ ( ϖ i 1 , σ i 1 , ϖ i , σ i ) = 0 . Similarly, one can show that lim i ϕ ( σ i 1 , ϖ i 1 , σ i , ϖ i ) = 0 . Hence,
= lim i ξ ϖ i , ϖ i + 1 = 0 and * = lim i ξ σ i , σ i + 1 = 0 .
For j < i , we have
( ϖ j , σ j , ϖ i , σ i ) = ( σ j , ϖ j , σ i , ϖ i ) = max ξ ( ϖ j , ϖ i ) , ξ ( σ j , σ i ) , ξ ( ϖ j , ( ϖ j , σ j ) ) , ξ ( σ j , ( σ j , ϖ j ) ) , ξ ( ϖ i , ( ϖ i , σ i ) ) , ξ ( σ i , ( σ i , ϖ i ) ) = max ξ ( ϖ j , ϖ i ) , ξ ( σ j , σ i ) , ξ ( ϖ j , ϖ j + 1 ) , ξ ( σ j , σ j + 1 ) ) , ξ ( ϖ i , ϖ i 1 ) , ξ ( σ i , σ i 1 ) .
Allowing i , j + in above inequality, we get
lim i , j ( ϖ j , σ j , ϖ i , σ i ) = lim i , j ( σ j , ϖ j , σ i , ϖ i ) = lim i , j max ξ ( ϖ j , ϖ i ) , ξ ( σ j , σ i ) .
Now we shall show that { ϖ i } and { σ i } are Cauchy sequences. Suppose the contrary; that is, there exists ϵ > 0 such that
lim sup i , j max ξ ( ϖ j , ϖ i ) , ξ ( σ j , σ i ) = ϵ .
The triangular inequality implies
ξ ( ϖ j , ϖ i ) ξ ( ϖ j , ϖ j + 1 ) + ξ ( ϖ j + 1 , ϖ i + 1 ) + ξ ( ϖ i + 1 , ϖ i ) ,
and
ξ ( σ j , σ i ) ξ ( σ j , σ j + 1 ) + ξ ( σ j + 1 , σ i + 1 ) + ξ ( σ i + 1 , σ i ) ,
From (1) and (10), and the properties of ϕ , we have
ϕ ξ ( ϖ j , ϖ i ) ϕ ξ ( ϖ j , ϖ j + 1 ) + ξ ( ϖ j + 1 , ϖ i + 1 ) + ξ ( ϖ i + 1 , ϖ i ) ϕ ξ ( ϖ j , ϖ j + 1 ) + ϕ ξ ( ϖ j , σ j ) , ( ϖ i , σ i ) + ϕ ξ ( ϖ i + 1 , ϖ i ) ϕ ξ ( ϖ j , ϖ j + 1 ) + π ϕ ( ϖ j , σ j , ϖ i , σ i ) ϕ ( ϖ j , σ j , ϖ i , σ i ) + ϕ ξ ( ϖ i + 1 , ϖ i ) .
Similarly, from (11), we get
ϕ ξ ( σ j , σ i ) ϕ ξ ( σ j , σ j + 1 ) + ξ ( σ j + 1 , σ i + 1 ) + ξ ( σ i + 1 , σ i ) ϕ ξ ( σ j , σ j + 1 ) + ϕ ξ ( σ j , ϖ j ) , ( σ i , ϖ i ) + ϕ ξ ( σ i + 1 , σ i ) ϕ ξ ( σ j , σ j + 1 ) + π ϕ ( σ j , ϖ j , σ i , ϖ i ) ϕ ( σ j , ϖ j , σ i , ϖ i ) + ϕ ξ ( σ i + 1 , σ i ) .
With the help of (8), (7), (14) and (13), we find that
lim i , j max { ϕ ξ ( ϖ j , ϖ i ) , ϕ ξ ( σ j , σ i ) } lim i , j π ϕ max ξ ( ϖ j , ϖ i ) , ξ ( σ j , σ i ) ϕ max ξ ( ϖ j , ϖ i ) , ξ ( σ j , σ i ) .
From (9), we get
1 lim i , j π ϕ max ξ ( ϖ j , ϖ i ) , ξ ( σ j , σ i ) = lim i , j π ϕ ( ϖ j , σ j , ϖ i , σ i ) ,
and hence lim i , j π ϕ ( ϖ j , σ j , ϖ i , σ i ) = 1 . Thus, lim i , j ( ϖ j , σ j , ϖ i , σ i ) = 0 and hence lim i , j ξ ( ϖ j , ϖ i ) = 0 and lim i , j + ξ ( σ j , σ i ) = 0 , a contradiction. Therefore { ϖ i } and { σ i } are Cauchy sequences in ( Λ , ξ ) . The completeness of Λ implies that there exist ϖ * , σ * Λ such that
lim i ϖ i = ϖ * and lim i σ i = σ * .
Since ϖ i + 1 = ϖ i , σ i and σ i + 1 = σ i , ϖ i , then by allowing i + and using the continuity of ℧, we have
ϖ * = lim i ϖ i = lim i ϖ i 1 , σ i 1 = ( ϖ * , σ * ) ,
and
σ * = lim i σ i = lim i σ i 1 , ϖ i 1 = ( σ * , ϖ * ) .
Thus, ℧ has a CFP. □
In the following result, we replace the continuity of the mapping ℧ in Theorem 3 by a suitable condition. For this purpose, we present the following definition:
Definition 8.
Let ( Λ , ξ ) be a CMS, β : Λ 2 × Λ 2 R be a function and : Λ × Λ Λ be a mapping. We say that two sequences { ϖ i } and { σ i } in Λ are β-regular if β ( ϖ i , σ i ) , ϖ i + 1 , σ i + 1 1 and β ( σ i , ϖ i ) , σ i + 1 , ϖ i + 1 1 for all i , lim i ϖ i = ϖ and lim i σ i = σ for all ϖ , σ Λ , then there exist a subsequence { ϖ i ( k ) } of { ϖ i } and a subsequence { σ i ( k ) } of { σ i } such that β ( ϖ i ( k ) , σ i ( k ) ) , ϖ , σ 1 and β ( σ i ( k ) , ϖ i ( k ) ) , σ , ϖ 1 for all k .
Theorem 4.
Let ( Λ , ) be a POS and ( Λ , ξ ) be a CMS. Assume the mapping : Λ × Λ Λ satisfies the following hypotheses:
(i) 
is an E β - ϕ G C .
(ii) 
has the mixed monotone property.
(iii) 
is G T β A M .
(iv) 
There exist ϖ 0 , σ 0 Λ such that
β ( ϖ 0 , σ 0 ) , ϖ 0 , σ 0 , σ 0 , ϖ 0 1 and β ( σ 0 , ϖ 0 ) , σ 0 , ϖ 0 , ϖ 0 , σ 0 1 .
(v) 
The two sequences { ϖ n } and { σ n } are β-regular.
If there exist ϖ 0 , σ 0 Λ such that ϖ 0 ϖ 0 , σ 0 and σ 0 σ 0 , ϖ 0 , then has a CFP.
Proof. 
Following the same proof for Theorem 3, we construct two sequences { ϖ i } and { σ i } defined by ϖ i + 1 = ϖ i , σ i and σ i + 1 = σ i , ϖ i such that
β ( ϖ i , σ i ) , ϖ i + 1 , σ i + 1 1 and β ( σ i , ϖ i ) , σ i + 1 , ϖ i + 1 1 for all i 0 ,
σ i ϖ * Λ and σ i σ * λ . By using (14) and ( v ) , we choose a subsequence { ϖ i ( k ) } of { ϖ i } and a subsequence { σ i ( k ) } of { σ i } such that lim k β ( ϖ i ( k ) , σ i ( k ) ) , ϖ * , σ * 1 and lim k β ( σ i ( k ) , ϖ i ( k ) ) , σ * , ϖ * 1 . For k N , (1) implies that
β ( ϖ i ( k ) , σ i ( k ) ) , ϖ * , σ * ϕ ξ ϖ i ( k ) + 1 , ( ϖ * , σ * ) = β ( ϖ i ( k ) , σ i ( k ) ) , ϖ * , σ * ϕ ξ ( ϖ i ( k ) , σ i ( k ) ) , ( ϖ * , σ * ) π ϕ ( ϖ i ( k ) , σ i ( k ) , ϖ * , σ * ) ϕ ( ϖ i ( k ) , σ i ( k ) , ϖ * , σ * ) ,
where
( ϖ i ( k ) , σ i ( k ) , ϖ * , σ * ) = max ξ ( ϖ i ( k ) , ϖ * ) , ξ ( σ i ( k ) , σ * ) , ξ ( ϖ i ( k ) , ( ϖ i ( k ) , σ i ( k ) ) ) , ξ ( σ i ( k ) , ( σ i ( k ) , ϖ i ( k ) ) ) , ξ ( ϖ * , ( ϖ * , σ * ) ) , ξ ( σ * , ( σ * , ϖ * ) ) = max ξ ( ϖ i ( k ) , ϖ * ) , ξ ( σ i ( k ) , σ * ) , ξ ( ϖ i ( k ) , ϖ i ( k ) + 1 ) , ξ ( σ i ( k ) , σ i ( k ) + 1 ) ) , ξ ( ϖ * , ( ϖ * , σ * ) ) , ξ ( σ * , ( σ * , ϖ * ) ) .
Hence
lim k ϕ ( ϖ i ( k ) , σ i ( k ) , ϖ * , σ * ) = ϕ max ξ ( ϖ * , ( ϖ * , σ * ) ) , ξ ( σ * , ( σ * , ϖ * ) .
Similarly, one can show that
lim k ϕ ( σ i ( k ) , ϖ i ( k ) , σ * , ϖ * ) = ϕ max ξ ( σ * , ( σ * , ϖ * ) , ξ ( ϖ * , ( ϖ * , σ * ) ) .
From (15), we have
β ( ϖ i ( k ) , σ i ( k ) ) , ϖ * , σ * ϕ ξ ϖ i ( k ) + 1 , ( ϖ * , σ * ) ϕ ( ϖ i ( k ) , σ i ( k ) , ϖ * , σ * ) π ( ϖ i ( k ) , σ i ( k ) , ϖ * , σ * ) < 1 .
Allowing k in the above inequality, we get lim k π ϕ ( ϖ i ( k ) , σ i ( k ) , ϖ * , σ * ) = 1 .
Therefore lim k ϕ ( ϖ i ( k ) , σ i ( k ) , ϖ * , σ * ) = 0 . By (16), we have
ϕ max ξ ( σ * , ( σ * , ϖ * ) , ξ ( ϖ * , ( ϖ * , σ * ) max ξ ( σ * , ( σ * , ϖ * ) , ξ ( ϖ * , ( ϖ * , σ * ) = 0 .
Hence, ξ ( ϖ * , ( ϖ * , σ * ) ) = 0 and ξ ( σ * , ( σ * , ϖ * ) ) = 0 and so ϖ * = ( ϖ * , σ * ) and σ * = ( σ * , ϖ * ) . Thus ( ϖ * , σ * ) is a CFP of ℧. □
To ensure the uniqueness of the CFP in Theorems 3 and 4, we need to add the following condition:
(C)
If ( ϖ , σ ) and ( ϖ * , σ * ) are CFPs of ℧, then there is ( 1 , 2 ) Λ × Λ so that
β ( ϖ , σ ) , ( 1 , 2 ) 1 and β ( ϖ * , σ * ) , ( 1 , 2 ) 1 .
Theorem 5.
The CFP ( ϖ * , σ * ) of in Theorems 3 and 4 is unique if condition (C) is added to the hypotheses of Theorems 3 and 4.
Proof. 
Based on Theorem 3 (resp. Theorem 4), the mapping ℧ has a CFP, say ( ϖ * , σ * ) Λ × Λ . Let ( s * , t * ) Λ × Λ be another CFP of ℧. Then by (C), there is ( 1 , 2 ) Λ × Λ such that
β ( ϖ * , σ * ) , ( 1 , 2 ) 1 and β ( s * , t * ) , ( 1 , 2 ) 1 .
Since ℧ is β -admissible, we get
β ( ϖ * , σ * ) , i ( 1 , 2 ) 1 and β ( s * , t * ) , i ( 1 , 2 ) 1 , for all i .
Hence, we obtain
ξ ( ϖ * , σ * ) , i ( 1 , 2 ) β ( ϖ * , σ * ) , i 1 ( 1 , 2 ) ξ ( ϖ * , σ * ) , i ( 1 , 2 ) π ξ ( ϖ * , σ * ) , i 1 ( 1 , 2 ) ξ ( ϖ * , σ * ) , i 1 ( 1 , 2 ) < ξ ( ϖ * , σ * ) , i 1 ( 1 , 2 ) , for all i N .
Thus, the sequence { ξ ( ϖ * , σ * ) , i ( 1 , 2 ) } is nonincearsing. Therefore, there exists ϱ 0 such that lim i ξ ( ϖ * , σ * ) , i ( 1 , 2 ) = ϱ . By (19), we get
ξ ϖ * , σ * ) , i ( 1 , 2 ) ξ ( ϖ * , σ * ) , i 1 ( 1 , 2 ) π ξ ( ϖ * , σ * ) , i 1 ( 1 , 2 ) .
By allowing i + in above inequality, we reach to
lim i + π ϕ ξ ( ϖ * , σ * ) , i 1 ( 1 , 2 ) = 1 .
Thus, lim i ξ ( ϖ * , σ * ) , i ( 1 , 2 ) = 0 . Thus, lim i i ( 1 , 2 ) = ( ϖ * , σ * ) . Analogously, one can obtain lim i i ( 1 , 2 ) = ( s * , t * ) . Thus, we have ( ϖ * , σ * ) = ( s * , t * ) ; that is, the CFP of ℧ is unique. □

4. Some Related Results

We dedicate this section to extracting some new results using our results in the previous section. We begin with the following important definition:
Definition 9.
Let ( Λ , ) be a POS and ( Λ , ξ ) be a metric space. We say that a mapping : Λ × Λ Λ is a β-ϕ-Geraghty contraction if there exist π Π and ϕ Φ such that for all ϖ , σ , ϱ , υ Λ with ϖ ϱ and σ υ , we have
β ( ϖ , σ ) , ( ϱ , υ ) ϕ ξ ( ϖ , σ ) , ( ϱ , υ ) π ϕ ξ ( ϖ , ϱ ) + ξ ( σ , υ ) 2 ϕ ξ ( ϖ , ϱ ) + ξ ( σ , υ ) 2 .
Theorem 6.
Let ( Λ , ) be a POS and ( Λ , ξ ) be a CMS. Assume the mapping : Λ × Λ Λ satisfies the following conditions:
(i) 
is a β-ϕ-Geraghty contraction mapping.
(ii) 
has the mixed monotone property.
(iii) 
is G T β A M .
(iv) 
There exist ϖ 0 , σ 0 Λ such that
β ( ϖ 0 , σ 0 ) , ϖ 0 , σ 0 , σ 0 , ϖ 0 1 a n d β ( σ 0 , ϖ 0 ) , σ 0 , ϖ 0 , ϖ 0 , σ 0 1 .
(v) 
is continuous.
If there exist ϖ 0 , σ 0 Λ such that ϖ 0 ϖ 0 , σ 0 and σ 0 σ 0 , ϖ 0 , then has a CFP.
Proof. 
Theorem 3 ensures that the sequence { ϖ i } defined by ϖ i + 1 = ϖ i , σ i is convergent to some ϖ * Λ and the sequence { σ i } defined by σ i + 1 = σ i , ϖ i is convergent to some σ * Λ . Also, for each i, we have β ( ϖ i , σ i ) , ϖ i + 1 , σ i + 1 1 and β ( σ i , ϖ i ) , σ i + 1 , ϖ i + 1 1 . Then the continuity of ℧ implies that ℧ has a CFP in Λ × Λ . □
Theorem 7.
Let ( Λ , ) be a POS and ( Λ , ξ ) be a CMS. Assume the mapping : Λ × Λ Λ satisfies the following conditions:
(i) 
is a β-ϕ-Geraghty contraction mapping.
(ii) 
has the mixed monotone property.
(iii) 
is G T β A M .
(iv) 
There exist ϖ 0 , σ 0 Λ such that
β ( ϖ 0 , σ 0 ) , ϖ 0 , σ 0 , σ 0 , ϖ 0 1 a n d β ( σ 0 , ϖ 0 ) , σ 0 , ϖ 0 , ϖ 0 , σ 0 1 .
(v) 
The sequences { ϖ n } and { σ n } are β-regular.
If there exist ϖ 0 , σ 0 Λ such that ϖ 0 ϖ 0 , σ 0 and σ 0 σ 0 , ϖ 0 , then has a CFP.
Proof. 
Choose ϖ 0 , σ 0 Λ be such that
β ( ϖ 0 , σ 0 ) , ϖ 0 , σ 0 , σ 0 , ϖ 0 1 and β ( σ 0 , ϖ 0 ) , σ 0 , ϖ 0 , ϖ 0 , σ 0 1 .
Based on the proof of Theorem 3, we can find a sequence { ϖ i } defined by ϖ i + 1 = ϖ i , σ i convergent to some ϖ * Λ and a sequence { σ i } and σ i + 1 = σ i , ϖ i convergent to some σ * Λ . Also, for i N , we have β ( ϖ i , σ i ) , ϖ i + 1 , σ i + 1 1 and β ( σ i , ϖ i ) , σ i + 1 , ϖ i + 1 1 .
From condition (iii), we get lim i sup β ( ϖ i , σ i ) , ϖ * , σ * > 0 and lim i sup β σ ( σ i , ϖ i ) , σ * , ϖ * > 0 . Thus, there exist a sub-sequence { ϖ i ( k ) } of { ϖ i } and a sub-sequence { σ i ( k ) } of { σ i } such that
lim k β ( ϖ i ( k ) , σ i ( k ) ) , ϖ * , σ * = p > 0
and
lim k β ( σ i ( k ) , ϖ i ( k ) ) , σ * , ϖ * = q > 0 .
Then we get
ϕ ξ ϖ i ( k ) + 1 , σ i ( k ) + 1 , ( ϖ * , σ * ) = ϕ ξ ϖ i ( k ) , σ i ( k ) , ( ϖ * , σ * ) 1 β ( ϖ i ( k ) , σ i ( k ) ) , ϖ * , σ * × π ϕ ξ ( ϖ i ( k ) , ϖ * ) + ξ ( σ i ( k ) , σ * ) 2 ϕ ξ ( ϖ i ( k ) , ϖ * ) + ξ ( σ i ( k ) , σ * ) 2 < 1 β ( ϖ i ( k ) , σ i ( k ) ) , ϖ * , σ * ϕ ξ ( ϖ i ( k ) , ϖ * ) + ξ ( σ i ( k ) , σ * ) 2 .
Thus, we have
ϕ ξ ϖ * , σ * , ( ϖ * , σ * ) = lim k ϕ ξ ϖ i ( k ) + 1 , σ i ( k ) + 1 , ( ϖ * , σ * ) 1 p lim k ϕ ξ ( ϖ i ( k ) , ϖ * ) + ξ ( σ i ( k ) , σ * ) 2 = 0 .
Similarly, one can show that
ϕ ξ σ * , ϖ * , ( σ * , ϖ * ) = lim k ϕ ξ σ i ( k ) + 1 , ϖ i ( k ) + 1 , ( σ * , ϖ * ) 1 q lim k ϕ ξ ( ϖ i ( k ) , ϖ * ) + ξ ( σ i ( k ) , σ * ) 2 = 0 .
Therefore, ϖ * , σ * is a CFP of . □
Theorem 8.
The CFP ( ϖ * , σ * ) of in Theorems 6 and 7 is unique if condition (C) is added to the hypotheses of Theorems 6 and 7.
Proof. 
From Theorem 6 (resp. Theorem 7), we conclude that the mapping ℧ has a CFP, say ( ϖ * , σ * ) Λ × Λ . Let ( s * , t * ) Λ × Λ be another CFP of ℧. Then there exists ( 1 , 2 ) Λ × Λ such that
β ( ϖ * , σ * ) , ( 1 , 2 ) 1 and β ( s * , t * ) , ( 1 , 2 ) 1 .
Since ℧ is β -admissible, then for i N , we have
β ( ϖ * , σ * ) , i ( 1 , 2 ) 1 and β ( s * , t * ) , i ( 1 , 2 ) 1 .
Thus, for n N , we obtain
ϕ ξ ( ϖ * , σ * ) , i ( 1 , 2 ) β ( ϖ * , σ * ) , i 1 ( 1 , 2 ) ϕ ξ ( ϖ * , σ * ) , i ( 1 , 2 ) π ξ ( ϖ * , σ * ) , i 1 ( 1 , 2 ) ϕ ξ ( ϖ * , σ * ) , i 1 ( 1 , 2 ) < ϕ ξ ( ϖ * , σ * ) , i 1 ( 1 , 2 ) .
Therefore, the sequence { ϕ ξ ( ϖ * , σ * ) , i ( 1 , 2 ) } is nonincearsing, there exists υ 0 such that lim i ϕ ξ ( ϖ * , σ * ) , i ( 1 , 2 ) = υ . From (22), one can write
ϕ ξ ( ϖ * , σ * ) , i ( 1 , 2 ) ϕ ξ ( ϖ * , σ * ) , i 1 ( 1 , 2 ) π ϕ ξ ( ϖ * , σ * ) , i 1 ( 1 , 2 ) .
Letting i + in above inequality, we reach
lim i + π ϕ ξ ( ϖ * , σ * ) , i 1 ( 1 , 2 ) = 1 .
Hence,
lim i ϕ ξ ( ϖ * , σ * ) , i ( 1 , 2 ) = 0 ,
which implies that lim i i ( 1 , 2 ) = ( ϖ * , σ * ) . Analogously, one can prove that lim i i ( 1 , 2 ) = ( s * , t * ) . Thus, we conclude that ( ϖ * , σ * ) = ( s * , t * ) . □
Corollary 1.
Let ( Λ , ) be a POS and ( Λ , ξ ) be a CMS. Assume the mapping : Λ × Λ Λ satisfies the following hypotheses:
(i) 
is extended β-Geraghty contraction.
(ii) 
has a mixed monotone property.
(iii) 
is G T β A M .
(iv) 
There exist ϖ 0 , σ 0 Λ such that
β ( ϖ 0 , σ 0 ) , ϖ 0 , σ 0 , σ 0 , ϖ 0 1 a n d β ( σ 0 , ϖ 0 ) , σ 0 , ϖ 0 , ϖ 0 , σ 0 1 .
(v) 
is continuous or the sequences { ϖ n } and { σ n } are β-regular.
If there exist ϖ 0 , σ 0 Λ such that ϖ 0 ϖ 0 , σ 0 and σ 0 σ 0 , ϖ 0 , then has a CFP. Moreover, this CFP is unique if the condition (C) is met.
Proof. 
The proof follows immediately from Theorems 3–5 if we set ϕ ( τ ) = τ . □
Corollary 2.
Let ( Λ , ) be a POS and ( Λ , ξ ) be a CMS. Assume the mapping : Λ × Λ Λ satisfies the the following hypotheses:
(i) 
is β-Geraghty contraction.
(ii) 
has a mixed monotone property.
(iii) 
is G T β A M .
(iv) 
There exist ϖ 0 , σ 0 Λ such that
β ( ϖ 0 , σ 0 ) , ϖ 0 , σ 0 , σ 0 , ϖ 0 1 a n d β ( σ 0 , ϖ 0 ) , σ 0 , ϖ 0 , ϖ 0 , σ 0 1 .
(v) 
is continuous or the sequences { ϖ n } and { σ n } are β-regular.
If there exist ϖ 0 , σ 0 Λ so that ϖ 0 ϖ 0 , σ 0 and σ 0 σ 0 , ϖ 0 , then ℧ has a CFP. Moreover, this CFP is unique if the condition ( C ) is met.
Proof. 
The proof comes from Theorems 6–8 if we take ϕ ( τ ) = τ . □
The following example supports Theorem 6.
Example 6.
Let Λ = [ 0 , ) . Define ξ : Λ × Λ [ 0 , + ) by ξ ϖ , σ = ϖ σ , and ϕ : [ 0 , + ) + [ 0 , + ) by ϕ ( τ ) = τ 2 . Also, define the mapping : Λ × Λ Λ by ( ϖ , σ ) = 1 64 ϖ σ and the function β : Λ 2 × Λ 2 [ 0 , ) by
β ( ϖ , σ ) , ϱ , υ = 4 3 , i f ϖ σ a n d ϱ υ , 0 otherwise .
Clearly, is continuous and G T β A M . Condition ( i v ) of Theorem 6 is satisfied when ϖ 0 = 1 and σ 0 = 0 . For ϖ , σ , ϱ , υ Λ , we have
ξ ( ϖ , σ ) , ( ϱ , υ ) = ϖ σ 64 ϱ υ 64 1 64 ϖ ϱ + σ υ = 1 64 ξ ϖ , ϱ + ξ σ , υ .
Therefore,
β ( ϖ , σ ) , ϱ , υ ϕ ξ ( ϖ , σ ) , ( ϱ , υ ) 1 96 ξ ϖ , ϱ + ξ σ , υ 1 6 ξ ϖ , ϱ + ξ σ , υ 4 2 = 1 6 ξ ϖ , ϱ + ξ σ , υ 4 ξ ϖ , ϱ + ξ σ , υ 4 = π ϕ ξ ϖ , ϱ + ξ σ , υ 2 ϕ ξ ϖ , ϱ + ξ σ , υ 2 .
Hence, the condition (20) is satisfied when π ( τ ) = 1 6 < 1 . Therefore all conditions of Theorem 6 are satisfied and hence has a CFP. Here ( 0 , 0 ) is the unique CFP of .

5. Solving Coupled Ordinary Differential Equations

This part is dedicated to applying Theorem 6 to discuss the existence of solutions to the following CODEs:
d 2 ϖ d ς = ( ς , ϖ ( ς ) , σ ( ς ) ) , ς I = [ 0 , 1 ] , d 2 σ d ς = ( ς , σ ( ς ) , ϖ ( ς ) ) , ϖ ( 0 ) = σ ( 0 ) = 0 , ϖ ( 1 ) = σ ( 1 ) = 0 ,
where : [ 0 , 1 ] × R × R is continuous.
Problem (23) can be written as an integral equation [11] in the form
ϖ ( ς ) = 0 1 ( ς , ν ) ( v , ϖ ( ν ) , σ ( ν ) ) d ν , for all ς I ,
where R is the Green’s function described by
( ς , ν ) = ς ( 1 ν ) , 0 ς ν 1 , ν ( 1 ς ) , 0 ν ς 1 .
Let Λ = C ( I ) , the space of all continuous functions defined on [0,1].
Define ξ : Λ × Λ + by
ξ ( ϖ , σ ) = ϖ σ = sup ς I ϖ ( ς ) σ ( ς ) , for all ϖ , σ Λ .
Define a partial order ≤ on Λ by
( ϖ , σ ) ( ϱ , υ ) ϖ ϱ and υ σ , for all ϖ , σ , ϱ , υ Λ .
Then ( Λ , ) is a POS, and the pair ( Λ , ξ ) is a CMS.
Now, on Problem (23), assume the following conditions:
( P 1 )
The functions : [ 0 , 1 ] × R × R and : [ 0 , 1 ] × [ 0 , 1 ] R R are continuous such that for all ς I and all ϖ , σ , ϖ * , σ * R ,
( ς , ϖ , σ ) ( ς , ϖ * , σ * ) ln ϖ ϖ * + σ σ * 2 + 1 ,
and sup ς I 0 1 ( ς , ν ) d ν 1 8 . Moreover, there exists a function such that ϰ : R 2 × R 2 R such that ϰ ( ϖ , σ ) , ( ϖ * , σ * ) 0 and ϰ ( σ , ϖ ) , ( σ * , ϖ * ) 0 ϖ , σ , ϖ * , σ * R .
( P 2 )
There are ϖ 1 , σ 1 Λ such that for all ς I
ϰ ( ϖ 1 ( ς ) , σ 1 ( ς ) ) , 0 1 ( ς , ν ) ( v , ϖ 1 ( ν ) , σ 1 ( ν ) ) d ν 0
and
ϰ ( σ 1 ( ς ) , ϖ 1 ( ς ) ) , 0 1 ( ς , ν ) ( v , σ 1 ( ν ) , ϖ 1 ( ν ) ) d ν 0 .
( P 3 )
For all ς I and for ϖ , σ , ϖ * , σ * Λ ,
ϰ ( ϖ ( ς ) , σ ( ς ) ) , ϖ * ( ς ) , σ * ( ς ) 0 and ϰ ( σ ( ς ) , ϖ ( ς ) ) , σ * ( ς ) , ϖ * ( ς ) 0 ,
implies
ϰ 0 1 ( ς , ν ) ( v , ϖ ( ν ) , σ ( ν ) ) d ν , 0 1 ( ς , ν ) ( v , ϖ * ( ν ) , σ * ( ν ) ) d ν 0
and
ϰ 0 1 ( ς , ν ) ( v , σ ( ν ) , ϖ ( ν ) ) d ν , 0 1 ( ς , ν ) ( v , σ * ( ν ) , ϖ * ( ν ) ) d ν 0 .
( P 4 )
For any cluster points ϖ and σ of the sequences { ϖ i } and { σ i } of points in Λ with ϰ ( ϖ i , σ i , ϖ i + 1 , σ i + 1 ) 0 and ϰ ( σ i , ϖ i , σ i + 1 , ϖ i + 1 ) 0 , we have lim i inf ϰ ϖ i , σ i , ϖ , σ 0 and lim i inf ϰ σ i , ϖ i , σ , ϖ 0 , respectively.
Now, we present a solution to (23).
Theorem 9.
Under the conditions of ( P 1 ) ( P 4 ) , Problem (23) has at least one solution ( ϖ ^ , σ ^ ) Λ × Λ .
Proof. 
Define the mapping : Λ × Λ Λ by
( ϖ , σ ) ( ς ) = 0 1 ( ς , ν ) ( v , ϖ ( ν ) , σ ( ν ) ) d ν , for all ς I .
It is known that the CFP of ℧ is equivalent to the solution of Problem (23). So we will show that ℧ has a CFP.
Now, let ϖ ( ς ) , σ ( ς ) , ϖ * ( ς ) , σ * ( ς ) Λ be such that ϰ ( ϖ ( ς ) , σ ( ς ) ) , ϖ * ( ς ) , σ * ( ς ) 0 for all ς I . From ( P 1 ) , we get
ξ ( ( ϖ , σ ) , ( ϖ * , σ * ) ) = ( ϖ , σ ) ( ς ) ( ϖ * , σ * ) ( ς ) = 0 1 ( ς , ν ) ( v , ϖ ( ν ) , σ ( ν ) ( v , ϖ * ( ν ) , σ * ( ν ) d ν 0 1 ( ς , ν ) ( v , ϖ ( ν ) , σ ( ν ) ( v , ϖ * ( ν ) , σ * ( ν ) d ν 0 1 ( ς , ν ) ln ϖ ( ν ) ϖ * ( ν ) + σ ( ν ) σ * ( ν ) 2 + 1 d ν sup ς I 0 1 ( ς , ν ) d ν ln ϖ ( ν ) ϖ * ( ν ) + σ ( ν ) σ * ( ν ) 2 + 1 1 8 ln ϖ ( ν ) ϖ * ( ν ) + σ ( ν ) σ * ( ν ) 2 + 1 ln ϖ ( ν ) ϖ * ( ν ) + σ ( ν ) σ * ( ν ) 2 + 1 = ln ξ ϖ , ϖ * + ξ σ , σ * 2 + 1 .
Therefore,
ln ξ ( ( ϖ , σ ) , ( ϖ * , σ * ) ) + 1 ln ln ξ ϖ , ϖ * + ξ σ , σ * 2 + 1 + 1 = ln ln ξ ϖ , ϖ * + ξ σ , σ * 2 + 1 + 1 ln ξ ϖ , ϖ * + ξ σ , σ * 2 + 1 × ln ξ ϖ , ϖ * + ξ σ , σ * 2 + 1 .
Define ϕ : [ 0 , ) [ 0 , ) by ϕ ( t ) = ln ( t + 1 ) . Then it is clear that ϕ Φ . Now, define π : [ 0 , + ) [ 0 , 1 ) by
π ( t ) = 0 , if t = 0 ϕ ( t ) t , if t 0 .
Therefore,
ϕ ξ ( ( ϖ , σ ) , ( ϖ * , σ * ) ) π ϕ ξ ϖ , ϖ * + ξ σ , σ * 2 ϕ ξ ϖ , ϖ * + ξ σ , σ * 2 .
Similarly, for all ϖ , σ , ϖ * , σ * Λ with ϰ ( σ , ϖ ) , ( σ * , ϖ * ) 0 , we can write
ϕ ξ ( σ , ϖ ) , ( σ * , ϖ * ) π ϕ ξ ϖ , ϖ * + ξ σ , σ * 2 ϕ ξ ϖ , ϖ * + ξ σ , σ * 2 .
Now, define β : Λ 2 × Λ 2 [ 0 , ) by
β ( σ , ϖ ) , σ * , ϖ * = 1 , if ϰ ( ϖ , σ ) , ( ϖ * , σ * ) 0 , 0 otherwise .
If ϖ , σ , ϖ * , σ * Λ , then (24) implies that
β ( σ , ϖ ) , σ * , ϖ * ϕ ξ ( ( ϖ , σ ) , ( ϖ * , σ * ) ) π ϕ ξ ϖ , ϖ * + ξ σ , σ * 2 ϕ ξ ϖ , ϖ * + ξ σ , σ * 2 .
Similarly, (25) implies that
β ( ϖ , σ ) , ϖ * , σ * ϕ ξ ( σ , ϖ ) , ( σ * , ϖ * ) π ϕ ξ ϖ , ϖ * + ξ σ , σ * 2 ϕ ξ ϖ , ϖ * + ξ σ , σ * 2 .
Clearly, β ϖ , σ , ϖ * , σ * = 1 and β ϖ * , σ * , ϱ , υ = 1 imply β ϖ , σ , ϱ , υ = 1 , for all ϖ , σ , ϖ * , σ * , ϱ , υ Λ .
If β ϖ , σ , ϖ * , σ * = 1 for all ϖ , σ , ϖ * , σ * Λ , then ϰ ( ϖ , σ ) , ( ϖ * , σ * ) 0 . Using ( P 3 ) , we get ϰ ( ϖ , σ ) ( ς ) , ( ϖ * , σ * ) ( ς ) 0 , and so β ( ϖ , σ ) , ( ϖ * , σ * ) 0 . Thus, ℧ is G T β A M .
Analogously, If β σ , ϖ , σ * , ϖ * = 1 for all ϖ , σ , ϖ * , σ * Λ , then ϰ ( σ , ϖ ) , ( σ * , ϖ * ) 0 . So ( P 3 ) implies that ϰ ( σ , ϖ ) ( ς ) , ( σ * , ϖ * ) ( ς ) 0 , and so β ( σ , ϖ ) , ( σ * , ϖ * ) 0 . Thus, ℧ is G T β A M .
From ( P 2 ) , we can find ϖ 1 , σ 1 Λ such that ϰ ( ϖ 1 , σ 1 ) , ( ϖ 1 , σ 1 ) 0 and ϰ ( σ 1 , ϖ 1 ) , ( σ 1 , ϖ 1 ) 0 . Hypothesis ( P 4 ) completes all requirements of Theorem 6. So, ℧ has a CFP in Λ ; that is, there exists ( ϖ ^ , σ ^ ) Λ × Λ such that ϖ ^ = ( ϖ ^ , σ ^ ) and σ ^ = ( σ ^ , ϖ ^ ) . Therefore, ( ϖ ^ , σ ^ ) is a solution of (23). □

6. Conclusions and Future Works

In this paper, a new class of mappings called “generalized β - ϕ -Geraghty contraction-type mappings” has been introduced. Through the use of our new concept, several coupled fixed points have been presented and demonstrated. Also, we supported our results with some examples and an application to coupled ordinary differential equations. Lately, Mlaiki et al. [13] launched a new space, called “controlled metric-type space”, and they gave a new version of the Banach contraction theorem. For future work, our main concern will be to initiate a study of the coupled fixed-point results by utilizing the concept of generalized β - ϕ -Geraghty contraction-type mappings and applying the new results to solve some real-life problems.

Author Contributions

Formal analysis, W.S.; Investigation, K.A., W.S. and H.A.H.; Methodology, H.A.H. and K.A.; Supervision, W.S.; Writing—original draft, H.A.H. and K.A.; Writing—review & editing, W.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The second and third authors would like to thank Prince Sultan University for their support through TAS lab. The authors also thank the reviewers for their valuable comments that helped them appropriately revise the paper.

Conflicts of Interest

The authors declare that they have no competing interest.

Abbreviations

The following abbreviations are used in this manuscript:
FPFixed point
BCPBanach contraction principle
CMSComplete metric space
CFPCoupled fixed point
POSPartially ordered set
CODECoupled ordinary differential equation
G T β A M Generalized triangular β -admissible mapping
E β - ϕ G C Extended β - ϕ -Geraghty contraction

References

  1. Fredholm, E.I. Sur une classe d’equations fonctionnelles. Acta Math. 1903, 27, 365–390. [Google Scholar] [CrossRef]
  2. Rus, M.D. A note on the existence of positive solution of Fredholm integral equations. Fixed Point Theory 2004, 5, 369–377. [Google Scholar]
  3. Berenguer, M.I.; Munoz, M.V.F.; Guillem, A.I.G.; Galan, M.R. Numerical treatment of fixed point applied to the nonlinear Fredholm integral equation. Fixed Point Theory Appl. 2009, 2009, 735–738. [Google Scholar] [CrossRef] [Green Version]
  4. Hammad, H.A.; la Sen, M.D.; Aydi, H. Analytical solution for differential and nonlinear integral equations via Fϖe-Suzuki contractions in modified ϖe-metric-like spaces. J. Funct. Spaces 2021, 2021, 6128586. [Google Scholar] [CrossRef]
  5. Ameer, E.; Aydi, H.; Arshad, M.; la Sen, M.D. Hybrid Ćirić type graphic (Υ,Λ)-contraction mappings with applications to electric circuit and fractional differential equations. Symmetry 2020, 12, 467. [Google Scholar] [CrossRef] [Green Version]
  6. Banach, S. Sur les opérations dans les ensembles abstraits et leur applications aux èquations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
  7. Amini-Harandi, A.; Emami, H. A fixed point theorem for contraction type maps in partially ordered metric spaces and applications to ordinary differential equations. Nonlinear Anal. 2010, 72, 2238–2242. [Google Scholar] [CrossRef]
  8. Cho, S.H.; Bae, J.S. Common fixed point theorems for mappings satisfying property (E.A) on cone metric spaces. Math. Comput. Model. 2011, 53, 945–951. [Google Scholar] [CrossRef]
  9. Karapinar, E.; Kumam, P.; Salimi, P. On α-ψ-Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013, 2013, 94. [Google Scholar] [CrossRef] [Green Version]
  10. Salimi, P.; Latif, A.; Hussain, N. Modified α-ψ-contractive mappings with applications. Fixed Point Theory Appl. 2013, 2013, 151. [Google Scholar] [CrossRef] [Green Version]
  11. Bae, J.-S.; Cho, S.-H.; Karapinar, E. Fixed point theorems for α-Geraghty contraction type maps in metric spaces. Fixed Point Theory Appl. 2013, 2013, 329. [Google Scholar]
  12. Hammad, H.A.; la Sen, M.D. Solution of nonlinear integral equation via fixed-point of cyclic α s q -rational contraction mappings in metric-like spaces. Bull. Braz. Math. Soc. New Ser. 2020, 51, 81–105. [Google Scholar] [CrossRef]
  13. Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef] [Green Version]
  14. Aslam, M.S.; Chowdhury, M.S.R.; Guran, L.; Manzoor, A.; Abdeljawad, T.; Santina, D.; Mlaiki, N. Complex-valued double controlled metric like spaces with applications to fixed point theorems and Fredholm type integral equations. AIMS Math. 2023, 8, 4944–4963. [Google Scholar] [CrossRef]
  15. Aiadi, S.S.; Othman, W.A.M.; Wang, K.B.; Mlaiki, N. Fixed point theorems in controlled J-metric spaces. AIMS Math. 2023, 8, 4753–4763. [Google Scholar] [CrossRef]
  16. Abdeljawad, T.; Abodayeh, K.; Mlaiki, N. On fixed point generalizations to partial b-metric spaces. J. Comput. Anal. Appl. 2015, 19, 883–891. [Google Scholar]
  17. Al-Rawashdeh, A.; Aydi, H.; Felhi, A.; Sahmim, S.; Shatanawi, W. On common fixed points for α-F-contractions and applications. J. Nonlinear Sci. Appl. 2016, 9, 3445–3458. [Google Scholar] [CrossRef] [Green Version]
  18. Shatanawi, W.; Mustafa, Z.; Tahat, N. Some coincidence point theorems for nonlinear contraction in ordered metric spaces. Fixed Point Theory Appl. 2011, 2011, 68. [Google Scholar] [CrossRef] [Green Version]
  19. Geraghty, M. On contractive mappings. Proc. Am. Math. Soc. 1973, 40, 604–608. [Google Scholar] [CrossRef]
  20. Caballero, J.; Harjani, J.; Sadarangani, K. A best proximity point theorem for Geraghty-contractions. Fixed Point Theory Appl. 2012, 2012, 231. [Google Scholar] [CrossRef] [Green Version]
  21. Bilgili, N.; Karapinar, E.; Sadarangani, K. A generalization for the best proximity point of Geraghty-contractions. J. Inequalities Appl. 2013, 2013, 286. [Google Scholar] [CrossRef] [Green Version]
  22. Gordji, M.E.; Ramezani, M.; Cho, Y.J.; Pirbavafa, S. A generalization of Geraghty.s theorem in partially ordered metric space and application to ordinary dierential equations. Fixed Point Theory Appl. 2012, 2012, 74. [Google Scholar] [CrossRef] [Green Version]
  23. Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
  24. Karapinar, E.; Samet, B. Generalized (α-ψ)-contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal. 2012, 2012, 793486. [Google Scholar] [CrossRef]
  25. Ali, M.U.; Kamran, T. On (α*,ψ)-contractive multi-valued mappings. Fixed Point Theory Appl. 2013, 2013, 137. [Google Scholar] [CrossRef] [Green Version]
  26. Bhaskar, T.G.; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 2006, 65, 1379–1393. [Google Scholar] [CrossRef]
  27. Lakshmikantham, V.; Cirić, L. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 2009, 70, 4341–4349. [Google Scholar] [CrossRef]
  28. Samet, B.; Vetro, C. Coupled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered metric spaces. Nonlinear Anal. 2011, 74, 4260–4268. [Google Scholar] [CrossRef]
  29. Sintunavarat, W.; Kumam, P.; Cho, Y.J. Coupled fixed point theorems for nonlinear contractions without mixed monotone property. Fixed Point Theory Appl. 2012, 2012, 170. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Hammad, H.A.; Abodayeh, K.; Shatanawi, W. Applying an Extended β-ϕ-Geraghty Contraction for Solving Coupled Ordinary Differential Equations. Symmetry 2023, 15, 723. https://doi.org/10.3390/sym15030723

AMA Style

Hammad HA, Abodayeh K, Shatanawi W. Applying an Extended β-ϕ-Geraghty Contraction for Solving Coupled Ordinary Differential Equations. Symmetry. 2023; 15(3):723. https://doi.org/10.3390/sym15030723

Chicago/Turabian Style

Hammad, Hasanen A., Kamaleldin Abodayeh, and Wasfi Shatanawi. 2023. "Applying an Extended β-ϕ-Geraghty Contraction for Solving Coupled Ordinary Differential Equations" Symmetry 15, no. 3: 723. https://doi.org/10.3390/sym15030723

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop