Next Article in Journal
Statistical Inference for the Kavya–Manoharan Kumaraswamy Model under Ranked Set Sampling with Applications
Next Article in Special Issue
Processing Fractional Differential Equations Using ψ-Caputo Derivative
Previous Article in Journal
Hydrodynamic Permeability in Axisymmetric Flows of Viscous Fluids through an Annular Domains with Porous Layer
Previous Article in Special Issue
Effects of M-Truncated Derivative and Multiplicative Noise on the Exact Solutions of the Breaking Soliton Equation
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Statistical Inference of the Half Logistic Modified Kies Exponential Model with Modeling to Engineering Data

1
Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
2
Department of Statistics and Operations Research, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
3
Faculty of Graduate Studies for Statistical Research, Cairo University, 5 Dr. Ahmed Zewail Street, Giza 12613, Egypt
4
Department of Mathematics, Faculty of Science, Tanta University, Tanta 31527, Egypt
5
Department of Mathematics and Statistics, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia
6
Mathematics and Computer Science Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
*
Author to whom correspondence should be addressed.
Symmetry 2023, 15(3), 586; https://doi.org/10.3390/sym15030586
Submission received: 29 January 2023 / Revised: 18 February 2023 / Accepted: 20 February 2023 / Published: 23 February 2023

Abstract

:
The half-logistic modified Kies exponential (HLMKEx) distribution is a novel three-parameter model that is introduced in the current work to expand the modified Kies exponential distribution and improve its flexibility in modeling real-world data. Due to its versatility, the density function of the HLMKEx distribution offers symmetrical, asymmetrical, unimodal, and reversed-J-shaped, as well as increasing, reversed-J shaped, and upside-down hazard rate forms. An infinite linear representation can be used to represent the HLMKEx density. The HLMKEx model’s fundamental mathematical features are obtained, such as the quantile function, moments, incomplete moments, and moments of residuals. Additionally, some measures of uncertainty as well as stochastic ordering are derived. To estimate its parameters, eight estimation methods are used. With the use of detailed simulation data, we compare the performance of each estimating technique and obtain partial and total ranks for the accuracy measures of absolute bias, mean squared error, and mean absolute relative error. The simulation results demonstrate that, in contrast to other competing distributions, the proposed distribution can actually fit the data more accurately. Two actual data sets are investigated in the field of engineering to demonstrate the adaptability and application of the suggested distribution. The findings demonstrate that, in contrast to other competing distributions, the provided distribution can actually fit the data more accurately.

1. Motivation and Introduction

In the recent past, there has already been a lot of effort placed on creating more flexible distributions. Several generated (G) families of distributions have been built and studied over the past few decades to simulate real-world data in a number of practice areas, including engineering, economics, medical sciences, biological research, environmental studies, and insurance. In this context, by generalizing G families, many different types of distributions have been produced. These new families allow for additional variety because at least one shape parameter is combined with the baseline one; see Refs. [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18]. Our interest here is with the type II half logistic (HL) G family prepared in Ref. [19], which has the following cumulative distribution function (CDF) and probability density function (PDF):
F ( z ) = 2 G ( z ; ς ) η 1 + G ( z ; ς ) η , z R ,
and
f ( z ) = 2 g ( z ; ς ) G ( z ; ς ) η 1 1 + G ( z ; ς ) η 2 , z R ,
where η > 0 is the shape parameter, G ( . ) is a baseline CDF, and ς is the parameter vector. Equation (2) is easiest to solve when G ( . ) and g ( . ) have straightforward expressions. Several useful distributions have been provided using the HL-G family; for instance, the reader can refer to [20,21,22,23,24].
In a wide range of industries, the exponential (Ex) distribution is the most often used distribution for data analysis. The Ex distribution, however, can only be applied when the hazard rate is constant in many real-world scenarios. Its uni-modal density function and constant hazard rate function (HF), however, limit its uses and prevent it from being used to describe phenomena with decreasing, increasing, or bathtub-shaped hazard rates. As a result, the Ex distribution has been extended in the statistical literature in order to increase its validity and flexibility; see, for example, Refs. [25,26,27,28,29,30].
Recently, Ref. [31] proposed a new extension for the Ex distribution, known as the modified Kies-exponential (MKEx), with the following CDF and PDF:
G ( z ) = 1 exp exp θ z 1 γ , z > 0 ,
and
g ( z ) = γ θ exp ( γ θ z ) 1 exp ( θ z ) γ 1 exp exp θ z 1 γ , z > 0 ,
where θ , γ R + are the scale and shape parameters, respectively. The MKEx distribution is increasing, decreasing, or bathtub HR-shaped. Reference [31] claimed that the MKEx distribution has a closed-form CDF and is very user friendly, making it suitable for usage in a variety of domains, such as survival analysis, biomedical investigations, reliability testing, and life testing. Reference [32] produced a new generalized form of MKEx distribution by using power transformation.
In this study, a new three-parameter model called the half logistic MKEx (HLMKEx) distribution will be introduced along with an examination of its statistical properties. Due to the following, we are motivated to suggest the HLMKEx distribution:
  • The proposed distribution is remarkably versatile, as evidenced by the variety of symmetrical and asymmetrical graphical shapes of the PDF and HF (Figure 1).
  • The closed-form expression of the CDF of this distribution makes it perfect for use in some areas, including engineering, reliability, life testing, survival analysis, and biomedical studies.
  • Some statistical properties, including linear representation of its PDF, moments, incomplete moments, moments of residual, entropy measures, and stochastic ordering, are explored.
  • To assess the behavior of the parameters, eight estimating techniques are recommended. The suggested methods are maximum likelihood (ML), least squares (LS), weighted LS (WLS), Anderson–Darling (AD), right-tail AD, percentiles, maximum product of the spacings (MS), and Cramér–von Mises (CM).
  • We conduct comprehensive simulation tests to examine the behaviors of various estimating methodologies using absolute bias (BIAS), mean squared error (MSE) and mean absolute relative errors (AREs) criteria because it is challenging to theoretically compare these behaviors.
  • Engineering real-world data sets are used to examine this new distribution’s capabilities, demonstrating the model’s usefulness in applications.
The layout of this article is as follows: In Section 2, a novel model that modifies the MKEx distribution is introduced. In Section 3, the HLMKEx distribution’s basic characteristics are derived. Section 4 discusses eight distinct techniques for estimating model parameters. Section 5 performs a numerical investigation using Monte Carlo simulations. In Section 6, real-world data sets are numerically investigated, and Section 7 offers the findings.

2. Model Formulation

In this section, the CDF, and PDF of the HLMKEx distribution are defined by setting (3), (4) in (1) and (2). The HF, and quantile function (QF) of the HLMKEx distribution are also given.
Definition 1. 
A random variable Z is assumed to have the HLMKEx distribution if its CDF is
F ( z ; ω ) = 2 1 exp K ( z , θ , γ ) η 1 + 1 exp K ( z , θ , γ ) η , z , ω > 0 ,
where K ( z , θ , γ ) = exp θ z 1 γ , and ω ( η , θ , γ ) is the set of parameters. The PDF of the HLMKEx distribution is
f ( z ; ω ) = 2 η θ γ e θ γ z 1 e θ z γ 1 exp K ( z , θ , γ ) 1 exp K ( z , θ , γ ) η 1 1 + 1 exp K ( z , θ , γ ) η 2 , z > 0 .
The survival, HF, and cumulative HF are as follows:
F ¯ ( z ; ω ) = 1 1 exp K ( z , θ , γ ) η 1 + 1 exp K ( z , θ , γ ) η , z > 0 ,
h ( z ; ω ) = 2 η θ γ e θ γ z 1 e θ γ z γ 1 exp K ( z , θ , γ ) 1 exp K ( z , θ , γ ) η 1 1 1 exp K ( z , θ , γ ) 2 η ,
and
H ( z ; ω ) = ln 1 1 exp K ( z , θ , γ ) η 1 + 1 exp K ( z , θ , γ ) η .
Figure 1 shows the PDF and HF plots of the HLMKEx distribution for various parameter selections. The PDF shapes might be uni-modal, symmetrical, or asymmetrical (right-skewed). The shapes of the HF are J-shaped, increasing, and upside-down patterns.
The QF of the HLMKEx distribution is produced by inverting CDF (5) as follows:
z = 1 θ ln 1 + ln 1 u 2 u 1 η 1 γ ,
where u is a uniform distribution on (0, 1). We can find the median, upper, and lower quantiles by putting u = 0.5, 0.75, and 0.25 in (7), respectively.

3. Mathematical Properties

In this section, linear representation, moments and other associated measures, some entropy measures, and stochastic ordering (SO) of the HLMKEx distribution are all determined.

3.1. Linear Representation

Here, we express the HLMKEx PDF as a mixture of linear representation, which is helpful for examining the majority of the distribution’s statistical characteristics.
Consider the following power series:
( 1 + t ) c = u 1 = 0 ( 1 ) u 1 c + u 1 1 u 1 t u 1 , t < 1 , c > 0 ,
and
( 1 t ) d 1 = u 2 = 0 ( 1 ) u 2 d 1 u 2 t u 2 , t < 1 , d > 0 ,
Using Expansions (8) and (9) in (6) give
f ( z ; ω ) = u 1 , u 2 = 0 ψ u 1 , u 2 e θ γ z 1 e θ z γ 1 exp ( u 2 + 1 ) K ( z , θ , γ ) ,
where ψ u 1 , u 2 = ( 1 ) u 1 + u 2 2 ( u 1 + 1 ) γ η θ η ( u 1 + 1 ) 1 u 2 . After using exponential and binomial expansions in (10), it can then be expressed by
f ( z ; ω ) = u 1 , u 2 , j 1 , j 2 = 0 Ξ u m , j m exp θ z j 2 γ ( j 1 + 1 ) ,
where Ξ u m , j m = ( 1 ) j 1 + j 2 ψ u 1 , u 2 ( u 2 + 1 ) j 1 j 1 ! γ j 1 + γ 1 j 2 , m = 1 , 2 .

3.2. Moments Measures

The nth moment of the HLMKEx distribution is obtained as follows:
μ n = u 1 , u 2 , j 1 , j 2 = 0 Ξ u m , j m 0 z n exp θ ( j 2 γ ( j 1 + 1 ) ) z d z = u 1 , u 2 , j 1 , j 2 = 0 Ξ u m , j m Γ ( n + 1 ) θ ( j 2 ( γ j 1 + 1 ) ) n + 1 ,
where Γ ( . ) is the gamma function. Setting n = 1, 2, 3, and 4 in (12), the first four ordinary moments of Z are obtained.
The nth incomplete moment, say n ( x ) , of the HLMKEx distribution is given by
n ( x ) = u 1 , u 2 , j 1 , j 2 = 0 Ξ u m , j m 0 x z n exp θ ( j 2 γ ( j 1 + 1 ) ) z d z = u 1 , u 2 , j 1 , j 2 = 0 Ξ u m , j m Γ n + 1 θ ( j 2 γ ( j 1 + 1 ) ) n + 1 , θ ( j 2 γ ( j 1 + 1 ) ) x ,
where Γ ( . , x ) is the incomplete gamma (IG) function.
The Bonferroni and Lorenz curves are two examples of applications of the first incomplete moment for n = 1. These curves are frequently used in many different professions.
Table 1 and Table 2 list some statistical computations of the first four moments—variance (V), coefficient of skewness (CS), coefficient of kurtosis (CK), and coefficient of variation (CV)—for the HLMKEx model for various values of the model parameters. According to the CS and CK values, we may deduce from these tables that the distribution is right skewed, platykurtic, and leptokurtic. The 3D plots of measures ( μ 1 , V, CS, CK, CV, and index of dispersion (ID)) are shown in Figure 2 and Figure 3 for further explanation.

3.3. Moments of Residual Life Function

The kth moment of the residual life (MRL), represented by Q k ( x ) = E ( Z x ) k Z > x , k = 1 , 2 , , uniquely determines the CDF F ( z ) . The kth MRL of Z is defined by
Q k ( x ) = 1 F ¯ ( x ) x ( Z x ) k d F ( z ) .
Using the binomial expansion in (14), then Q k ( x ) of the HLMKEx distribution is given by
Q k ( x ) = u 1 , u 2 , j 1 , j 2 = 0 Ξ u m , j m F ¯ ( x ) x z k exp θ ( j 2 γ ( j 1 + 1 ) ) z d z = u 1 , u 2 , j 1 , j 2 = 0 Ξ u m , j m F ¯ ( x ) Υ k + 1 , θ ( j 2 γ ( j 1 + 1 ) ) θ ( j 2 γ ( j 1 + 1 ) ) k + 1 ,
where Υ ( . , x ) is the upper IG function.

3.4. Entropy Measures

Entropy is the amount of variability or uncertainty present in a random variable. The degree of uncertainty in the data increases with the entropy value. The determination of the HLMKEx expression for various entropy measurements is the main topic here. The entropy of Z, according to Ref. [33], is defined mathematically as
Φ ( ρ ) = ( 1 ρ ) 1 log 0 f ( z ; ω ) ρ d z .
To obtain Φ ( ρ ) , we obtain f ( z ; ω ) ρ using similar expansions (8) and (9) as given below:
f ( z ; ω ) ρ = u 1 , u 2 = 0 ψ u 1 , u 2 e θ ρ γ z 1 e θ z ρ ( γ 1 ) exp ( u 2 + ρ ) K ( z , θ , γ ) ,
where ψ u 1 , u 2 = ( 1 ) u 1 + u 2 2 η θ γ ρ 2 ρ + u 1 1 u 1 η u 1 + ρ η 1 u 2 . Using exponential and binomial expansions in (15), f ( z ; ω ) ρ can then be expressed by
f ( z ; ω ) ρ = u m , j m = 0 Ξ u m , j m exp θ z j 2 ( ρ + j 1 ) γ ,
where Ξ u m , j m = ( 1 ) j 1 + j 2 ψ u 1 , u 2 ( u 2 + ρ ) j 1 j 1 ! γ j 1 + ρ ( γ 1 ) j 2 , m = 1 , 2 .
Substituting the PDF (16) in (15), then the Φ ( ρ ) of the HLMKEx distribution is
Φ ( ρ ) = ( 1 ρ ) 1 log u m , j m = 0 Ξ u m , j m θ j 2 ( ρ + j 1 ) γ .
The Havrda and Charvat entropy measure (see Ref. [34]) of the HLMKEx distribution is given by
λ ρ = 1 2 1 ρ 1 0 f z ; ω ρ d z 1 ρ 1 , ρ 1 , ρ > 0 = 1 2 1 ρ 1 u m , j m = 0 Ξ u m , j m θ j 2 ( ρ + j 1 ) γ 1 ρ 1 .
Furthermore, the Tsallis entropy (Ref. [35]) of the HLMKEx distribution is obtained as follows:
Δ ρ = ( ρ 1 ) 1 1 0 f ( z ; ω ) ρ d z , ρ 1 , ρ > 0 = ( ρ 1 ) 1 1 u m , j m = 0 Ξ u m , j m θ j 2 ( ρ + j 1 ) γ .

3.5. Stochastic Ordering

A crucial tool for comparing the behavior of system components is the stochastic ordering of a non-negative continuous random variable. A random variable Z 1 is said to be smaller than another random variable Z 2 in the following ways:
  • Stochastic order Z 1 s t Z 2 i f H Z 1 ( z 1 ) H Z 2 ( z 2 ) z .
  • Hazard rate order Z 1 h r Z 2 i f H Z 1 ( z 1 ) H Z 2 ( z 2 ) z .
  • Mean residual life order Z 1 m r l Z 2 i f H Z 1 ( z 1 ) H Z 2 ( z 2 ) z .
  • Likelihood ratio order Z 1 l r Z 2 if h Z 1 z h Z 1 z h Z 2 z h Z 2 z decreases in z. This implies that Z 1 l r Z 2 Z 1 h r Z 2 Z 1 s t Z 2 Z 1 m r l Z 2 .
In this sub-section, we demonstrate that the HLMKEx distribution is ranked in accordance with the strongest “likelihood ratio”, as indicated in the theorem below.
Theorem 1. 
Let Z 1 HLMKEx ( ω 1 ) and Z 2 HLMKEx ( ω 2 ) , where ω i ( θ i , γ i , η i ) , i = 1 , 2 . If θ 1 > θ 2 , γ 1 > γ 2 , η 1 > η 2 , then Z 1 l r Z 2 , hence Z 1 h r Z 2 , Z 1 s t Z 2 , and Z 1 m r l Z 2 .
Proof. 
h Z 1 z ; ω 1 h Z 2 z ; ω 2 = η 1 θ 1 γ 1 e θ 1 γ 1 z 1 e θ 1 z γ 1 1 e K ( z , θ 1 , γ 1 ) 1 e K ( z , θ 1 , γ 1 ) η 1 1 1 + 1 e K ( z , θ 1 , γ 1 ) η 2 2 η 2 θ 2 γ 2 e θ 2 γ 2 z 1 e θ 2 z γ 2 1 e K ( z , θ 2 , γ 2 ) 1 e K ( z , θ 2 , γ 2 ) η 2 1 1 + 1 e K ( z , θ 2 , γ 2 ) η 1 2 .
Hence,
d d z log h Z 1 ( z ; ω 1 ) h Z 2 ( z ; ω 2 ) = θ 1 ( γ 1 1 ) e θ 1 z 1 θ 2 ( γ 2 1 ) e θ 2 z 1 K ( z , θ 1 , γ 1 ) ( η 2 1 ) K ( z , θ 2 , γ 2 ) e K ( z , θ 2 , γ 2 ) 1 + ( η 1 1 ) K ( z , θ 1 , γ 1 ) e K ( z , θ 1 , γ 1 ) 1 + K ( z , θ 2 , γ 2 ) + 2 η 2 1 + 1 e K ( z , θ 2 , γ 2 ) η 2 1 1 e K ( z , θ 2 , γ 2 ) η 2 1 e K ( z , θ 2 , γ 2 ) K ( z , θ 2 , γ 2 ) 2 η 1 1 + 1 e K ( z , θ 1 , γ 1 ) η 1 1 1 e K ( z , θ 1 , γ 1 ) η 1 1 e K ( z , θ 1 , γ 1 ) K ( z , θ 1 , γ 1 ) ,
where K ( z , θ i , γ i ) = γ i θ i exp θ i z 1 γ 1 exp θ i z , i = 1 , 2 . If θ 1 > θ 2 , γ 1 > γ 2 , η 1 > η 2 , then d d z log h Z 1 z h Z 2 z < 0 and h Z 1 z ; ω 1 h Z 2 z ; ω 2 is decreasing function in z, that is Z 1 l r Z 2 , hence Z 1 h r Z 2 , Z 1 s t Z 2 , and Z 1 m r l Z 2 .

4. Estimation Methods

In this part, we seek to identify estimators for the model parameters ( θ ^ , η ^ , and γ ^ ) that we propose using various estimate techniques that are determined by maximizing or minimizing an objective function.
Our suggested model estimators θ ^ , η ^ , and γ ^ are derived using the ML estimation technique ( E M 1 ) by maximizing the following equation:
L o g l = n log ( 2 θ γ η ) + θ γ i = 1 n z i + ( γ 1 ) i = 1 n log 1 e θ z i i = 1 n e θ z i 1 γ + ( η 1 ) i = 1 n log 1 e e θ z i 1 γ 2 i = 1 n log 1 + 1 e e θ z i 1 γ η .
Using the Anderson–Darling estimation technique ( E M 2 ), the following equation is minimized to produce our suggested model estimators θ ^ , η ^ , and γ ^ :
A = n 1 n i = 1 n ( 2 i 1 ) [ log F ( z ( i ) ) + log F ¯ ( z ( n i + 1 ) ) ] = n 1 n i = 1 n ( 2 i 1 ) log 2 1 e e θ z ( i ) 1 γ η 1 e e θ z ( i ) 1 γ η + 1 + log 1 2 1 e e θ z ( n i + 1 ) 1 γ η 1 e e θ z ( n i + 1 ) 1 γ η + 1 .
Using the Cramér–von Mises estimation technique ( E M 3 ), the following equation is minimized to produce our suggested model estimators θ ^ , η ^ , and γ ^ :
C = 1 12 n + i = 1 n F ( z ( i ) ) 2 i 1 2 n 2 = 1 12 n + i = 1 n 2 1 e e θ z ( i ) 1 γ η 1 e e θ z ( i ) 1 γ η + 1 2 i 1 2 n 2 .
Using the maximum product of the spacings estimation technique ( E M 4 ), the following equation is maximized to produce our suggested model estimators θ ^ , η ^ , and γ ^ :
J = 1 n + 1 i = 1 n + 1 log H i , H i = F z ( i ) F z ( i 1 ) .
Using the least-squares estimation technique ( E M 5 ), the following equation is minimized to produce our suggested model estimators θ ^ , η ^ , and γ ^ :
V = i = 1 n F ( z ( i ) ) i n + 1 2 = i = 1 n 2 1 e e θ z ( i ) 1 γ η 1 e e θ z ( i ) 1 γ η + 1 i n + 1 2 .
Using the percentile estimation technique ( E M 6 ), the following equation is minimized to produce our suggested model estimators, θ ^ , η ^ , and γ ^ :
P C = i = 1 n z ( i ) Q ( p i ) 2 = i = 1 n z ( i ) 1 θ log log 1 1 p i p i 2 1 / η γ + 1 2 .
Using the right-tail Anderson–Darling estimation technique ( E M 7 ), the following equation is minimized to produce our suggested model estimators θ ^ , η ^ , and γ ^ :
R = n 2 2 i = 1 n F z ( i ) 1 n i = 1 n 2 i 1 log F ¯ z ( n + 1 i ) = n 2 2 i = 1 n 2 1 e e θ z ( i ) 1 γ η 1 e e θ z ( i ) 1 γ η + 1 1 n i = 1 n 2 i 1 log 2 1 e e θ z ( n + 1 i ) 1 γ η 1 e e θ z ( n + 1 i ) 1 γ η + 1 .
Using the weighted least-squares estimation technique ( E M 8 ), the following equation is minimized to produce our suggested model estimators θ ^ , η ^ , and γ ^ :
W = i = 1 n ( n + 1 ) 2 ( n + 2 ) i ( n i + 1 ) F ( z ( i ) ) i n + 1 2 = i = 1 n ( n + 1 ) 2 ( n + 2 ) i ( n i + 1 ) 2 1 e e θ z ( i ) 1 γ η 1 e e θ z ( i ) 1 γ η + 1 i n + 1 2 .

5. Numerical Simulation

This section examines the behavior of all estimation techniques identified in Section 4, utilizing our suggested model to produce data sets at random and identify suggested model estimators using these estimation techniques. For this study, we employ several measures such as the average of absolute bias (BIAS), | B I A S ( ω ^ ) | = 1 M i = 1 M | ω ^ ω | , mean squared error (MSE), MSE = 1 M i = 1 M ( ω ^ ω ) 2 , and mean absolute relative error (MRE), MRE = 1 M i = 1 M | ω ^ ω | / ω , ω = ( θ , η , γ ) . The second goal of this simulation is to determine the optimal estimating technique to use when calculating the model estimators we provide. In order to run this simulation, we create random samples from our model of various sizes, calculate the measures we will be using, and then repeat those processes many times.
Our simulation results are shown in Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8. Any value’s ranking is determined by where it ranks among all estimation techniques. The partial and total ranks of our estimators are shown in Table 9.
As a result of the simulation and ranking tables, we draw the following conclusions:
  • All of the estimates exhibit consistency properties.
  • The BIAS of all estimates decreases as n grows for all estimation techniques.
  • The MSE of all estimates decreases as n grows for all estimation techniques.
  • The MRE of all estimates decreases as n grows for all estimation techniques.
  • The best estimation technique is the maximum product of the spacings estimation method. Therefore, if researchers have data sets from our suggested model, we urge them to apply this method.

6. Modeling to Engineering Data

In this section, we explore two real data sets in the engineering field to demonstrate the significance and capability of the HLMKEx model. The first data set has 100 observations of carbon fiber breaking stress (in Gba) [36]:
 3.7  3.11  4.42  3.28  3.75  2.96  3.39  3.31  3.15  2.81  1.41  2.76  3.19  1.59  2.17 
 3.51  1.84  1.61  1.57  1.89  2.74  3.27  2.41  3.09  2.43  2.53  2.81  3.31  2.35  2.77 
 2.68  4.91  1.57  0.65  2.12  1.8  0.85  4.38  2  1.18  1.71  1.17  2.17  0.39  2.79 
 1.08  2.73  0.98  1.73  1.59  1.92  2.38  3.56  2.55  3.22  3.39  4.9  1.69  3.11  3.6 
 2.05  1.61  2.03  2.48  1.25  2.48  1.12  2.88  2.87  3.19  1.87  2.95  2.67  4.2  2.85 
 2.55  2.17  2.97  3.68  0.81  1.22  5.08  1.69  3.68  4.70  2.03  2.82  2.50  3.22  3.15 
 1.47  5.56  1.84  1.36  2.59  2.83  2.56  3.33  2.93  2.97 
Ref. [37] investigated the second batch of data, which comprises gauge lengths of 20 mm from a sample of 74 observations. The data set is as follows:
 3.585  3.585  3.433  3.233  3.128  3.096  3.09  3.084  3.067  3.012  2.954  2.88 
 2.848  2.821  2.818  2.809  2.88  2.848  2.821  2.818  2.809  2.8  2.773  2.77 
 2.726  2.697  2.684  2.648  2.642  2.633  2.629  2.586  2.57  2.566  2.554  2.535 
 2.514  2.511  2.49  2.478  2.435  2.434  2.426  2.382  2.382  2.359  2.301  2.301 
 2.274  2.272  2.27  2.253  2.24  2.224  2.179  2.14  2.098  2.063  2.055  2.027 
 2.021  2.006  1.997  1.966  1.958  1.944  1.865  1.861  1.803  1.7  1.552  1.479 
 1.314  1.312 
The descriptive analyses of all data sets are reported in Table 10.
Further, we shall compare the fits of the HLMKEx distribution with other models: MKEx, exponentiated exponential (EEx) [38], beta exponential (BEx) [39] and alpha power exponential (APEx) [40] models. The PDFs of these models are provided by the following:
EEx : f ( z ; α , λ ) = α λ e λ z ( 1 e λ z ) ( α 1 ) , z , α , λ > 0 ,
BEx : f ( z ; a , b , λ ) = λ B ( a , b ) e b λ z ( 1 e λ z ) ( a 1 ) , z , a , b , λ > 0 ,
and
APEx : f ( z ; α , λ ) = l o g ( α ) λ e λ z α 1 α 1 e λ z , z , α , λ > 0 .
Cramér–von Mises (WST), Anderson–Darling (AST), and Kolmogorov–Smirnov (KOS) statistics with p-values (KOSP) are used to assess the fit of these statistical models.
Table 11 and Table 12 provide the ML estimates (MLEs) of the model parameters and their standard errors (SEs), WST, AST, KOS, and KOSP statistics for the fitted HLMKEx, MKEx, BEx, EEx, and APEx models for the two data sets, respectively. The values in these tables indicate that the HLMKEx distribution has the lowest values of WST, AST, KOS, and largest KOSP, among all fitted models. The fitted PDF, CDF, and P-P plots for all models based on the two data sets are displayed in Figure 4, Figure 5, Figure 6 and Figure 7, respectively.
Different methods of estimation were used to determine estimated parameters WST, AST, KOS, and KOSP for the proposed model, which are presented in Table 13 and Table 14 for the two real data sets, respectively. Figure 8 and Figure 9 show P-P plots for the proposed model generated by different estimating approaches, as well as the estimated PDFs generated by these methods.

7. Conclusions

In the current work, a novel three-parameter model called the half-logistic modified Kies exponential distribution is introduced to enhance the adaptability of the modified Kies exponential distribution in modeling engineering data. The HLMKEx distribution’s adaptability allows it to offer symmetrical, asymmetrical, unimodal, and reversed-J-shaped densities as well as increasing, reversed-J-shaped, and upside-down hazard rates forms. The quantile function, moments, incomplete moments, and residual moments are all obtained, which are the basic mathematical properties of the HLMKEx model. Furthermore, certain measures of uncertainty and stochastic ordering are provided. Eight estimating techniques are employed to estimate its parameters. We assess the performance of each estimating technique through a simulation study, and we derive partial and overall ranks for some accuracy measures. The simulation results show that the proposed distribution can indeed match the data more precisely than other competing distributions. To show how adaptable and practical the suggested distribution is, two real data sets from the engineering industry are studied. The results show that the proposed distribution can indeed fit the data more accurately than other competing distributions.

Author Contributions

Conceptualization, S.M.A., A.S.H., M.E., I.E., A.M.G. and M.S.; Methodology, S.M.A., A.S.H., M.E., I.E., A.M.G. and M.S.; Formal analysis, S.M.A., A.S.H., M.E., I.E., A.M.G. and M.S.; Writing—original draft, S.M.A., A.S.H., M.E., I.E., A.M.G. and M.S.; Writing—review & editing, S.M.A., A.S.H., M.E., I.E., A.M.G. and M.S. All authors have read and agreed to the published version of the manuscript.

Funding

Researchers supporting project number (RSP2023R464), King Saud University, Riyadh, Saudi Arabia.

Data Availability Statement

Data sets are available in the application section.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Souza, L.; de Oliveira, W.R.; de Brito, C.C.R.; Chesneau, C.; Fernandes, R.; Ferreira, T.A.E. Sec-G Class of Distributions: Properties and Applications. Symmetry 2022, 14, 299. [Google Scholar] [CrossRef]
  2. Elbatal, I.; Alotaibi, N.; Almetwally, E.M.; Alyami, S.A.; Elgarhy, M. On Odd Perks-G Class of Distributions: Properties, Regression Model, Discretization, Bayesian and Non-Bayesian Estimation, and Applications. Symmetry 2022, 14, 883. [Google Scholar] [CrossRef]
  3. Almarashi, A.M.; Jamal, F.; Chesneau, C.; Elgarhy, M. The Exponentiated Truncated Inverse Weibull-Generated Family of Distributions with Applications. Symmetry 2020, 12, 650. [Google Scholar] [CrossRef] [Green Version]
  4. Bantan, R.A.; Jamal, F.; Chesneau, C.; Elgarhy, M. Type II power Topp-Leone generated family of distributions with statistical inference and applications. Symmetry 2020, 12, 75. [Google Scholar] [CrossRef] [Green Version]
  5. El-Morshedy, M.; Tahir, M.H.; Hussain, M.A.; Al-Bossly, A.; Eliwa, M.S. A New Flexible Univariate and Bivariate Family of Distributions for Unit Interval (0, 1). Symmetry 2022, 14, 1040. [Google Scholar] [CrossRef]
  6. Marshall, A.W.; Olkin, I. A New Method for Adding a Parameter to a Family of Distributions with Application to the Exponential and Weibull Families Biometrika; Oxford University Press: Oxford, UK, 1997; Volume 84, pp. 641–652. [Google Scholar]
  7. Hamedani, G.G.; Rasekhi, M.; Najibi, S.; Yousof, H.M.; Alizadeh, M. Type II general exponential class of distributions. Pak. J. Stat. Oper. Res. 2019, 15, 503–523. [Google Scholar] [CrossRef]
  8. Eghwerido, J.T.; Oguntunde, P.E.; Agu, F.I. The alpha power Marshall-Olkin-G distribution. Prop. Appl. Sankhya A 2021, 85, 172–197. [Google Scholar] [CrossRef]
  9. Cordeiro, G.M.; Ortega, E.M.M.; Ramires, T.G. A new generalized Weibull family of distributions: Mathematical properties and applications. J. Stat. Distrib. Appl. 2015, 2, 13. [Google Scholar] [CrossRef] [Green Version]
  10. Cordeiro, G.M.; Alizadeh, M.; Nascimento, A.D.; Rasekhi, M. The exponentiated Gompertz generated family of distributions: Properties and applications. Chil. J. Stat. 2016, 7, 29–50. [Google Scholar]
  11. Chipepa, F.; Oluyede, B.; Peter, P.O. The Burr III-Topp-Leone-G family of distributions with applications. Heliyon 2021, 7, e06534. [Google Scholar] [CrossRef]
  12. Chipepa, F.; Oluyede, B. The Marshall-Olkin-Gompertz-G family of distributions: Properties and applications. J. Nonlinear Sci. Appl. 2021, 14, 257–260. [Google Scholar] [CrossRef]
  13. Hassan, A.S.; Nassar, S.G. Power Lindley-G Family of Distributions. Ann. Data Sci. 2019, 6, 189–210. [Google Scholar] [CrossRef]
  14. Balogun, O.S.; Arshad, M.Z.; Iqbal, M.Z.; Ghamkhar, M. A new modified Lehmann Type–II G class of distributions: Exponential distribution with theory, simulation, and applications to engineering sector. F1000Research 2021, 10, 483. [Google Scholar] [CrossRef]
  15. Moakofi, T.; Oluyede, B.; Chipepa, F. Type II exponentiated half-logistic Topp-Leone Marshall-Olkin-G family of distributions with applications. Heliyon 2021, 7, e08590. [Google Scholar] [CrossRef]
  16. Hassan, A.S.; Al-Omari, A.I.; Hassan, R.R.; Alomani, G. The odd inverted Topp Leone–H family of distributions: Estimation and applications. J. Radiat. Res. 2022, 15, 365–379. [Google Scholar] [CrossRef]
  17. Maurya, S.K.; Kaushik, A.; Singh, R.K.; Singh, S.K.; Singh, U. A new method of proposing distribution and its application to real data. Imp. J. Interdiscip. Res. 2016, 2, 1331–1338. [Google Scholar]
  18. Alizadeh, M.; Lak, F.; Rasekhi, M.; Ramires, T.G.; Yousof, H.M.; Altun, E. The odd log-logistic Topp-Leone G family of distributions:Heteroscedastic regression modelsand applications. Comput. Stat. 2018, 33, 1217–1244. [Google Scholar] [CrossRef]
  19. Hassan, A.S.; Elgarhy, M.; Shakil, M. Type II half Logistic family of distributions with applications. Pak. J. Stat. Oper. Res. 2017, 13, 245–264. [Google Scholar]
  20. Ul Haq, M.A.; Babar, A.; Hashmi, S.; Alghamdi, A.S.; Afify, A.Z. The Discrete Type-II Half-Logistic Exponential Distribution with Applications to COVID-19 Data. Pak. J. Stat. Oper. Res. 2021, 17, 921–932. [Google Scholar] [CrossRef]
  21. ZeinEldin, R.A.; Haq, M.A.; Hashmi, S.; Elsehety, M.; Elgarhy, M. Type II Half Logistic Kumaraswamy Distribution with Applications. J. Funct. Spaces 2020, 2020, 1343596. [Google Scholar] [CrossRef]
  22. Sengweni, W.; Oluyede, B.; Makubate, B. The exponentiated half-logistic odd Lindley-G family of distributions with applications. J. Nonlinear Sci. Appl. 2021, 14, 287–309. [Google Scholar] [CrossRef]
  23. Bantan, R.; Elsehetry, M.; Hassan, A.S.; Elgarhy, M.; Sharma, D.; Chesneau, C.; Jamal, F. A Two-Parameter Model: Properties and Estimation under Ranked Sampling. Mathematics 2021, 9, 1214. [Google Scholar] [CrossRef]
  24. El-Sherpieny, E.S.A.; Elsehetry, M.M. Type II Kumaraswamy half-logistic family of distributions with applications to exponential model. Ann. Data Sci. 2019, 6, 1–20. [Google Scholar] [CrossRef]
  25. Gupta, R.D.; Kundu, D. Generalized exponential distributions. Aust. N. Z. J. Stat. 1999, 41, 173–188. [Google Scholar] [CrossRef]
  26. Barreto-Souza, W.; Santos, A.H.S.; Cordeiro, G.M. The beta generalized exponential distribution. J. Stat. Comput. Simul. 2010, 80, 159–172. [Google Scholar] [CrossRef] [Green Version]
  27. Ristic, M.M.; Balakrishnan, N. The gamma-exponentiated exponential distribution. J. Stat. Comput. Simul. 2012, 82, 1191–1206. [Google Scholar] [CrossRef]
  28. Gomez, Y.; Bolfarine, H.; Gomez, H.W. A new extension of the exponential distribution. Rev. Colomb. Estad. 2014, 37, 25–33. [Google Scholar] [CrossRef] [Green Version]
  29. Rasekhi, M.; Alizadeh, M.; Altun, E.; Hamedani, G.; Afify, A.Z.; Ahmad, M. The modified exponential distribution with applications. Pak. J. Stat. 2017, 33, 383–398. [Google Scholar]
  30. Afify, A.Z.; Mohamed, O.A. A new three-parameter exponential distribution with variable shapes for the hazard rate: Estimation and applications. Mathematics 2020, 8, 135. [Google Scholar] [CrossRef] [Green Version]
  31. Al-Babtain, A.A.; Shakhatreh, M.K.; Nassar, M.; Afify, A.Z. A New Modified Kies Family: Properties, Estimation Under Complete and Type-II Censored Samples, and Engineering Applications. Mathematics 2020, 8, 1345. [Google Scholar] [CrossRef]
  32. Afify, A.Z.; Gemeay, A.M.; Alfaer, N.M.; Cordeiro, G.M.; Hafez, E.H. Power-Modified Kies-Exponential Distribution: Properties, Classical and Bayesian Inference with an Application to Engineering Data. Entropy 2022, 24, 883. [Google Scholar] [CrossRef]
  33. Renyi, A. On measures of entropy and information. In Proceedings of the 4th Berkeley Symposiumon Mathematical Statistics and Probability, Berkeley, CA, USA, 20 June–30 July 1960; Volume 1, pp. 547–561. [Google Scholar]
  34. Havrda, J.; Charvat, F. Quantification method of classification processes, Concept of Structural-Entropy. Kybernetika 1967, 3, 30–35. [Google Scholar]
  35. Tsallis, C. The role of constraints within generalized nonextensive statistics. Physica 1998, 261, 547–561. [Google Scholar] [CrossRef]
  36. Nichols, M.D.; Padgett, W.J. A bootstrap control chart for Weibull percentiles. Qual. Reliab. Eng. Int. 2006, 22, 141–151. [Google Scholar] [CrossRef]
  37. Kundu, D.; Raqab, M.Z. Estimation of R = P (Y < X) for three parameter Weibull distribution. Stat. Probab. Lett. 2009, 79, 1839–1846. [Google Scholar]
  38. Gupta, R.D.; Kundu, D. Exponentiated exponential family: An alternative to gamma and Weibull distributions. Biom. J. J. Math. Methods Biosci. 2001, 43, 117–130. [Google Scholar] [CrossRef]
  39. Nadarajah, S.; Kotz, S. The beta exponential distribution. Reliab. Eng. Syst. Saf. 2006, 91, 689–697. [Google Scholar] [CrossRef]
  40. Mahdavi, A.; Kundu, D. A new method for generating distributions with an application to exponential distribution. Commun. Stat. Theory Methods 2017, 46, 6543–6557. [Google Scholar] [CrossRef]
Figure 1. Plots of the PDF and HF for the HLMKEx model.
Figure 1. Plots of the PDF and HF for the HLMKEx model.
Symmetry 15 00586 g001
Figure 2. The 3D plots of mean, variance, SK, KU, CV and ID for the HLMKEx model at θ = 0.5 .
Figure 2. The 3D plots of mean, variance, SK, KU, CV and ID for the HLMKEx model at θ = 0.5 .
Symmetry 15 00586 g002
Figure 3. The 3D plots of mean, variance, SK, KU, CV and ID for the HLMKEx model at θ = 2.5 .
Figure 3. The 3D plots of mean, variance, SK, KU, CV and ID for the HLMKEx model at θ = 2.5 .
Symmetry 15 00586 g003
Figure 4. Estimated PDF and CDF plots of competitive models for breaking stress of carbon fibers data.
Figure 4. Estimated PDF and CDF plots of competitive models for breaking stress of carbon fibers data.
Symmetry 15 00586 g004
Figure 5. The P–P plots of the fitted models for breaking stress of carbon fibers data.
Figure 5. The P–P plots of the fitted models for breaking stress of carbon fibers data.
Symmetry 15 00586 g005
Figure 6. Estimated PDF and CDF plots of competitive models for gauge lengths data.
Figure 6. Estimated PDF and CDF plots of competitive models for gauge lengths data.
Symmetry 15 00586 g006
Figure 7. The P-P plots of the fitted models for gauge lengths data.
Figure 7. The P-P plots of the fitted models for gauge lengths data.
Symmetry 15 00586 g007
Figure 8. The P–P plots and the fitted PDFs of the proposed model for the first real data.
Figure 8. The P–P plots and the fitted PDFs of the proposed model for the first real data.
Symmetry 15 00586 g008
Figure 9. The P–P plots and the fitted PDFs of the proposed model for the second real data.
Figure 9. The P–P plots and the fitted PDFs of the proposed model for the second real data.
Symmetry 15 00586 g009
Table 1. Results of μ 1 , μ 2 , μ 3 , μ 4 ,V, CS, CK and CV for the HLMKEx model η = 1.2.
Table 1. Results of μ 1 , μ 2 , μ 3 , μ 4 ,V, CS, CK and CV for the HLMKEx model η = 1.2.
θ γ μ 1 μ 2 μ 3 μ 4 V CS CK CV
0.50.40.1570.1710.2720.5250.1463.57817.72.439
0.60.2320.2550.4080.7880.2022.82511.891.939
0.80.3030.3390.5431.050.2472.3719.0541.64
1.10.4030.4620.7451.4410.2991.9366.8181.357
1.30.4650.5420.8781.7020.3261.7345.9421.226
1.70.5790.6991.1422.2190.3631.4444.8711.041
1.90.6310.7741.2722.4760.3761.3364.5290.972
2.40.7480.9561.5913.1140.3961.1323.9720.842
0.80.40.1630.110.1080.1290.0842.60810.561.773
0.60.2360.1640.1620.1940.1082.037.331.395
0.80.3020.2160.2150.2580.1251.6865.8121.173
1.10.3880.2910.2940.3530.141.3644.6690.966
1.30.4380.3380.3450.4160.1461.2184.2460.873
1.70.5250.4280.4440.540.1521.0163.7590.741
1.90.5630.470.4920.6010.1520.9433.6160.693
2.40.6450.5670.6090.7510.1510.8123.3990.602
10.40.1760.10.0810.0790.0692.1467.8491.496
0.60.250.1480.120.1170.0851.6455.6031.17
0.80.3140.1930.1590.1560.0951.3514.5850.981
1.10.3950.2570.2160.2130.1011.083.8580.805
1.30.4410.2970.2530.2510.1030.9613.6050.726
1.70.5180.370.3230.3240.1020.83.3370.617
1.90.550.4030.3560.360.1010.7443.2660.577
2.40.6190.480.4360.4470.0970.6463.1730.502
1.30.40.1970.0970.0650.0510.0581.6455.4871.217
0.60.2730.1410.0960.0760.0661.2244.1110.944
0.80.3350.1820.1260.1010.070.9813.5390.787
1.10.410.2380.1690.1370.070.7653.1810.643
1.30.4510.2720.1960.1610.0680.6743.0780.579
1.70.5170.3310.2470.2060.0640.5572.9970.491
1.90.5440.3580.2710.2270.0620.5192.9860.459
2.40.60.4170.3260.2790.0570.4582.9920.4
1.50.40.2120.0980.060.0430.0531.3974.5441.085
0.60.2880.1420.0890.0650.0581.0123.530.837
0.80.350.1810.1160.0850.0590.7943.1430.696
1.10.4210.2340.1550.1150.0570.6052.9360.567
1.30.4590.2650.1780.1340.0550.5282.8930.51
1.70.5190.3190.2220.1710.050.4342.8840.432
1.90.5430.3430.2430.1880.0480.4062.8950.403
2.40.5930.3950.2890.2290.0430.3632.9340.351
Table 2. Results of μ 1 , μ 2 , μ 3 , μ 4 , V, CS, CK and CV for the HLMKEx model η = 2.5.
Table 2. Results of μ 1 , μ 2 , μ 3 , μ 4 , V, CS, CK and CV for the HLMKEx model η = 2.5.
θ γ μ 1 μ 2 μ 3 μ 4 V CS CK CV
0.50.40.0750.0390.030.0280.0343.57817.72.439
0.60.1110.0590.0450.0420.0462.82511.8881.939
0.80.1450.0780.060.0560.0572.3719.0541.64
1.10.1940.1060.0820.0770.0691.9366.8181.357
1.30.2230.1250.0970.090.0751.7345.9421.226
1.70.2780.1610.1260.1180.0841.4444.8711.041
1.90.3030.1780.1410.1310.0871.3364.5290.972
2.40.3590.220.1760.1650.0911.1323.9720.842
0.80.40.0780.0250.0120.00690.0192.60810.5551.773
0.60.1130.0380.0180.010.0252.037.331.395
0.80.1450.050.0240.0140.0291.6865.8111.173
1.10.1860.0670.0320.0190.0321.3644.6690.966
1.30.210.0780.0380.0220.0341.2184.2460.873
1.70.2520.0990.0490.0290.0351.0163.7590.741
1.90.270.1080.0540.0320.0350.9433.6160.693
2.40.310.1310.0670.040.0350.8123.3990.602
10.40.0840.0230.00890.00420.0162.1467.8561.496
0.60.120.0340.0130.00620.021.6455.6031.17
0.80.1510.0440.0180.00830.0221.3514.5850.981
1.10.190.0590.0240.0110.0231.083.8580.805
1.30.2120.0680.0280.0130.0240.9613.6050.727
1.70.2480.0850.0360.0170.0230.83.3370.617
1.90.2640.0930.0390.0190.0230.7443.2660.577
2.40.2970.1110.0480.0240.0220.6463.1730.502
1.30.40.0950.0220.00710.00270.0131.6455.4871.217
0.60.1310.0320.0110.0040.0151.2244.1110.944
0.80.1610.0420.0140.00540.0160.9813.5390.787
1.10.1970.0550.0190.00730.0160.7653.1810.643
1.30.2160.0630.0220.00850.0160.6743.0780.579
1.70.2480.0760.0270.0110.0150.5572.9970.491
1.90.2610.0830.030.0120.0140.5192.9860.459
2.40.2880.0960.0360.0150.0130.4582.9920.4
1.50.40.1020.0230.006650.000380.0121.3974.5591.085
0.60.1380.0330.00980.00340.0131.0123.530.837
0.80.1680.0420.0130.00450.0140.7943.1430.696
1.10.2020.0540.0170.00610.0130.6052.9360.567
1.30.220.0610.020.00710.0130.5282.8930.51
1.70.2490.0740.0250.00910.0120.4342.8840.432
1.90.2610.0790.0270.009970.0110.4062.8950.403
2.40.2850.0910.0320.0120.010.3632.9340.351
Table 3. Simulation values of BIAS, MSE and MRE for ( θ = 0.25 , η = 0.5 , γ = 0.75 ) .
Table 3. Simulation values of BIAS, MSE and MRE for ( θ = 0.25 , η = 0.5 , γ = 0.75 ) .
nMeasures ω ^ EM 1 EM 2 EM 3 EM 4 EM 5 EM 6 EM 7 EM 8
75BIAS θ ^ 0.13351 { 5 } 0.12278 { 4 } 0.15203 { 8 } 0.08819 { 1 } 0.14381 { 7 } 0.11367 { 3 } 0.10524 { 2 } 0.13439 { 6 }
η ^ 0.29314 { 7 } 0.2538 { 4 } 0.30184 { 8 } 0.20497 { 1 } 0.29272 { 6 } 0.22699 { 2 } 0.2298 { 3 } 0.27496 { 5 }
γ ^ 0.39892 { 2 } 0.42407 { 3 } 0.573 { 7 } 0.35947 { 1 } 0.56393 { 6 } 0.89818 { 8 } 0.52501 { 5 } 0.46353 { 4 }
MSE θ ^ 0.03584 { 5 } 0.0254 { 3 } 0.0412 { 7 } 0.0143 { 1 } 0.03741 { 6 } 0.04725 { 8 } 0.01808 { 2 } 0.03126 { 4 }
η ^ 0.13595 { 8 } 0.09216 { 3 } 0.12186 { 7 } 0.06844 { 1 } 0.11576 { 6 } 0.09595 { 4 } 0.07444 { 2 } 0.10477 { 5 }
γ ^ 0.25423 { 2 } 0.31258 { 3 } 0.57959 { 6 } 0.25149 { 1 } 0.56492 { 5 } 3.2629 { 8 } 0.6364 { 7 } 0.38062 { 4 }
MRE θ ^ 0.53403 { 5 } 0.49112 { 4 } 0.60812 { 8 } 0.35278 { 1 } 0.57525 { 7 } 0.45467 { 3 } 0.42097 { 2 } 0.53757 { 6 }
η ^ 0.58628 { 7 } 0.5076 { 4 } 0.60368 { 8 } 0.40994 { 1 } 0.58544 { 6 } 0.45397 { 2 } 0.4596 { 3 } 0.54993 { 5 }
γ ^ 0.5319 { 2 } 0.56542 { 3 } 0.76399 { 7 } 0.47929 { 1 } 0.7519 { 6 } 1.19757 { 8 } 0.70001 { 5 } 0.61805 { 4 }
R a n k s 57 { 4 } 42 { 3 } 89 { 8 } 12 { 1 } 74 { 7 } 59 { 6 } 41 { 2 } 58 { 5 }
120BIAS θ ^ 0.11805 { 5 } 0.11621 { 4 } 0.13793 { 8 } 0.07712 { 1 } 0.12666 { 7 } 0.08872 { 2 } 0.09517 { 3 } 0.12108 { 6 }
η ^ 0.25889 { 6 } 0.24411 { 4 } 0.28081 { 8 } 0.17582 { 1 } 0.2692 { 7 } 0.1981 { 2 } 0.21105 { 3 } 0.25599 { 5 }
γ ^ 0.33177 { 2 } 0.36848 { 3 } 0.50228 { 7 } 0.27835 { 1 } 0.49111 { 6 } 0.70043 { 8 } 0.42922 { 5 } 0.41289 { 4 }
MSE θ ^ 0.02774 { 7 } 0.02273 { 4 } 0.03358 { 8 } 0.01174 { 1 } 0.02727 { 6 } 0.02155 { 3 } 0.0142 { 2 } 0.02501 { 5 }
η ^ 0.10864 { 8 } 0.0873 { 4 } 0.10776 { 7 } 0.05394 { 1 } 0.09875 { 6 } 0.0766 { 3 } 0.06373 { 2 } 0.09302 { 5 }
γ ^ 0.1712 { 2 } 0.23113 { 3 } 0.46157 { 7 } 0.1544 { 1 } 0.43885 { 6 } 2.11149 { 8 } 0.42585 { 5 } 0.30103 { 4 }
MRE θ ^ 0.4722 { 5 } 0.46483 { 4 } 0.5517 { 8 } 0.30849 { 1 } 0.50663 { 7 } 0.35488 { 2 } 0.3807 { 3 } 0.48431 { 6 }
η ^ 0.51778 { 6 } 0.48822 { 4 } 0.56161 { 8 } 0.35164 { 1 } 0.53839 { 7 } 0.3962 { 2 } 0.4221 { 3 } 0.51197 { 5 }
γ ^ 0.44236 { 2 } 0.4913 { 3 } 0.66971 { 7 } 0.37114 { 1 } 0.65481 { 6 } 0.9339 { 8 } 0.57229 { 5 } 0.55051 { 4 }
R a n k s 43 { 5 } 33 { 3 } 68 { 8 } 9 { 1 } 58 { 7 } 38 { 4 } 31 { 2 } 44 { 6 }
150BIAS θ ^ 0.10886 { 5 } 0.10848 { 4 } 0.13506 { 8 } 0.07128 { 1 } 0.12362 { 7 } 0.07463 { 2 } 0.09093 { 3 } 0.11527 { 6 }
η ^ 0.24267 { 5 } 0.23426 { 4 } 0.28289 { 8 } 0.16734 { 1 } 0.26751 { 7 } 0.17733 { 2 } 0.20677 { 3 } 0.24842 { 6 }
γ ^ 0.30975 { 2 } 0.35585 { 3 } 0.47072 { 7 } 0.26073 { 1 } 0.44735 { 6 } 0.59445 { 8 } 0.39526 { 5 } 0.38116 { 4 }
MSE θ ^ 0.0235 { 6 } 0.01982 { 4 } 0.03168 { 8 } 0.00939 { 1 } 0.02618 { 7 } 0.01366 { 3 } 0.01286 { 2 } 0.02265 { 5 }
η ^ 0.09703 { 6 } 0.07891 { 4 } 0.11098 { 8 } 0.04879 { 1 } 0.10148 { 7 } 0.06193 { 3 } 0.06039 { 2 } 0.08961 { 5 }
γ ^ 0.15035 { 2 } 0.2121 { 3 } 0.398 { 7 } 0.13528 { 1 } 0.36312 { 6 } 1.53994 { 8 } 0.33486 { 5 } 0.25389 { 4 }
MRE θ ^ 0.43545 { 5 } 0.43392 { 4 } 0.54023 { 8 } 0.28512 { 1 } 0.49448 { 7 } 0.29853 { 2 } 0.36371 { 3 } 0.46107 { 6 }
η ^ 0.48534 { 5 } 0.46852 { 4 } 0.56579 { 8 } 0.33468 { 1 } 0.53502 { 7 } 0.35466 { 2 } 0.41354 { 3 } 0.49685 { 6 }
γ ^ 0.413 { 2 } 0.47447 { 3 } 0.62763 { 7 } 0.34763 { 1 } 0.59646 { 6 } 0.7926 { 8 } 0.52701 { 5 } 0.50821 { 4 }
R a n k s 38 { 4.5 } 33 { 3 } 69 { 8 } 9 { 1 } 60 { 7 } 38 { 4.5 } 31 { 2 } 46 { 6 }
200BIAS θ ^ 0.1026 { 4 } 0.10335 { 5 } 0.12079 { 8 } 0.06391 { 1 } 0.1175 { 7 } 0.06735 { 2 } 0.08416 { 3 } 0.10614 { 6 }
η ^ 0.22493 { 5 } 0.22472 { 4 } 0.25888 { 8 } 0.14629 { 1 } 0.25854 { 7 } 0.16416 { 2 } 0.19303 { 3 } 0.23148 { 6 }
γ ^ 0.27629 { 2 } 0.31973 { 3 } 0.42027 { 6 } 0.22443 { 1 } 0.42723 { 7 } 0.50072 { 8 } 0.34637 { 4 } 0.34713 { 5 }
MSE θ ^ 0.02144 { 6 } 0.01807 { 4 } 0.02493 { 8 } 0.00789 { 1 } 0.02352 { 7 } 0.00999 { 2 } 0.01064 { 3 } 0.01949 { 5 }
η ^ 0.08689 { 6 } 0.07502 { 4 } 0.09551 { 8 } 0.03952 { 1 } 0.09544 { 7 } 0.05201 { 2 } 0.05287 { 3 } 0.07871 { 5 }
γ ^ 0.11813 { 2 } 0.16762 { 3 } 0.32652 { 6 } 0.10672 { 1 } 0.33314 { 7 } 1.02657 { 8 } 0.25409 { 5 } 0.207 { 4 }
MRE θ ^ 0.41041 { 4 } 0.41341 { 5 } 0.48318 { 8 } 0.25564 { 1 } 0.47001 { 7 } 0.26939 { 2 } 0.33665 { 3 } 0.42457 { 6 }
η ^ 0.44986 { 5 } 0.44945 { 4 } 0.51776 { 8 } 0.29258 { 1 } 0.51708 { 7 } 0.32832 { 2 } 0.38606 { 3 } 0.46297 { 6 }
γ ^ 0.36838 { 2 } 0.4263 { 3 } 0.56036 { 6 } 0.29924 { 1 } 0.56964 { 7 } 0.66762 { 8 } 0.46183 { 4 } 0.46284 { 5 }
R a n k s 36 { 4.5 } 35 { 3 } 66 { 8 } 9 { 1 } 63 { 7 } 36 { 4.5 } 31 { 2 } 48 { 6 }
300BIAS θ ^ 0.08661 { 4 } 0.09118 { 5 } 0.10973 { 7 } 0.0565 { 1 } 0.11071 { 8 } 0.0602 { 2 } 0.07502 { 3 } 0.09941 { 6 }
η ^ 0.19388 { 4 } 0.2047 { 5 } 0.23825 { 7 } 0.12706 { 1 } 0.24281 { 8 } 0.14787 { 2 } 0.1726 { 3 } 0.21777 { 6 }
γ ^ 0.22972 { 2 } 0.27718 { 3 } 0.35862 { 6 } 0.18091 { 1 } 0.35926 { 7 } 0.38353 { 8 } 0.2845 { 4 } 0.29812 { 5 }
MSE θ ^ 0.01545 { 5 } 0.01419 { 4 } 0.02117 { 8 } 0.00661 { 1 } 0.02114 { 7 } 0.00717 { 2 } 0.00846 { 3 } 0.01692 { 6 }
η ^ 0.06818 { 5 } 0.06422 { 4 } 0.08376 { 7 } 0.0334 { 1 } 0.0874 { 8 } 0.0407 { 2 } 0.04237 { 3 } 0.07098 { 6 }
γ ^ 0.08394 { 2 } 0.12123 { 3 } 0.23625 { 6 } 0.07198 { 1 } 0.23697 { 7 } 0.52017 { 8 } 0.16581 { 5 } 0.1447 { 4 }
MRE θ ^ 0.34643 { 4 } 0.36474 { 5 } 0.43893 { 7 } 0.22601 { 1 } 0.44284 { 8 } 0.24079 { 2 } 0.30007 { 3 } 0.39766 { 6 }
η ^ 0.38776 { 4 } 0.4094 { 5 } 0.47651 { 7 } 0.25412 { 1 } 0.48562 { 8 } 0.29575 { 2 } 0.34521 { 3 } 0.43554 { 6 }
γ ^ 0.30629 { 2 } 0.36958 { 3 } 0.47816 { 6 } 0.24121 { 1 } 0.47901 { 7 } 0.51137 { 8 } 0.37933 { 4 } 0.39749 { 5 }
R a n k s 32 { 3 } 37 { 5 } 61 { 7 } 9 { 1 } 68 { 8 } 36 { 4 } 31 { 2 } 50 { 6 }
Table 4. Simulation values of BIAS, MSE and MRE for ( θ = 0.75 , η = 1.50 , γ = 0.25 ) .
Table 4. Simulation values of BIAS, MSE and MRE for ( θ = 0.75 , η = 1.50 , γ = 0.25 ) .
nMeasures ω ^ EM 1 EM 2 EM 3 EM 4 EM 5 EM 6 EM 7 EM 8
75BIAS θ ^ 0.26151 { 1 } 0.28071 { 4 } 0.34671 { 7 } 0.28024 { 3 } 0.34364 { 6 } 0.53901 { 8 } 0.27735 { 2 } 0.30061 { 5 }
η ^ 0.37667 { 1 } 0.40831 { 2 } 0.44505 { 6 } 0.43981 { 5 } 0.44748 { 7 } 0.521 { 8 } 0.41504 { 3 } 0.42241 { 4 }
γ ^ 0.08762 { 1 } 0.09492 { 2 } 0.10336 { 5 } 0.13388 { 7 } 0.10409 { 6 } 0.19049 { 8 } 0.09978 { 4 } 0.0995 { 3 }
MSE θ ^ 0.1179 { 1 } 0.12471 { 2 } 0.2136 { 7 } 0.12594 { 4 } 0.20641 { 6 } 0.69507 { 8 } 0.12489 { 3 } 0.15256 { 5 }
η ^ 0.23299 { 1 } 0.25637 { 2 } 0.29756 { 6 } 0.31676 { 7 } 0.29703 { 5 } 0.40317 { 8 } 0.26785 { 3 } 0.27266 { 4 }
γ ^ 0.02854 { 3 } 0.02712 { 1 } 0.03143 { 6 } 0.06463 { 7 } 0.03001 { 5 } 0.08734 { 8 } 0.02836 { 2 } 0.02895 { 4 }
MRE θ ^ 0.34868 { 1 } 0.37428 { 4 } 0.46228 { 7 } 0.37365 { 3 } 0.45818 { 6 } 0.71868 { 8 } 0.3698 { 2 } 0.40082 { 5 }
η ^ 0.25112 { 1 } 0.27221 { 2 } 0.2967 { 6 } 0.29321 { 5 } 0.29832 { 7 } 0.34733 { 8 } 0.2767 { 3 } 0.28161 { 4 }
γ ^ 0.35049 { 1 } 0.3797 { 2 } 0.41342 { 5 } 0.53552 { 7 } 0.41637 { 6 } 0.76196 { 8 } 0.3991 { 4 } 0.398 { 3 }
R a n k s 14 { 1 } 29 { 2 } 73 { 6.5 } 63 { 5 } 73 { 6.5 } 96 { 8 } 35 { 3 } 49 { 4 }
120BIAS θ ^ 0.20386 { 1 } 0.22321 { 3 } 0.28155 { 6 } 0.22807 { 5 } 0.28603 { 7 } 0.41497 { 8 } 0.2231 { 2 } 0.22786 { 4 }
η ^ 0.30739 { 1 } 0.32931 { 2 } 0.37209 { 6 } 0.35623 { 5 } 0.37582 { 7 } 0.45354 { 8 } 0.33563 { 4 } 0.33102 { 3 }
γ ^ 0.06909 { 1 } 0.07301 { 2 } 0.08429 { 6 } 0.10142 { 7 } 0.08406 { 5 } 0.16589 { 8 } 0.07913 { 4 } 0.07384 { 3 }
MSE θ ^ 0.07031 { 1 } 0.08128 { 3 } 0.1331 { 6 } 0.08586 { 5 } 0.13367 { 7 } 0.33391 { 8 } 0.08082 { 2 } 0.0837 { 4 }
η ^ 0.16051 { 1 } 0.17839 { 2 } 0.21571 { 5 } 0.22225 { 7 } 0.22044 { 6 } 0.3249 { 8 } 0.1847 { 4 } 0.1786 { 3 }
γ ^ 0.02051 { 4 } 0.01682 { 1 } 0.02161 { 6 } 0.04219 { 7 } 0.02085 { 5 } 0.06083 { 8 } 0.01991 { 3 } 0.01785 { 2 }
MRE θ ^ 0.27181 { 1 } 0.29761 { 3 } 0.37541 { 6 } 0.30409 { 5 } 0.38138 { 7 } 0.5533 { 8 } 0.29746 { 2 } 0.30381 { 4 }
η ^ 0.20492 { 1 } 0.21954 { 2 } 0.24806 { 6 } 0.23749 { 5 } 0.25055 { 7 } 0.30236 { 8 } 0.22375 { 4 } 0.22068 { 3 }
γ ^ 0.27635 { 1 } 0.29205 { 2 } 0.33716 { 6 } 0.40569 { 7 } 0.33626 { 5 } 0.66355 { 8 } 0.31652 { 4 } 0.29535 { 3 }
R a n k s 12 { 1 } 20 { 2 } 53 { 5.5 } 53 { 5.5 } 56 { 7 } 72 { 8 } 29 { 3.5 } 29 { 3.5 }
150BIAS θ ^ 0.17878 { 1 } 0.2035 { 4 } 0.25038 { 7 } 0.20313 { 3 } 0.24461 { 6 } 0.36818 { 8 } 0.19861 { 2 } 0.21102 { 5 }
η ^ 0.26958 { 1 } 0.30119 { 4 } 0.33851 { 7 } 0.31034 { 5 } 0.336 { 6 } 0.42947 { 8 } 0.29686 { 2 } 0.29911 { 3 }
γ ^ 0.05646 { 1 } 0.06651 { 4 } 0.07607 { 6 } 0.08669 { 7 } 0.07361 { 5 } 0.15786 { 8 } 0.06627 { 3 } 0.06408 { 2 }
MSE θ ^ 0.05368 { 1 } 0.06788 { 3 } 0.10155 { 7 } 0.06879 { 4 } 0.09731 { 6 } 0.23782 { 8 } 0.06336 { 2 } 0.07346 { 5 }
η ^ 0.12315 { 1 } 0.15305 { 4 } 0.18283 { 7 } 0.17686 { 5 } 0.18045 { 6 } 0.29827 { 8 } 0.14774 { 3 } 0.14665 { 2 }
γ ^ 0.01152 { 1 } 0.01525 { 4 } 0.01809 { 6 } 0.0353 { 7 } 0.01731 { 5 } 0.05792 { 8 } 0.01464 { 3 } 0.01403 { 2 }
MRE θ ^ 0.23838 { 1 } 0.27134 { 4 } 0.33384 { 7 } 0.27085 { 3 } 0.32615 { 6 } 0.49091 { 8 } 0.26481 { 2 } 0.28136 { 5 }
η ^ 0.17972 { 1 } 0.20079 { 4 } 0.22567 { 7 } 0.20689 { 5 } 0.224 { 6 } 0.28631 { 8 } 0.1979 { 2 } 0.19941 { 3 }
γ ^ 0.22584 { 1 } 0.26604 { 4 } 0.30428 { 6 } 0.34675 { 7 } 0.29444 { 5 } 0.63142 { 8 } 0.2651 { 3 } 0.25633 { 2 }
R a n k s 9 { 1 } 35 { 4 } 60 { 7 } 46 { 5 } 51 { 6 } 72 { 8 } 22 { 2 } 29 { 3 }
200BIAS θ ^ 0.16218 { 1 } 0.17429 { 4 } 0.20797 { 6 } 0.17166 { 3 } 0.21796 { 7 } 0.32153 { 8 } 0.16932 { 2 } 0.18027 { 5 }
η ^ 0.24297 { 1 } 0.25924 { 3 } 0.28391 { 6 } 0.27052 { 5 } 0.29175 { 7 } 0.36748 { 8 } 0.24633 { 2 } 0.26393 { 4 }
γ ^ 0.04804 { 1 } 0.05569 { 4 } 0.06095 { 5 } 0.06672 { 7 } 0.06264 { 6 } 0.13818 { 8 } 0.05234 { 2 } 0.05533 { 3 }
MSE θ ^ 0.04211 { 1 } 0.0483 { 3 } 0.07009 { 6 } 0.04854 { 4 } 0.07496 { 7 } 0.17722 { 8 } 0.04699 { 2 } 0.05293 { 5 }
η ^ 0.09748 { 1 } 0.11346 { 3 } 0.13433 { 6 } 0.13239 { 5 } 0.14057 { 7 } 0.23818 { 8 } 0.1034 { 2 } 0.11628 { 4 }
γ ^ 0.00782 { 1 } 0.01052 { 3 } 0.01209 { 5 } 0.0206 { 7 } 0.01293 { 6 } 0.04997 { 8 } 0.00888 { 2 } 0.0109 { 4 }
MRE θ ^ 0.21624 { 1 } 0.23239 { 4 } 0.2773 { 6 } 0.22889 { 3 } 0.29061 { 7 } 0.42871 { 8 } 0.22577 { 2 } 0.24036 { 5 }
η ^ 0.16198 { 1 } 0.17282 { 3 } 0.18927 { 6 } 0.18035 { 5 } 0.1945 { 7 } 0.24499 { 8 } 0.16422 { 2 } 0.17595 { 4 }
γ ^ 0.19214 { 1 } 0.22278 { 4 } 0.24382 { 5 } 0.26688 { 7 } 0.25055 { 6 } 0.55271 { 8 } 0.20937 { 2 } 0.22134 { 3 }
R a n k s 9 { 1 } 31 { 3 } 51 { 6 } 46 { 5 } 60 { 7 } 72 { 8 } 18 { 2 } 37 { 4 }
300BIAS θ ^ 0.12772 { 1 } 0.14162 { 4 } 0.17372 { 7 } 0.13688 { 2 } 0.17201 { 6 } 0.26014 { 8 } 0.14019 { 3 } 0.14354 { 5 }
η ^ 0.19302 { 1 } 0.20502 { 2 } 0.23269 { 7 } 0.21015 { 5 } 0.23105 { 6 } 0.30755 { 8 } 0.20864 { 4 } 0.2061 { 3 }
γ ^ 0.03783 { 1 } 0.03986 { 3 } 0.04656 { 6 } 0.04788 { 7 } 0.04592 { 5 } 0.10864 { 8 } 0.04181 { 4 } 0.03882 { 2 }
MSE θ ^ 0.02713 { 1 } 0.0325 { 2 } 0.04801 { 7 } 0.03256 { 3.5 } 0.04754 { 6 } 0.1152 { 8 } 0.03263 { 5 } 0.03256 { 3.5 }
η ^ 0.0648 { 1 } 0.07176 { 3 } 0.09158 { 7 } 0.08605 { 5 } 0.08962 { 6 } 0.17231 { 8 } 0.07483 { 4 } 0.06933 { 2 }
γ ^ 0.00525 { 3 } 0.00468 { 2 } 0.00706 { 6 } 0.01145 { 7 } 0.0065 { 5 } 0.03316 { 8 } 0.00563 { 4 } 0.004 { 1 }
MRE θ ^ 0.17029 { 1 } 0.18883 { 4 } 0.23163 { 7 } 0.1825 { 2 } 0.22935 { 6 } 0.34686 { 8 } 0.18692 { 3 } 0.19139 { 5 }
η ^ 0.12868 { 1 } 0.13668 { 2 } 0.15513 { 7 } 0.1401 { 5 } 0.15403 { 6 } 0.20503 { 8 } 0.13909 { 4 } 0.1374 { 3 }
γ ^ 0.15132 { 1 } 0.15946 { 3 } 0.18626 { 6 } 0.19153 { 7 } 0.1837 { 5 } 0.43457 { 8 } 0.16724 { 4 } 0.15528 { 2 }
R a n k s 11 { 1 } 25 { 2 } 60 { 7 } 43.5 { 5 } 51 { 6 } 72 { 8 } 35 { 4 } 26.5 { 3 }
Table 5. Simulation values of BIAS, MSE and MRE for ( θ = 1.50 , η = 0.25 , γ = 0.50 ) .
Table 5. Simulation values of BIAS, MSE and MRE for ( θ = 1.50 , η = 0.25 , γ = 0.50 ) .
nMeasures ω ^ EM 1 EM 2 EM 3 EM 4 EM 5 EM 6 EM 7 EM 8
75BIAS θ ^ 0.08268 { 2 } 0.329 { 3 } 2.36894 { 7 } 0.01409 { 1 } 2.06945 { 6 } 3.18532 { 8 } 1.22495 { 4 } 1.81121 { 5 }
η ^ 0.01952 { 2 } 0.02972 { 3 } 0.14829 { 7 } 0.0156 { 1 } 0.14297 { 6 } 0.20789 { 8 } 0.14213 { 5 } 0.13552 { 4 }
γ ^ 0.02922 { 2 } 0.03589 { 3 } 0.25056 { 7 } 0.0244 { 1 } 0.23045 { 5 } 0.43911 { 8 } 0.23988 { 6 } 0.19734 { 4 }
MSE θ ^ 0.14549 { 2 } 1.04433 { 3 } 18.45666 { 7 } 0.00543 { 1 } 13.53289 { 6 } 54.38416 { 8 } 3.56615 { 4 } 11.97545 { 5 }
η ^ 0.00371 { 2 } 0.00729 { 3 } 0.03879 { 6 } 0.00179 { 1 } 0.03649 { 4 } 0.07199 { 8 } 0.043 { 7 } 0.03854 { 5 }
γ ^ 0.00568 { 2 } 0.00754 { 3 } 0.08207 { 6 } 0.00446 { 1 } 0.07067 { 5 } 1.00815 { 8 } 0.09376 { 7 } 0.05375 { 4 }
MRE θ ^ 0.05512 { 2 } 0.21934 { 3 } 1.57929 { 7 } 0.0094 { 1 } 1.37963 { 6 } 2.12354 { 8 } 0.81663 { 4 } 1.20747 { 5 }
η ^ 0.07807 { 2 } 0.11889 { 3 } 0.59316 { 7 } 0.0624 { 1 } 0.57186 { 6 } 0.83158 { 8 } 0.56852 { 5 } 0.54208 { 4 }
γ ^ 0.05844 { 2 } 0.07179 { 3 } 0.50113 { 7 } 0.04879 { 1 } 0.4609 { 5 } 0.87823 { 8 } 0.47977 { 6 } 0.39467 { 4 }
R a n k s 24 { 2 } 36 { 3 } 81 { 7 } 12 { 1 } 65 { 5 } 96 { 8 } 66 { 6 } 52 { 4 }
120BIAS θ ^ 0.0102 { 2 } 0.12028 { 3 } 1.93339 { 8 } 0.00359 { 1 } 1.75501 { 6 } 1.90063 { 7 } 1.04603 { 4 } 1.33951 { 5 }
η ^ 0.00401 { 1 } 0.01221 { 3 } 0.13203 { 7 } 0.00407 { 2 } 0.12908 { 6 } 0.168 { 8 } 0.12225 { 5 } 0.11689 { 4 }
γ ^ 0.00677 { 2 } 0.01501 { 3 } 0.21273 { 6 } 0.00555 { 1 } 0.20644 { 5 } 0.29434 { 8 } 0.21735 { 7 } 0.17808 { 4 }
MSE θ ^ 0.00465 { 2 } 0.33535 { 3 } 11.10209 { 7 } 0.00333 { 1 } 9.59388 { 6 } 13.9206 { 8 } 2.28066 { 4 } 5.54841 { 5 }
η ^ 0.00031 { 1 } 0.00284 { 3 } 0.02953 { 5 } 0.00038 { 2 } 0.03054 { 7 } 0.04478 { 8 } 0.02974 { 6 } 0.02594 { 4 }
γ ^ 0.00092 { 2 } 0.00311 { 3 } 0.06003 { 6 } 0.00073 { 1 } 0.05623 { 5 } 0.35748 { 8 } 0.07828 { 7 } 0.04416 { 4 }
MRE θ ^ 0.0068 { 2 } 0.08019 { 3 } 1.28893 { 8 } 0.00239 { 1 } 1.17001 { 6 } 1.26709 { 7 } 0.69735 { 4 } 0.893 { 5 }
η ^ 0.01606 { 1 } 0.04883 { 3 } 0.52811 { 7 } 0.01626 { 2 } 0.5163 { 6 } 0.67198 { 8 } 0.48899 { 5 } 0.46758 { 4 }
γ ^ 0.01354 { 2 } 0.03001 { 3 } 0.42547 { 6 } 0.0111 { 1 } 0.41289 { 5 } 0.58869 { 8 } 0.4347 { 7 } 0.35615 { 4 }
R a n k s 15 { 2 } 27 { 3 } 57 { 7 } 12 { 1 } 54 { 6 } 67 { 8 } 51 { 5 } 41 { 4 }
150BIAS θ ^ 0.00537 { 2 } 0.06317 { 3 } 1.80033 { 8 } 0.00154 { 1 } 1.60955 { 6 } 1.69141 { 7 } 0.92445 { 4 } 1.13627 { 5 }
η ^ 0.00196 { 1 } 0.00603 { 3 } 0.12632 { 7 } 0.00245 { 2 } 0.12448 { 6 } 0.16382 { 8 } 0.11362 { 5 } 0.10692 { 4 }
γ ^ 0.00353 { 1 } 0.00696 { 3 } 0.20204 { 6 } 0.00376 { 2 } 0.1961 { 5 } 0.29891 { 8 } 0.21778 { 7 } 0.16747 { 4 }
MSE θ ^ 0.00126 { 2 } 0.13958 { 3 } 9.91974 { 8 } 0.00023 { 1 } 7.8568 { 6 } 9.32181 { 7 } 1.73081 { 4 } 3.59389 { 5 }
η ^ 0.00016 { 1 } 0.00132 { 3 } 0.02826 { 7 } 0.00019 { 2 } 0.02725 { 6 } 0.04215 { 8 } 0.02344 { 5 } 0.02149 { 4 }
γ ^ 0.00043 { 1 } 0.00134 { 3 } 0.05364 { 6 } 0.00044 { 2 } 0.05097 { 5 } 0.39842 { 8 } 0.07807 { 7 } 0.04034 { 4 }
MRE θ ^ 0.00358 { 2 } 0.04211 { 3 } 1.20022 { 8 } 0.00103 { 1 } 1.07304 { 6 } 1.1276 { 7 } 0.6163 { 4 } 0.75751 { 5 }
η ^ 0.00786 { 1 } 0.02411 { 3 } 0.50527 { 7 } 0.00981 { 2 } 0.49794 { 6 } 0.65529 { 8 } 0.45447 { 5 } 0.4277 { 4 }
γ ^ 0.00707 { 1 } 0.01392 { 3 } 0.40408 { 6 } 0.00752 { 2 } 0.3922 { 5 } 0.59781 { 8 } 0.43556 { 7 } 0.33494 { 4 }
R a n k s 12 { 1 } 27 { 3 } 63 { 7 } 15 { 2 } 51 { 6 } 69 { 8 } 48 { 5 } 39 { 4 }
200BIAS θ ^ 0.00164 { 2 } 0.01227 { 3 } 1.42107 { 7 } 0.00048 { 1 } 1.44659 { 8 } 1.33121 { 6 } 0.83444 { 4 } 0.97353 { 5 }
η ^ 0.00083 { 2 } 0.0014 { 3 } 0.11693 { 6 } 0.00082 { 1 } 0.12106 { 7 } 0.14905 { 8 } 0.10487 { 5 } 0.10239 { 4 }
γ ^ 0.00117 { 1 } 0.0019 { 3 } 0.18742 { 6 } 0.00124 { 2 } 0.18719 { 5 } 0.23751 { 8 } 0.20852 { 7 } 0.16283 { 4 }
MSE θ ^ 0.00026 { 2 } 0.02085 { 3 } 5.58379 { 7 } 3 × 10 5 { 1 } 5.85021 { 8 } 4.65919 { 6 } 1.35292 { 4 } 2.41824 { 5 }
η ^ 6 × 10 5 { 2 } 0.00024 { 3 } 0.0243 { 6 } 5 × 10 5 { 1 } 0.02712 { 7 } 0.03412 { 8 } 0.01976 { 5 } 0.01957 { 4 }
γ ^ 0.00014 { 2 } 0.00033 { 3 } 0.0472 { 5 } 0.00012 { 1 } 0.04736 { 6 } 0.15881 { 8 } 0.07264 { 7 } 0.03731 { 4 }
MRE θ ^ 0.0011 { 2 } 0.00818 { 3 } 0.94738 { 7 } 0.00032 { 1 } 0.96439 { 8 } 0.88748 { 6 } 0.55629 { 4 } 0.64902 { 5 }
η ^ 0.00332 { 2 } 0.00558 { 3 } 0.46771 { 6 } 0.00329 { 1 } 0.48423 { 7 } 0.59619 { 8 } 0.41946 { 5 } 0.40958 { 4 }
γ ^ 0.00233 { 1 } 0.0038 { 3 } 0.37483 { 6 } 0.00248 { 2 } 0.37438 { 5 } 0.47502 { 8 } 0.41703 { 7 } 0.32565 { 4 }
R a n k s 21 { 1.5 } 24 { 3 } 54 { 6 } 21 { 1.5 } 59 { 7 } 64 { 8 } 45 { 5 } 36 { 4 }
300BIAS θ ^ 3 × 10 5 { 2 } 0.00398 { 3 } 1.16933 { 8 } 2 × 10 5 { 1 } 1.13756 { 7 } 1.06187 { 6 } 0.73301 { 4 } 0.76496 { 5 }
η ^ 4 × 10 5 { 1 } 0.00033 { 3 } 0.10464 { 6 } 6 × 10 5 { 2 } 0.10506 { 7 } 0.13138 { 8 } 0.09624 { 5 } 0.08528 { 4 }
γ ^ 3 × 10 5 { 1 } 0.00038 { 3 } 0.17109 { 5 } 8 × 10 5 { 2 } 0.17237 { 6 } 0.20785 { 8 } 0.19615 { 7 } 0.14608 { 4 }
MSE θ ^ 0 { 1.5 } 0.00599 { 3 } 3.58255 { 8 } 0 { 1.5 } 3.33986 { 7 } 2.57736 { 6 } 0.98121 { 4 } 1.3758 { 5 }
η ^ 0 { 1.5 } 4 × 10 5 { 3 } 0.0194 { 6 } 0 { 1.5 } 0.01964 { 7 } 0.02464 { 8 } 0.01576 { 5 } 0.01291 { 4 }
γ ^ 0 { 1.5 } 5 × 10 5 { 3 } 0.04073 { 6 } 0 { 1.5 } 0.04055 { 5 } 0.06341 { 7 } 0.06402 { 8 } 0.03154 { 4 }
MRE θ ^ 2 × 10 5 { 2 } 0.00265 { 3 } 0.77956 { 8 } 1 × 10 5 { 1 } 0.75838 { 7 } 0.70791 { 6 } 0.48868 { 4 } 0.50997 { 5 }
η ^ 0.00015 { 1 } 0.00134 { 3 } 0.41856 { 6 } 0.00025 { 2 } 0.42023 { 7 } 0.52552 { 8 } 0.38494 { 5 } 0.34112 { 4 }
γ ^ 7 × 10 5 { 1 } 0.00075 { 3 } 0.34218 { 5 } 0.00015 { 2 } 0.34474 { 6 } 0.4157 { 8 } 0.3923 { 7 } 0.29216 { 4 }
R a n k s 43.5 { 5 } 28 { 1.5 } 47 { 6 } 37.5 { 3 } 48 { 7 } 54 { 8 } 38 { 4 } 28 { 1.5 }
Table 6. Simulation values of BIAS, MSE and MRE for ( θ = 0.50 , η = 0.75 , γ = 1.50 ) .
Table 6. Simulation values of BIAS, MSE and MRE for ( θ = 0.50 , η = 0.75 , γ = 1.50 ) .
nMeasures ω ^ EM 1 EM 2 EM 3 EM 4 EM 5 EM 6 EM 7 EM 8
75BIAS θ ^ 0.1876 { 7 } 0.17184 { 2 } 0.19473 { 8 } 0.14535 { 1 } 0.18111 { 5 } 0.1755 { 4 } 0.1821 { 6 } 0.17192 { 3 }
η ^ 0.59564 { 5 } 0.55058 { 2 } 0.63891 { 8 } 0.46693 { 1 } 0.6037 { 7 } 0.56828 { 4 } 0.59697 { 6 } 0.56052 { 3 }
γ ^ 0.91366 { 4 } 0.81803 { 2 } 1.17092 { 8 } 0.73404 { 1 } 1.13404 { 7 } 0.85028 { 3 } 0.93252 { 6 } 0.93062 { 5 }
MSE θ ^ 0.08345 { 8 } 0.0592 { 5 } 0.071 { 7 } 0.04562 { 1 } 0.05929 { 6 } 0.05136 { 2 } 0.05827 { 4 } 0.05814 { 3 }
η ^ 0.73476 { 8 } 0.55026 { 3 } 0.66641 { 7 } 0.43469 { 1 } 0.58523 { 5 } 0.5123 { 2 } 0.5866 { 6 } 0.55421 { 4 }
γ ^ 1.62787 { 4 } 1.28986 { 2 } 2.91034 { 8 } 1.1446 { 1 } 2.71443 { 7 } 1.55071 { 3 } 2.0562 { 6 } 1.73932 { 5 }
MRE θ ^ 0.37521 { 7 } 0.34369 { 2 } 0.38947 { 8 } 0.29069 { 1 } 0.36223 { 5 } 0.351 { 4 } 0.3642 { 6 } 0.34383 { 3 }
η ^ 0.79418 { 5 } 0.73411 { 2 } 0.85188 { 8 } 0.62257 { 1 } 0.80494 { 7 } 0.7577 { 4 } 0.79596 { 6 } 0.74736 { 3 }
γ ^ 0.60911 { 4 } 0.54535 { 2 } 0.78062 { 8 } 0.48936 { 1 } 0.75603 { 7 } 0.56685 { 3 } 0.62168 { 6 } 0.62041 { 5 }
R a n k s 68 { 5 } 28 { 2 } 94 { 8 } 12 { 1 } 75 { 7 } 40 { 3 } 70 { 6 } 45 { 4 }
120BIAS θ ^ 0.16126 { 6 } 0.1484 { 2 } 0.16796 { 8 } 0.12516 { 1 } 0.16593 { 7 } 0.15187 { 5 } 0.1507 { 4 } 0.14978 { 3 }
η ^ 0.50791 { 6 } 0.47203 { 2 } 0.5542 { 8 } 0.39552 { 1 } 0.5517 { 7 } 0.50224 { 5 } 0.49516 { 4 } 0.48598 { 3 }
γ ^ 0.70968 { 5 } 0.61374 { 2 } 0.90233 { 7 } 0.54471 { 1 } 0.90927 { 8 } 0.69117 { 4 } 0.68977 { 3 } 0.71558 { 6 }
MSE θ ^ 0.06697 { 8 } 0.04863 { 5 } 0.0564 { 7 } 0.03849 { 1 } 0.05337 { 6 } 0.04095 { 2 } 0.04466 { 3 } 0.04784 { 4 }
η ^ 0.57825 { 8 } 0.44708 { 4 } 0.53752 { 7 } 0.35825 { 1 } 0.52086 { 6 } 0.42782 { 2 } 0.4453 { 3 } 0.45724 { 5 }
γ ^ 0.93426 { 3 } 0.67257 { 2 } 1.68062 { 7 } 0.58982 { 1 } 1.68888 { 8 } 0.95966 { 5 } 0.95726 { 4 } 1.00152 { 6 }
MRE θ ^ 0.32251 { 6 } 0.2968 { 2 } 0.33592 { 8 } 0.25032 { 1 } 0.33186 { 7 } 0.30374 { 5 } 0.30141 { 4 } 0.29955 { 3 }
η ^ 0.67721 { 6 } 0.62938 { 2 } 0.73894 { 8 } 0.52735 { 1 } 0.73561 { 7 } 0.66965 { 5 } 0.66021 { 4 } 0.64798 { 3 }
γ ^ 0.47312 { 5 } 0.40916 { 2 } 0.60155 { 7 } 0.36314 { 1 } 0.60618 { 8 } 0.46078 { 4 } 0.45984 { 3 } 0.47705 { 6 }
R a n k s 53 { 6 } 23 { 2 } 67 { 8 } 9 { 1 } 64 { 7 } 37 { 4 } 32 { 3 } 39 { 5 }
150BIAS θ ^ 0.13682 { 3 } 0.13303 { 2 } 0.15536 { 8 } 0.1195 { 1 } 0.14969 { 7 } 0.14469 { 6 } 0.13912 { 5 } 0.137 { 4 }
η ^ 0.4306 { 2 } 0.43337 { 3 } 0.52171 { 8 } 0.37602 { 1 } 0.50289 { 7 } 0.47743 { 6 } 0.45864 { 5 } 0.4484 { 4 }
γ ^ 0.57947 { 4 } 0.56478 { 2 } 0.83261 { 8 } 0.46664 { 1 } 0.76979 { 7 } 0.57561 { 3 } 0.61207 { 5 } 0.63783 { 6 }
MSE θ ^ 0.05352 { 8 } 0.04112 { 4 } 0.05001 { 7 } 0.03671 { 1 } 0.04659 { 6 } 0.03951 { 3 } 0.03843 { 2 } 0.04364 { 5 }
η ^ 0.46379 { 6 } 0.39222 { 3 } 0.49531 { 8 } 0.33661 { 1 } 0.46501 { 7 } 0.40797 { 4 } 0.3912 { 2 } 0.40975 { 5 }
γ ^ 0.60896 { 4 } 0.56743 { 2 } 1.42914 { 8 } 0.42459 { 1 } 1.16637 { 7 } 0.57616 { 3 } 0.66245 { 5 } 0.7407 { 6 }
MRE θ ^ 0.27365 { 3 } 0.26606 { 2 } 0.31072 { 8 } 0.23899 { 1 } 0.29937 { 7 } 0.28938 { 6 } 0.27823 { 5 } 0.27399 { 4 }
η ^ 0.57413 { 2 } 0.57782 { 3 } 0.69561 { 8 } 0.50136 { 1 } 0.67052 { 7 } 0.63658 { 6 } 0.61152 { 5 } 0.59787 { 4 }
γ ^ 0.38631 { 4 } 0.37652 { 2 } 0.55507 { 8 } 0.31109 { 1 } 0.51319 { 7 } 0.38374 { 3 } 0.40805 { 5 } 0.42522 { 6 }
R a n k s 36 { 3 } 23 { 2 } 71 { 8 } 9 { 1 } 62 { 7 } 40 { 5 } 39 { 4 } 44 { 6 }
200BIAS θ ^ 0.1131 { 2 } 0.1201 { 4 } 0.13891 { 8 } 0.09771 { 1 } 0.13883 { 7 } 0.12646 { 6 } 0.12526 { 5 } 0.11812 { 3 }
η ^ 0.36045 { 2 } 0.38527 { 3 } 0.47001 { 7 } 0.30838 { 1 } 0.47157 { 8 } 0.41712 { 6 } 0.40974 { 5 } 0.38692 { 4 }
γ ^ 0.4772 { 2 } 0.48977 { 3 } 0.70107 { 7 } 0.39294 { 1 } 0.71042 { 8 } 0.51361 { 4 } 0.51617 { 5 } 0.52688 { 6 }
MSE θ ^ 0.03981 { 6 } 0.03476 { 5 } 0.04266 { 8 } 0.02725 { 1 } 0.04076 { 7 } 0.03168 { 2 } 0.03344 { 3 } 0.03367 { 4 }
η ^ 0.34746 { 6 } 0.32213 { 2 } 0.42893 { 8 } 0.25103 { 1 } 0.41969 { 7 } 0.32415 { 4 } 0.33147 { 5 } 0.32261 { 3 }
γ ^ 0.42009 { 3 } 0.40225 { 2 } 0.9689 { 8 } 0.29716 { 1 } 0.96728 { 7 } 0.45639 { 4 } 0.4641 { 5 } 0.52209 { 6 }
MRE θ ^ 0.22619 { 2 } 0.24021 { 4 } 0.27782 { 8 } 0.19542 { 1 } 0.27767 { 7 } 0.25292 { 6 } 0.25051 { 5 } 0.23623 { 3 }
η ^ 0.48061 { 2 } 0.51369 { 3 } 0.62668 { 7 } 0.41117 { 1 } 0.62876 { 8 } 0.55616 { 6 } 0.54632 { 5 } 0.51589 { 4 }
γ ^ 0.31814 { 2 } 0.32652 { 3 } 0.46738 { 7 } 0.26196 { 1 } 0.47361 { 8 } 0.34241 { 4 } 0.34411 { 5 } 0.35125 { 6 }
R a n k s 27 { 2 } 29 { 3 } 68 { 8 } 9 { 1 } 67 { 7 } 42 { 5 } 43 { 6 } 39 { 4 }
300BIAS θ ^ 0.08412 { 2 } 0.10072 { 4 } 0.11392 { 7 } 0.07426 { 1 } 0.11577 { 8 } 0.10853 { 6 } 0.106 { 5 } 0.09818 { 3 }
η ^ 0.27159 { 2 } 0.32548 { 4 } 0.38722 { 7 } 0.2376 { 1 } 0.39628 { 8 } 0.35798 { 6 } 0.34882 { 5 } 0.32438 { 3 }
γ ^ 0.36833 { 2 } 0.41114 { 3 } 0.53798 { 7 } 0.29851 { 1 } 0.57014 { 8 } 0.42118 { 4 } 0.43907 { 6 } 0.42842 { 5 }
MSE θ ^ 0.02447 { 2 } 0.02712 { 6 } 0.03143 { 8 } 0.01613 { 1 } 0.03074 { 7 } 0.025 { 4 } 0.02476 { 3 } 0.02576 { 5 }
η ^ 0.21515 { 2 } 0.2536 { 5 } 0.31615 { 7 } 0.15725 { 1 } 0.31873 { 8 } 0.2577 { 6 } 0.24992 { 3 } 0.25109 { 4 }
γ ^ 0.24406 { 2 } 0.27821 { 4 } 0.52259 { 7 } 0.17526 { 1 } 0.63325 { 8 } 0.27699 { 3 } 0.31451 { 6 } 0.31003 { 5 }
MRE θ ^ 0.16824 { 2 } 0.20145 { 4 } 0.22783 { 7 } 0.14851 { 1 } 0.23155 { 8 } 0.21707 { 6 } 0.212 { 5 } 0.19637 { 3 }
η ^ 0.36212 { 2 } 0.43397 { 4 } 0.5163 { 7 } 0.31681 { 1 } 0.52837 { 8 } 0.4773 { 6 } 0.4651 { 5 } 0.4325 { 3 }
γ ^ 0.24556 { 2 } 0.27409 { 3 } 0.35866 { 7 } 0.19901 { 1 } 0.38009 { 8 } 0.28079 { 4 } 0.29271 { 6 } 0.28562 { 5 }
R a n k s 18 { 2 } 37 { 4 } 64 { 7 } 9 { 1 } 71 { 8 } 45 { 6 } 44 { 5 } 36 { 3 }
Table 7. Simulation values of BIAS, MSE and MRE for ( θ = 1.5 , η = 1.5 , γ = 1.5 ) .
Table 7. Simulation values of BIAS, MSE and MRE for ( θ = 1.5 , η = 1.5 , γ = 1.5 ) .
nMeasures ω ^ EM 1 EM 2 EM 3 EM 4 EM 5 EM 6 EM 7 EM 8
75BIAS θ ^ 0.52344 { 5 } 0.50413 { 2 } 0.57443 { 7 } 0.43809 { 1 } 0.56046 { 6 } 0.51378 { 4 } 0.60559 { 8 } 0.50681 { 3 }
η ^ 1.19949 { 5 } 1.1569 { 3 } 1.3495 { 7 } 0.98458 { 1 } 1.31242 { 6 } 1.1478 { 2 } 1.38605 { 8 } 1.18648 { 4 }
γ ^ 0.86572 { 4 } 0.75236 { 3 } 1.19252 { 8 } 0.68199 { 1 } 1.1904 { 7 } 0.71935 { 2 } 0.87581 { 5 } 0.90677 { 6 }
MSE θ ^ 0.54348 { 6 } 0.47419 { 3 } 0.57107 { 7 } 0.36151 { 1 } 0.52646 { 5 } 0.49254 { 4 } 0.72973 { 8 } 0.45629 { 2 }
η ^ 2.71089 { 5 } 2.43735 { 3 } 3.05596 { 7 } 1.84988 { 1 } 2.75992 { 6 } 2.34889 { 2 } 3.44067 { 8 } 2.4521 { 4 }
γ ^ 1.86514 { 4 } 1.09922 { 2 } 3.77617 { 8 } 1.13491 { 3 } 3.67113 { 7 } 0.98641 { 1 } 2.02331 { 6 } 1.96434 { 5 }
MRE θ ^ 0.34896 { 5 } 0.33608 { 2 } 0.38295 { 7 } 0.29206 { 1 } 0.37364 { 6 } 0.34252 { 4 } 0.40373 { 8 } 0.33788 { 3 }
η ^ 0.79966 { 5 } 0.77126 { 3 } 0.89967 { 7 } 0.65638 { 1 } 0.87495 { 6 } 0.7652 { 2 } 0.92403 { 8 } 0.79099 { 4 }
γ ^ 0.57715 { 4 } 0.50157 { 3 } 0.79501 { 8 } 0.45466 { 1 } 0.7936 { 7 } 0.47957 { 2 } 0.58387 { 5 } 0.60451 { 6 }
R a n k s 57 { 5 } 32 { 3 } 88 { 8 } 14 { 1 } 75 { 6 } 31 { 2 } 85 { 7 } 50 { 4 }
120BIAS θ ^ 0.41138 { 2 } 0.44912 { 3 } 0.49768 { 6 } 0.35184 { 1 } 0.50193 { 8 } 0.47049 { 5 } 0.5013 { 7 } 0.46802 { 4 }
η ^ 0.95093 { 2 } 1.04631 { 3 } 1.17674 { 8 } 0.78849 { 1 } 1.16771 { 7 } 1.05908 { 4 } 1.15865 { 6 } 1.09232 { 5 }
γ ^ 0.60425 { 3 } 0.61489 { 4 } 0.87361 { 8 } 0.50429 { 1 } 0.82599 { 7 } 0.56927 { 2 } 0.66135 { 5 } 0.69284 { 6 }
MSE θ ^ 0.3708 { 2 } 0.38216 { 3 } 0.45099 { 6 } 0.26152 { 1 } 0.45408 { 7 } 0.43384 { 5 } 0.49196 { 8 } 0.41113 { 4 }
η ^ 1.88113 { 2 } 2.02037 { 3 } 2.40797 { 7 } 1.32297 { 1 } 2.35318 { 6 } 2.13221 { 4 } 2.52293 { 8 } 2.16658 { 5 }
γ ^ 0.73633 { 4 } 0.63213 { 3 } 1.78269 { 8 } 0.55788 { 2 } 1.50534 { 7 } 0.54078 { 1 } 0.80612 { 5 } 0.9179 { 6 }
MRE θ ^ 0.27425 { 2 } 0.29941 { 3 } 0.33179 { 6 } 0.23456 { 1 } 0.33462 { 8 } 0.31366 { 5 } 0.3342 { 7 } 0.31202 { 4 }
η ^ 0.63395 { 2 } 0.69754 { 3 } 0.78449 { 8 } 0.52566 { 1 } 0.77848 { 7 } 0.70605 { 4 } 0.77243 { 6 } 0.72821 { 5 }
γ ^ 0.40283 { 3 } 0.40993 { 4 } 0.58241 { 8 } 0.33619 { 1 } 0.55066 { 7 } 0.37951 { 2 } 0.4409 { 5 } 0.46189 { 6 }
R a n k s 22 { 2 } 29 { 3 } 65 { 8 } 10 { 1 } 64 { 7 } 32 { 4 } 57 { 6 } 45 { 5 }
150BIAS θ ^ 0.39249 { 2 } 0.3999 { 3 } 0.48215 { 8 } 0.31648 { 1 } 0.47087 { 6 } 0.44146 { 5 } 0.47093 { 7 } 0.40872 { 4 }
η ^ 0.89899 { 2 } 0.92744 { 3 } 1.13109 { 8 } 0.71474 { 1 } 1.10751 { 7 } 0.98774 { 5 } 1.0946 { 6 } 0.94955 { 4 }
γ ^ 0.53462 { 3 } 0.54146 { 4 } 0.76096 { 7 } 0.43903 { 1 } 0.77132 { 8 } 0.51988 { 2 } 0.60049 { 6 } 0.57672 { 5 }
MSE θ ^ 0.35679 { 4 } 0.32792 { 2 } 0.42572 { 7 } 0.22621 { 1 } 0.40387 { 6 } 0.4011 { 5 } 0.45215 { 8 } 0.34046 { 3 }
η ^ 1.75954 { 4 } 1.69694 { 2 } 2.23597 { 7 } 1.15192 { 1 } 2.12274 { 6 } 1.93753 { 5 } 2.35066 { 8 } 1.75931 { 3 }
γ ^ 0.51709 { 4 } 0.49554 { 3 } 1.21309 { 7 } 0.35439 { 1 } 1.24986 { 8 } 0.43394 { 2 } 0.61503 { 6 } 0.58571 { 5 }
MRE θ ^ 0.26166 { 2 } 0.2666 { 3 } 0.32143 { 8 } 0.21098 { 1 } 0.31391 { 6 } 0.29431 { 5 } 0.31395 { 7 } 0.27248 { 4 }
η ^ 0.59933 { 2 } 0.61829 { 3 } 0.75406 { 8 } 0.47649 { 1 } 0.73834 { 7 } 0.65849 { 5 } 0.72973 { 6 } 0.63303 { 4 }
γ ^ 0.35641 { 3 } 0.36097 { 4 } 0.50731 { 7 } 0.29269 { 1 } 0.51421 { 8 } 0.34659 { 2 } 0.40033 { 6 } 0.38448 { 5 }
R a n k s 26 { 2 } 27 { 3 } 67 { 8 } 9 { 1 } 62 { 7 } 36 { 4 } 60 { 6 } 37 { 5 }
200BIAS θ ^ 0.33155 { 2 } 0.362 { 3 } 0.43402 { 7 } 0.26647 { 1 } 0.43071 { 6 } 0.37868 { 5 } 0.44223 { 8 } 0.36523 { 4 }
η ^ 0.76643 { 2 } 0.8408 { 3 } 1.02171 { 7 } 0.5971 { 1 } 1.01276 { 6 } 0.86562 { 5 } 1.02796 { 8 } 0.85179 { 4 }
γ ^ 0.44768 { 2 } 0.47591 { 4 } 0.64501 { 8 } 0.35049 { 1 } 0.63905 { 7 } 0.45384 { 3 } 0.54606 { 6 } 0.50876 { 5 }
MSE θ ^ 0.27545 { 2 } 0.27796 { 3 } 0.36311 { 7 } 0.1739 { 1 } 0.35137 { 6 } 0.31978 { 5 } 0.41658 { 8 } 0.28336 { 4 }
η ^ 1.37612 { 2 } 1.42507 { 3 } 1.91777 { 7 } 0.89526 { 1 } 1.85332 { 6 } 1.5858 { 5 } 2.15692 { 8 } 1.46238 { 4 }
γ ^ 0.33568 { 3 } 0.35611 { 4 } 0.73538 { 8 } 0.2317 { 1 } 0.71439 { 7 } 0.33033 { 2 } 0.48167 { 6 } 0.44443 { 5 }
MRE θ ^ 0.22103 { 2 } 0.24133 { 3 } 0.28935 { 7 } 0.17765 { 1 } 0.28714 { 6 } 0.25245 { 5 } 0.29482 { 8 } 0.24349 { 4 }
η ^ 0.51095 { 2 } 0.56053 { 3 } 0.68114 { 7 } 0.39807 { 1 } 0.67517 { 6 } 0.57708 { 5 } 0.68531 { 8 } 0.56786 { 4 }
γ ^ 0.29845 { 2 } 0.31727 { 4 } 0.43001 { 8 } 0.23366 { 1 } 0.42603 { 7 } 0.30256 { 3 } 0.36404 { 6 } 0.33917 { 5 }
R a n k s 19 { 2 } 30 { 3 } 66 { 7.5 } 9 { 1 } 57 { 6 } 38 { 4 } 66 { 7.5 } 39 { 5 }
300BIAS θ ^ 0.26014 { 2 } 0.28551 { 3 } 0.37512 { 8 } 0.21111 { 1 } 0.36051 { 6 } 0.32959 { 5 } 0.36642 { 7 } 0.29749 { 4 }
η ^ 0.60356 { 2 } 0.66839 { 3 } 0.88016 { 8 } 0.47431 { 1 } 0.85173 { 6 } 0.7558 { 5 } 0.85535 { 7 } 0.69178 { 4 }
γ ^ 0.3666 { 2 } 0.38224 { 4 } 0.51553 { 7 } 0.28418 { 1 } 0.52394 { 8 } 0.37307 { 3 } 0.44431 { 6 } 0.40724 { 5 }
MSE θ ^ 0.17583 { 2 } 0.18894 { 3 } 0.29005 { 7 } 0.12198 { 1 } 0.26689 { 6 } 0.26145 { 5 } 0.29873 { 8 } 0.20425 { 4 }
η ^ 0.88678 { 2 } 0.98051 { 3 } 1.52198 { 7 } 0.63683 { 1 } 1.41641 { 6 } 1.30922 { 5 } 1.56296 { 8 } 1.04787 { 4 }
γ ^ 0.22148 { 3 } 0.2359 { 4 } 0.44793 { 7 } 0.16208 { 1 } 0.46138 { 8 } 0.2149 { 2 } 0.30915 { 6 } 0.26617 { 5 }
MRE θ ^ 0.17343 { 2 } 0.19034 { 3 } 0.25008 { 8 } 0.14074 { 1 } 0.24034 { 6 } 0.21973 { 5 } 0.24428 { 7 } 0.19832 { 4 }
η ^ 0.40237 { 2 } 0.4456 { 3 } 0.58677 { 8 } 0.31621 { 1 } 0.56782 { 6 } 0.50387 { 5 } 0.57023 { 7 } 0.46118 { 4 }
γ ^ 0.2444 { 2 } 0.25483 { 4 } 0.34369 { 7 } 0.18945 { 1 } 0.34929 { 8 } 0.24871 { 3 } 0.29621 { 6 } 0.27149 { 5 }
R a n k s 19 { 2 } 30 { 3 } 67 { 8 } 9 { 1 } 60 { 6 } 38 { 4 } 62 { 7 } 39 { 5 }
Table 8. Simulation values of BIAS, MSE and MRE for ( θ = 1.25 , η = 2.0 , γ = 0.8 ) .
Table 8. Simulation values of BIAS, MSE and MRE for ( θ = 1.25 , η = 2.0 , γ = 0.8 ) .
nMeasures ω ^ EM 1 EM 2 EM 3 EM 4 EM 5 EM 6 EM 7 EM 8
75BIAS θ ^ 0.397 { 8 } 0.33902 { 4 } 0.3697 { 7 } 0.13538 { 1 } 0.36302 { 6 } 0.30106 { 2 } 0.31825 { 3 } 0.36009 { 5 }
η ^ 0.8647 { 8 } 0.71849 { 4 } 0.77579 { 7 } 0.24054 { 1 } 0.73586 { 5 } 0.63298 { 2 } 0.66797 { 3 } 0.7741 { 6 }
γ ^ 0.54435 { 6 } 0.45159 { 2 } 0.69017 { 8 } 0.2154 { 1 } 0.64371 { 7 } 0.48199 { 4 } 0.47265 { 3 } 0.53403 { 5 }
MSE θ ^ 0.25248 { 6 } 0.21559 { 4 } 0.29204 { 7 } 0.04885 { 1 } 0.31114 { 8 } 0.18868 { 3 } 0.18763 { 2 } 0.22997 { 5 }
η ^ 1.0276 { 8 } 0.8024 { 4 } 0.98956 { 7 } 0.25857 { 1 } 0.97329 { 6 } 0.72326 { 2 } 0.75837 { 3 } 0.90307 { 5 }
γ ^ 0.92017 { 6 } 0.60948 { 2 } 1.82426 { 8 } 0.30254 { 1 } 1.64154 { 7 } 0.85474 { 4 } 0.78332 { 3 } 0.86311 { 5 }
MRE θ ^ 0.3176 { 8 } 0.27121 { 4 } 0.29576 { 7 } 0.10831 { 1 } 0.29042 { 6 } 0.24085 { 2 } 0.2546 { 3 } 0.28807 { 5 }
η ^ 0.43235 { 8 } 0.35924 { 4 } 0.3879 { 7 } 0.12027 { 1 } 0.36793 { 5 } 0.31649 { 2 } 0.33399 { 3 } 0.38705 { 6 }
γ ^ 0.68044 { 6 } 0.56449 { 2 } 0.86271 { 8 } 0.26925 { 1 } 0.80464 { 7 } 0.60249 { 4 } 0.59081 { 3 } 0.66754 { 5 }
R a n k s 86 { 7 } 40 { 4 } 88 { 8 } 12 { 1 } 75 { 6 } 33 { 2 } 35 { 3 } 63 { 5 }
120BIAS θ ^ 0.36543 { 8 } 0.30498 { 4 } 0.32443 { 6 } 0.10253 { 1 } 0.32905 { 7 } 0.25448 { 2 } 0.28504 { 3 } 0.31837 { 5 }
η ^ 0.80066 { 8 } 0.66775 { 4 } 0.70817 { 7 } 0.17114 { 1 } 0.70007 { 6 } 0.56433 { 2 } 0.61883 { 3 } 0.69451 { 5 }
γ ^ 0.4252 { 6 } 0.38095 { 3 } 0.50452 { 8 } 0.14084 { 1 } 0.49849 { 7 } 0.37616 { 2 } 0.39316 { 4 } 0.42058 { 5 }
MSE θ ^ 0.19626 { 7 } 0.13696 { 3 } 0.18 { 6 } 0.03151 { 1 } 0.21863 { 8 } 0.12048 { 2 } 0.14907 { 4 } 0.15568 { 5 }
η ^ 0.87657 { 8 } 0.65658 { 4 } 0.7984 { 6 } 0.16958 { 1 } 0.81827 { 7 } 0.58574 { 2 } 0.64986 { 3 } 0.71572 { 5 }
γ ^ 0.48507 { 4 } 0.36817 { 2 } 0.82662 { 8 } 0.13199 { 1 } 0.79365 { 7 } 0.45962 { 3 } 0.503 { 5 } 0.50844 { 6 }
MRE θ ^ 0.29235 { 8 } 0.24399 { 4 } 0.25955 { 6 } 0.08203 { 1 } 0.26324 { 7 } 0.20359 { 2 } 0.22803 { 3 } 0.25469 { 5 }
η ^ 0.40033 { 8 } 0.33387 { 4 } 0.35408 { 7 } 0.08557 { 1 } 0.35004 { 6 } 0.28217 { 2 } 0.30942 { 3 } 0.34725 { 5 }
γ ^ 0.5315 { 6 } 0.47618 { 3 } 0.63065 { 8 } 0.17605 { 1 } 0.62312 { 7 } 0.4702 { 2 } 0.49145 { 4 } 0.52572 { 5 }
R a n k s 63 { 8 } 31 { 3 } 62 { 6.5 } 9 { 1 } 62 { 6.5 } 19 { 2 } 32 { 4 } 46 { 5 }
150BIAS θ ^ 0.34759 { 8 } 0.29747 { 5 } 0.30556 { 6 } 0.08035 { 1 } 0.3074 { 7 } 0.23894 { 2 } 0.28268 { 3 } 0.29588 { 4 }
η ^ 0.7628 { 8 } 0.64963 { 4 } 0.67065 { 7 } 0.11781 { 1 } 0.66732 { 6 } 0.52664 { 2 } 0.6217 { 3 } 0.65308 { 5 }
γ ^ 0.36704 { 5 } 0.35227 { 3 } 0.45519 { 8 } 0.10041 { 1 } 0.43315 { 7 } 0.31472 { 2 } 0.38786 { 6 } 0.36196 { 4 }
MSE θ ^ 0.1735 { 7 } 0.14171 { 5 } 0.1579 { 6 } 0.02167 { 1 } 0.17885 { 8 } 0.10172 { 2 } 0.13341 { 4 } 0.12895 { 3 }
η ^ 0.78893 { 8 } 0.62741 { 4 } 0.71482 { 6 } 0.10999 { 1 } 0.73616 { 7 } 0.50351 { 2 } 0.62946 { 5 } 0.62387 { 3 }
γ ^ 0.3326 { 4 } 0.29051 { 3 } 0.64508 { 8 } 0.07271 { 1 } 0.56005 { 7 } 0.28359 { 2 } 0.43527 { 6 } 0.33707 { 5 }
MRE θ ^ 0.27807 { 8 } 0.23798 { 5 } 0.24445 { 6 } 0.06428 { 1 } 0.24592 { 7 } 0.19115 { 2 } 0.22615 { 3 } 0.2367 { 4 }
η ^ 0.3814 { 8 } 0.32482 { 4 } 0.33532 { 7 } 0.05891 { 1 } 0.33366 { 6 } 0.26332 { 2 } 0.31085 { 3 } 0.32654 { 5 }
γ ^ 0.4588 { 5 } 0.44033 { 3 } 0.56898 { 8 } 0.12551 { 1 } 0.54144 { 7 } 0.3934 { 2 } 0.48483 { 6 } 0.45245 { 4 }
R a n k s 61 { 6 } 36 { 3 } 62 { 7.5 } 9 { 1 } 62 { 7.5 } 18 { 2 } 39 { 5 } 37 { 4 }
200BIAS θ ^ 0.32002 { 8 } 0.28558 { 4 } 0.29482 { 7 } 0.06218 { 1 } 0.29001 { 6 } 0.22335 { 2 } 0.26481 { 3 } 0.28728 { 5 }
η ^ 0.70028 { 8 } 0.62519 { 4 } 0.66399 { 7 } 0.08419 { 1 } 0.63331 { 5 } 0.49384 { 2 } 0.58085 { 3 } 0.64084 { 6 }
γ ^ 0.3067 { 3 } 0.31299 { 4 } 0.40859 { 8 } 0.07437 { 1 } 0.37746 { 7 } 0.26875 { 2 } 0.32223 { 5 } 0.33293 { 6 }
MSE θ ^ 0.15029 { 8 } 0.11857 { 5 } 0.1297 { 6 } 0.01464 { 1 } 0.14539 { 7 } 0.08438 { 2 } 0.11385 { 3 } 0.11412 { 4 }
η ^ 0.67868 { 8 } 0.56199 { 4 } 0.66555 { 7 } 0.07373 { 1 } 0.63331 { 6 } 0.4357 { 2 } 0.5483 { 3 } 0.58493 { 5 }
γ ^ 0.19246 { 3 } 0.2228 { 4 } 0.43515 { 8 } 0.04769 { 1 } 0.39807 { 7 } 0.18866 { 2 } 0.25684 { 6 } 0.25595 { 5 }
MRE θ ^ 0.25601 { 8 } 0.22847 { 4 } 0.23585 { 7 } 0.04975 { 1 } 0.23201 { 6 } 0.17868 { 2 } 0.21185 { 3 } 0.22982 { 5 }
η ^ 0.35014 { 8 } 0.3126 { 4 } 0.33199 { 7 } 0.0421 { 1 } 0.31666 { 5 } 0.24692 { 2 } 0.29042 { 3 } 0.32042 { 6 }
γ ^ 0.38338 { 3 } 0.39124 { 4 } 0.51074 { 8 } 0.09297 { 1 } 0.47182 { 7 } 0.33594 { 2 } 0.40278 { 5 } 0.41617 { 6 }
R a n k s 57 { 7 } 37 { 4 } 65 { 8 } 9 { 1 } 56 { 6 } 18 { 2 } 34 { 3 } 48 { 5 }
300BIAS θ ^ 0.29699 { 8 } 0.26199 { 4 } 0.2688 { 6 } 0.04232 { 1 } 0.26771 { 5 } 0.21566 { 2 } 0.24795 { 3 } 0.26958 { 7 }
η ^ 0.65175 { 8 } 0.58076 { 4 } 0.60399 { 7 } 0.04435 { 1 } 0.59782 { 5 } 0.47631 { 2 } 0.5502 { 3 } 0.59953 { 6 }
γ ^ 0.25804 { 3 } 0.26344 { 4 } 0.32622 { 8 } 0.04274 { 1 } 0.32011 { 7 } 0.24095 { 2 } 0.28362 { 6 } 0.27945 { 5 }
MSE θ ^ 0.12406 { 8 } 0.0943 { 3 } 0.10398 { 7 } 0.00649 { 1 } 0.1024 { 6 } 0.07301 { 2 } 0.09493 { 4 } 0.09784 { 5 }
η ^ 0.57224 { 8 } 0.46866 { 3 } 0.54182 { 7 } 0.02913 { 1 } 0.53205 { 6 } 0.38615 { 2 } 0.47911 { 4 } 0.49628 { 5 }
γ ^ 0.12292 { 2 } 0.14237 { 4 } 0.26638 { 8 } 0.01578 { 1 } 0.24219 { 7 } 0.13786 { 3 } 0.1907 { 6 } 0.16248 { 5 }
MRE θ ^ 0.23759 { 8 } 0.20959 { 4 } 0.21504 { 6 } 0.03386 { 1 } 0.21417 { 5 } 0.17253 { 2 } 0.19836 { 3 } 0.21566 { 7 }
η ^ 0.32588 { 8 } 0.29038 { 4 } 0.302 { 7 } 0.02218 { 1 } 0.29891 { 5 } 0.23816 { 2 } 0.2751 { 3 } 0.29976 { 6 }
γ ^ 0.32255 { 3 } 0.32931 { 4 } 0.40778 { 8 } 0.05343 { 1 } 0.40013 { 7 } 0.30119 { 2 } 0.35453 { 6 } 0.34931 { 5 }
R a n k s 56 { 7 } 34 { 3 } 64 { 8 } 9 { 1 } 53 { 6 } 19 { 2 } 38 { 4 } 51 { 5 }
Table 9. Partial and overall ranks of all the methods of estimation of proposed distribution by various values of model parameters.
Table 9. Partial and overall ranks of all the methods of estimation of proposed distribution by various values of model parameters.
Parametern EM 1 EM 2 EM 3 EM 4 EM 5 EM 6 EM 7 EM 8
θ = 0.25 , η = 0.5 , γ = 0.75 754.03.08.01.07.06.02.05.0
1205.03.08.01.07.04.02.06.0
1504.53.08.01.07.04.52.06.0
2004.53.08.01.07.04.52.06.0
3003.05.07.01.08.04.02.06.0
θ = 0.75 , η = 1.5 , γ = 0.25 751.02.06.55.06.58.03.04.0
1201.02.05.55.57.08.03.53.5
1501.04.07.05.06.08.02.03.0
2001.03.06.05.07.08.02.04.0
3001.02.07.05.06.08.04.03.0
θ = 1.5 , η = 0.25 , γ = 0.50 752.03.07.01.05.08.06.04.0
1202.03.07.01.06.08.05.04.0
1501.03.07.02.06.08.05.04.0
2001.53.06.01.57.08.05.04.0
3005.01.56.03.07.08.04.01.5
θ = 0.5 , η = 0.75 , γ = 1.5 755.02.08.01.07.03.06.04.0
1206.02.08.01.07.04.03.05.0
1503.02.08.01.07.05.04.06.0
2002.03.08.01.07.05.06.04.0
3002.04.07.01.08.06.05.03.0
θ = 1.5 , η = 1.5 , γ = 1.5 755.03.08.01.06.02.07.04.0
1202.03.08.01.07.04.06.05.0
1502.03.08.01.07.04.06.05.0
2002.03.07.51.06.04.07.55.0
3002.03.08.01.06.04.07.05.0
θ = 1.25 , η = 2.0 , γ = 0.8 757.04.08.01.06.02.03.05.0
1208.03.06.51.06.52.04.05.0
1506.03.07.51.07.52.05.04.0
2007.04.08.01.06.02.03.05.0
3007.03.08.01.06.02.04.05.0
∑ Ranks 103.588.5220.554.0199.5154.0126.0134.0
Overall Rank 32817645
Table 10. Some descriptive analyses of all data sets.
Table 10. Some descriptive analyses of all data sets.
nMeanMedianSkewnessKurtosisRangeMinimumMaximumSum
data11002.58142.630.38930.254675.170.395.56258.14
data2742.47732.5125−0.15740.033452.2731.3123.585183.318
Table 11. The WST, AST, KOS, KOSP, MLEs, and SEs for breaking stress of carbon fibers data.
Table 11. The WST, AST, KOS, KOSP, MLEs, and SEs for breaking stress of carbon fibers data.
DistributionWSTASTKOSKOSP Estimates (SEs)
HLMKEx0.092020.517640.06730.7552 γ 1.637 (0.652)
η 1.718 (1.0059)
θ 0.2423 (0.0542)
MKEx0.173980.612510.085740.4542 γ 1.966 (0.1548)
θ 0.2334 (0.00887)
EEx0.2260.5850.10770.1962 α 7.7882 (1.496)
λ 1.0132 (0.087)
BEx0.1480.7580.09350.3461a5.9605 (0.821)
b34.5462 (61.141)
λ 0.0615 (0.102)
APEx0.1840.9390.09540.3228 α 19,134.8 (8983)
λ 1.0777 (0.0509)
Table 12. The WST, AST, KOS, KOSP, MLEs, and SEs for gauge lengths data.
Table 12. The WST, AST, KOS, KOSP, MLEs, and SEs for gauge lengths data.
DistributionWSTASTKOSKOSP Estimates (SEs)
HLMKEx0.030020.228830.06020.9512 γ 3.652 (1.343)
η 1.577 (0.908)
θ 0.259 (0.0261)
MKEx0.032150.303340.07530.7954 γ 4.152 (0.371)
θ 0.258 (0.0055)
EEx0.21721.40530.09530.5121 α 89.435 (32.476)
λ 2.0192 (0.1716)
BEx0.08740.57380.06820.8809a24.317 (3.9884)
b92.491 (154.90)
λ 0.0947 (0.1426)
APEx0.11530.74860.19240.0083 α 1,592,046 (16777)
λ 1.2536 (0.0549)
Table 13. Estimated parameters with goodness-of-fit measures by different estimation methods for the breaking stress of carbon fibers data set.
Table 13. Estimated parameters with goodness-of-fit measures by different estimation methods for the breaking stress of carbon fibers data set.
Method θ ^ η ^ γ ^ ASTWSTKOSKOSP
E M 1 0.24231.7181.6370.517640.092020.06730.7552
E M 2 1.9937312.82730.1821770.44150.07497030.06184460.838957
E M 3 2.3928613.05230.1525640.4395980.07317110.06048840.857751
E M 4 1.9399212.24510.1825290.4918260.08158560.07159430.684557
E M 5 1.5664912.08190.2264490.4705360.0809180.06781140.747293
E M 6 0.2674482.19671.371910.5412780.09938270.07331480.655578
E M 7 0.288142.679281.305990.641570.0948630.06320170.81927
E M 8 0.1990220.7800233.041530.6682560.05999270.05624610.909759
Table 14. Estimated parameters with goodness-of-fit measures by different estimation methods for the gauge lengths real data set.
Table 14. Estimated parameters with goodness-of-fit measures by different estimation methods for the gauge lengths real data set.
Method θ ^ η ^ γ ^ ASTWSTKOSKOSP
E M 1 0.2591.5773.6520.228830.030020.06020.9512
E M 2 2.5757839.78560.202160.5274510.0677170.07435850.807842
E M 3 26.164445.10590.02031120.5367620.05666760.07090020.8509
E M 4 0.68895619.31230.7219080.7728910.1174430.07400440.812428
E M 5 25.619443.2150.02056350.5246750.05753940.07483390.801631
E M 6 0.2511691.333583.922560.2583840.03370770.06940410.868182
E M 7 0.2662171.873553.386470.2498270.03036810.05550730.97655
E M 8 21.288944.35880.02501440.5063760.06184320.06431980.919464
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Alghamdi, S.M.; Shrahili, M.; Hassan, A.S.; Gemeay, A.M.; Elbatal, I.; Elgarhy, M. Statistical Inference of the Half Logistic Modified Kies Exponential Model with Modeling to Engineering Data. Symmetry 2023, 15, 586. https://doi.org/10.3390/sym15030586

AMA Style

Alghamdi SM, Shrahili M, Hassan AS, Gemeay AM, Elbatal I, Elgarhy M. Statistical Inference of the Half Logistic Modified Kies Exponential Model with Modeling to Engineering Data. Symmetry. 2023; 15(3):586. https://doi.org/10.3390/sym15030586

Chicago/Turabian Style

Alghamdi, Safar M., Mansour Shrahili, Amal S. Hassan, Ahmed M. Gemeay, Ibrahim Elbatal, and Mohammed Elgarhy. 2023. "Statistical Inference of the Half Logistic Modified Kies Exponential Model with Modeling to Engineering Data" Symmetry 15, no. 3: 586. https://doi.org/10.3390/sym15030586

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop