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Abstract: In this paper, we study a new flexible three-parameter exponential distribution called the
extended odd Weibull exponential distribution, which can have constant, decreasing, increasing,
bathtub, upside-down bathtub and reversed-J shaped hazard rates, and right-skewed, left-skewed,
symmetrical, and reversed-J shaped densities. Some mathematical properties of the proposed
distribution are derived. The model parameters are estimated via eight frequentist estimation
methods called, the maximum likelihood estimators, least squares and weighted least-squares
estimators, maximum product of spacing estimators, Cramér-von Mises estimators, percentiles
estimators, and Anderson-Darling and right-tail Anderson-Darling estimators. Extensive simulations
are conducted to compare the performance of these estimation methods for small and large samples.
Four practical data sets from the fields of medicine, engineering, and reliability are analyzed, proving
the usefulness and flexibility of the proposed distribution.

Keywords: Anderson-Darling estimation; Cramér-von Mises estimation; data analysis; exponential
distribution; mean residual life; percentiles estimation

1. Introduction

The exponential distribution has been extensively used in analyzing lifetime data due to its lack
of memory property and its simple form. However, the exponential distribution with only a constant
hazard rate shape is not able to fit data sets with different hazard shapes as increasing, decreasing,
bathtub, or unimodal (upside down bathtub) shaped failure rates, often encountered in engineering
and reliability, among others.

Recently, many authors have developed several generalizations of the exponential distribution
to increase its flexibility. For example, the Marshall-Olkin exponential by Marshall and Olkin [1],
exponentiated exponential by Gupta and Kundu [2], Harris extended exponential by Pinho et al. [3],
Kumaraswamy transmuted exponential by Afify et al. [4], modified exponential by Rasekhi et al. [5],
odd exponentiated half-logistic exponential by Afify et al. [6], Marshall-Olkin logistic-exponential
by Mansoor et al. [7], odd log-logistic Lindley exponential by Alizadeh et al. [8], and Marshall-Olkin
alpha power exponential by Nassar et al. [9], among others.

In this paper, we study a new three-parameter extended odd Weibull exponential (EOWEx)
distribution, which has several desirable properties including the following.

• The EOWEx distribution is capable of modeling constant, decreasing, increasing, bathtub, upside
down bathtub, and reversed-J hazard rates. Further, its density can be right-skewed, left-skewed,
symmetrical and reversed-J shaped. Note that the bathtub and modified bathtub failure rates are

Mathematics 2020, 8, 135; doi:10.3390/math8010135 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-6723-6785
http://dx.doi.org/10.3390/math8010135
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/1/135?type=check_update&version=2


Mathematics 2020, 8, 135 2 of 17

very important in the reliability engineering context. The interesting point is that the EOWEx
distribution, with three parameters, can have the bathtub and modified bathtub failure rates as, in
general, most distributions used to model such data are complicated, and usually may include
four or five parameters to obtain these failure rates.

• It can be considered as a suitable distribution for fitting skewed data that may not be properly
fitted by other extensions of the exponential distribution and can also be used in many problems
in applied areas, such as medicine, engineering, survival analysis, and industrial reliability.

• Four applications to real data from the medicine, engineering and reliability fields prove that the
EOWEx model performs better than four other competing lifetime distributions, motivating its
use in applied areas.

• Its cumulative distribution function (CDF) and hazard rate function (HRF) have simple closed
forms, therefore it can be utilized to analyze censored data sets.

Furthermore, we focus on eight different estimation procedures and study how these estimators
of the EOWEx unknown parameters behave for several sample sizes and for several parameter
combinations. We also develop a guideline for choosing the best estimation method to estimate
the EOWEx parameters, which we think would be of interest to applied statisticians and reliability
engineers. We consider different estimators called, the maximum likelihood estimators, least-squares
and weighted least-squares estimators, percentiles estimators, Cramér-von-Mises estimators, maximum
product of spacings estimators, Anderson-Darling estimators, and right-tail Anderson-Darling
estimators. We conduct an extensive simulation study to assess and compare the performance of
these estimators.

The EOWEx distribution is constructed based on the extended odd Weibull-G (ExOW-G) family
proposed by Alizadeh et al. [10]. Let G(x; ξ) = 1− G(x; ξ) and g (x; ξ) = dG(x; ξ)/dx denote the
survival function (SF) and probability density function (PDF) of a baseline model with parameter
vector ξ, then the CDF of the EOW-G family has the form

F(x; α, β, ξ) = 1−
{

1 + β

[
G(x; ξ)

G(x; ξ)

]α}−1
β

, x ∈ R. (1)

The corresponding PDF of (1) is defined by

f (x; α, β, ξ) =
α g(x; ξ) G(x; ξ)α−1

G(x; ξ)α+1

{
1 + β

[
G(x; ξ)

G(x; ξ)

]α}−1
β −1

, x ∈ R, (2)

where α and β are positive shape parameters. The random variable with PDF (2) is denoted by
X ∼ExOW-G(α, β, ξ). When β→ 0+, we have the Weibull-G family.

The HRF of the EOW-G family takes the form

h(x; α, β, ξ) =
ατ(x; ξ)G(x; ξ)α−1

G(x; ξ)α
{

1 + β
[

G(x;ξ)
G(x;ξ)

]α} , (3)

where τ(x; ξ) is the baseline HRF. By inverting (1), we obtain the quantile function (QF) of the
ExOW-G family

Q(u) = F−1(u) = QG(u)

{ [
−1 + (1− u)−β

]1/α

β1/α +
[
−1 + (1− u)−β

]1/α

}
, (4)

where QG(u) = G−1(u) is the QF of the baseline G distribution and u ∈ (0, 1).
The rest of this article is organized as follows. In Section 2, we define the proposed EOWEx

distribution. In Section 3, we derive a linear representation for the EOWEx density function and obtain
some of its properties. Eight estimation methods to estimate the EOWEx parameters are presented in
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Section 4. In Section 5, we perform a simulation study to compare the performance of these estimation
methods. Four real data applications are used to prove the usefulness of the EOWEx distribution in
Section 6. Finally, we conclude the paper by some remarks in Section 7.

2. The EOWEx Distribution

In this section, we define the three-parameter EOWEx model. The PDF and CDF of the Ex
distribution are g (x; λ) = λ exp (−λx) and G (x; λ) = 1− exp (−λx), x > 0, λ > 0. By inserting the
CDF of the Ex model in (1), we obtain the CDF of the EOWEx distribution

F(x; α, β, λ) = 1−
{

1 + β [exp (λx)− 1]α
}−1

β , x > 0, α, β, λ > 0. (5)

The corresponding PDF follows, by inserting the PDF and CDF of the Ex distribution in (2), as

f (x; α, β, λ) = αλ exp (αλx) [1− exp (−λx)]α−1 {1 + β [exp (λx)− 1]α
}−1

β −1 , x > 0, α, β, λ > 0. (6)

Thereforeforth, a random variable with PDF (6) is denoted by X ∼EOWEx(α, β, λ). The EOWEx
model reduces to the two-parameter Weibull Ex distribution for β→ 0+.

The HRF and QF of the EOWEx distribution are given, respectively, by

h(x; α, β, λ) =
αλ exp (αλx) [1− exp (−λx)]α−1{

1 + β [exp (λx)− 1]α
}

and

Q(u) =
−1
λ

ln

{
1−

[
−1 + (1− u)−β

]1/α

β1/α +
[
−1 + (1− u)−β

]1/α

}
, 0 < u < 1.

Figures 1 and 2 display some possible shapes of the PDF and HRF of the EOWEx distribution.
These figures indicate that the PDF of the EOWEx distribution can be left-skewed, right-skewed,
reversed-J shaped, and symmetric. Further, the HRF of the EOWEx distribution has some important
shapes, including constant, increasing, decreasing, upside down bathtub, reversed bathtub, reversed-J
shaped, which are desirable characteristics for a lifetime distribution. It can be seen, from the
application section, that the EOWEx distribution allows greater flexibility and can be used to model
skewed data and can be widely applied in different areas such as reliability, biomedical studies, biology,
engineering, and survival analysis.
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Figure 1. Plots of the probability density function (PDF) of the EOWEx distribution.
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Figure 2. Plots of the hazard rate function (HRF) of the EOWEx distribution.

3. Some Properties

In this section, we obtain some properties of the EOWEx distribution including the linear
representation, moments, moment generating function (MGF), mean residual life, mean inactivity
time, and order statistics.

3.1. Linear Representation

We provide a useful linear representation for the EOWEx density. Alizadeh et al. [10] derived a
mixture representation of the EOW-G density as follows,

f (x) =
∞

∑
k,j=0

ak,j hαk+j(x),

where ak,j = −βkΓ (αk + j) (−1/β)k /k!j!Γ (αk) and hαk+j (x) = (αk + j) g(x)G(x)αk+j−1 is the Exp-G
density with positive power parameter αk + j. Using the PDF and CDF of the Ex distribution, the last
equation can be rewritten as

f (x) =
∞

∑
k,j=0

ak,j (αk + j) λ exp (−λx) [1− exp (−λx)]αk+j−1 .

Applying the binomial expansion to [1− exp (−λx)]αk+j−1, the above equation reduces to

f (x) =
∞

∑
k,j=0

ak,j (αk + j) λ
∞

∑
m=0

(−1)m
(

αk + j− 1
m

)
exp (− (m + 1) λx) . (7)

Equation (7) can be expressed as

f (x) =
∞

∑
m=0

υm gm+1 (x) , (8)
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where

υm =
∞

∑
k,j=0

(
−1)mak,j

m + 1
(αk + j)

(
αk + j− 1

m

)
and gm+1 (x) = (m + 1)λ exp (−(m + 1)λx) denotes the Ex density with scale parameter (m + 1)λ.
Then, the EOWEx PDF can be expressed as a single linear combination of Ex densities. Let Z be a
random variable having the Ex distribution with PDF g (x; λ) = λ exp (−λx), x > 0, λ > 0. Then,
the rth ordinary and incomplete moments, and MGF of Z are

µ′r,Z = λ−rΓ (r + 1) , ϕr,Z(t) = λ−rγ (r + 1, λt) and MZ (t) =
λ

λ− t
, t 6= 0,

respectively, where Γ (a + 1) =
∫ ∞

0 wse−wdw is the gamma function and γ (a + 1, λt) =
∫ λt

0 wae−wdw
is the lower incomplete gamma function.

3.2. Moments and MGF

The rth moment of X follows simply from Equation (8) as

µ′r = E(Xr) = Γ (r + 1)
∞

∑
m=0

υm [(m + 1)λ]−r . (9)

Table 1 displays the numerical values of the mean (µ), variance (σ2), skewness (γ1), and kurtosis
(γ2) of the EOWEx distribution for λ = 1 and some selected values of α and β. The values in Table 1
illustrate that the skewness of the EOWEx distribution is ranging in the interval (−0.24265, 2.67091),
whereas the spread of its kurtosis is much larger ranging from 3.34256 to 14.4083. Furthermore,
the EOWEx distribution can be left skewed or right skewed, and it can be leptokurtic (γ2 > 3).
Therefore, the EOWEx distribution can be used to model the skewed data due to its flexibility.

The rth incomplete moment of X can be obtained from (8) as

ϕr(t) =
∫ t

−∞
xr f (x)dx =

∞

∑
m=0

υm [(m + 1)λ]−r γ (r + 1, (m + 1)λt) .

The first incomplete moment of X follows from the last equation as

ϕ1(t) =
∞

∑
m=0

υm
γ (2, (m + 1)λt)

(m + 1)λ
. (10)

Based on Equation (8), the MGF of the EOWEx distribution takes the form

M(t) =
∞

∑
m=0

υm
(m + 1)λ

(m + 1)λ− t
, t 6= 0.

3.3. Mean Residual Life and Mean Inactivity Time

The mean residual life (MRL) (also known as the life expectancy at age t) represents the
expected additional life length for a unit, which is alive at age t and is defined by mX (t) =

E (X− t | X > t) , for t > 0.
The MRL of X is

mX (t) = [1− ϕ1 (t)] /S(t)− t, (11)

where ϕ1 (t) is given by (10) and S(t) is the SF of the EOWEx distribution. Inserting Equation (10) in
(11), we have

mX (t) =
1

S(t)

∞

∑
m=0

υm
γ (2, (m + 1)λt)

(m + 1)λ
− t.



Mathematics 2020, 8, 135 6 of 17

Table 1. The numerical values of µ, σ2, γ1 and γ2 for the EOWEx distribution with λ = 1.

α β µ σ2 γ1 γ2

0.5 0.5 1.07604 1.81240 1.86154 7.15518
1.5 2.14552 8.54064 2.24978 10.0097
3 4.16961 31.8546 2.20377 9.41667
5 7.00105 77.8477 1.77257 6.25858
10 11.3657 160.743 1.12562 3.34256

1.5 0.5 0.70607 0.19659 1.07999 4.86454
1.5 1.01631 0.80690 2.17662 10.5743
3 1.63803 3.19461 2.42160 11.6298
5 2.62656 9.50046 2.34542 10.9143
10 5.41493 40.0672 2.04821 8.42506

3 0.5 0.67367 0.05266 0.42752 3.64719
1.5 0.81058 0.17297 1.83271 9.57547
3 1.08781 0.67101 2.49121 12.8818
5 1.54272 2.08780 2.51062 12.3453
10 2.88539 9.67645 2.30699 10.6753

5 0.5 0.67418 0.02011 0.06681 3.48006
1.5 0.74998 0.05640 1.46409 8.07185
3 0.90052 0.20413 2.41980 13.1505
5 1.14971 0.64430 2.62182 13.6743
10 1.90641 3.17554 2.45418 11.7785

10 0.5 0.68077 0.00534 -0.24265 3.69406
1.5 0.71589 0.01290 1.03088 6.32664
3 0.78267 0.04096 2.11788 11.6589
5 0.89108 0.12426 2.59860 14.4083
10 1.22516 0.64424 2.67091 13.8583

The mean inactivity time (MIT) is defined by MX (t) = E (t− X | X ≤ t) (for t > 0) and it
represents the waiting time elapsed since the failure of an item on condition that this failure had
occurred in (0, t).

The MIT of X is
MX (t) = t− [ϕ1 (t) /F (t)] . (12)

Combining Equations (10) and (12), the MIT of X is as follows,

MX (t) = t− 1
F (t)

∞

∑
m=0

υm
γ (2, (m + 1)λt)

(m + 1)λ
.

3.4. Order Statistics

Order statistics are important in many areas of statistical theory and practice. According to
Alizadeh et al. [10], the PDF of ith order statistic of the EOW-G class, X(i) (for i = 1, . . . , n), can be
expressed as

fX(i)
(x) =

∞

∑
k,s=0

bk,s hα(k+1)+s(x). (13)

Here, hα(k+1)+s is the exponentiated exponential density with power parameter α (k + 1) + s and

bk,s =
n−i

∑
j=0

j+i−1

∑
l=0

(−1)l+j α
(
−l−1

β − 1
)

k
Γ (α (k + 1) + s)

k!s!B (i, n− i + 1) β−kΓ (α (k + 1) + 1)

(
n− i

j

)(
j + i− 1

l

)
.
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Let X1, · · · , Xn be a random sample from the EOWEx model and let X(1), · · · , X(n) be the
associated order statistics. The PDF of ith order statistic reduces to

fX(i)
(x) =

∞

∑
k,s=0

bk,s [α (k + 1) + s] λ exp (−λx) [1− exp (−λx)]α(k+1)+s−1 .

Applying the binomial series, the last equation becomes

fX(i)
(x) =

∞

∑
r=0

dr (r + 1) λ exp [− (r + 1) λx] , (14)

where

dr =
∞

∑
k,s=0

bk,s (−1)r [α (k + 1) + s]
r + 1

(
α (k + 1) + s− 1

r

)
.

Equation (14) means that the PDF of EOWEx order statistics is a mixture of Ex densities with scale
parameter (r + 1) λ. Therefore, some of their mathematical properties are obtained from those of the
Ex distribution. For example, the qth moments of X(i) is

E
(

Xq
(i)

)
= Γ (q + 1)

∞

∑
r=0

dr [(r + 1) λ]−q .

4. Estimation Methods

In this section, we study the estimation problem of the EOWEx parameters using eight different
estimation methods called: the maximum likelihood estimators (MLEs), least squares estimators
(LSEs), weighted least-squares estimators (WLSEs), maximum product of spacing estimators (MPSEs),
percentiles estimators (PCEs), Cramér-von Mises estimators (CMEs), Anderson-Darling estimators
(ADEs), and right-tail Anderson-Darling estimators (RTADEs).

4.1. Maximum Likelihood Method

Let x1, · · · , xn be a random sample from the EOWEx distribution with parameters α, β, and λ.
The log-likelihood function has the form

` = n log (α) + n log (λ) + αλ
n

∑
i=1

xi + (α− 1)
n

∑
i=1

log [1− exp (−λxi)]−
(

1
β
+ 1
) n

∑
i=1

log (1 + βKα
i ) ,

where Ki = exp (λxi)− 1. The MLEs of α, β and λ can be obtained by maximizing the last equation
with respect to α, β and λ, or by solving the following nonlinear equations,

∂`

∂α
=

n
α
+ λ

n

∑
i=1

xi +
n

∑
i=1

log [1− exp (−λxi)]− (1 + β)
n

∑
i=1

Kα
i log (Ki)

1 + βKα
i

= 0,

∂`

∂β
= −

(
1
β
+ 1
) n

∑
i=1

Kα
i

1 + βKα
i
+

1
β2

n

∑
i=1

log (1 + βKα
i ) = 0

and

∂`

∂λ
=

n
λ
+ α

n

∑
i=1

xi + (α− 1)
n

∑
i=1

xi exp (−λxi)

1− exp (−λxi)
− α (1 + β)

n

∑
i=1

xi exp (λxi)Kα−1
i

1 + βKα
i

= 0

The R (optim function), Ox program (sub-routine MaxBFGS), SAS (PROCNLMIXED), Mathcad
program, or Newton–Rapshon method can be used to maximize the log-likelihood function to obtain
the MLEs. The log-likelihood is maximized using a wide range of starting values. The starting values
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were taken to correspond to all combinations of the model parameters, where α = 0.1, 0.5, . . . , 10, β

= 0.1, 0.5, . . . , 10 and λ = 0.1, 0.5, . . . , 10. The call to optim converged about 98 percent of the time.
The maximum likelihood solution was unique, when the calls to optim did converge. The elements of
the observed information matrix are given in explicit expressions as follows,

∂2`

∂α2 =
−n
α2 − (1 + β)

n

∑
i=1

Kα
i [log (Ki)]

2(
1 + βKα

i
)2 ,

∂2`

∂α∂β
=

n

∑
i=1

Kα
i
(
Kα

i − 1
)

log (Ki)(
1 + βKα

i
)2 ,

∂2`

∂α∂λ
=

n

∑
i=1

xi +
n

∑
i=1

xi exp (−λxi)

1− exp (−λxi)
+ α

(
β + β2

) n

∑
i=1

xi exp (λxi)K2α−1
i log (Ki)(

1 + βKα
i
)2

− (1 + β)
n

∑
i=1

xi exp (λxi)Kα−1
i [1 + α log (Ki)]

1 + βKα
i

,

∂2`

∂β2 =
n

∑
i=1

Kα
i +

(
β2 + 2β

)
K2α

i(
β + β2Kα

i
)2 +

n

∑
i=1

βKα
i − 2

(
1 + βKα

i
)

log
(
1 + βKα

i
)

β3
(
1 + βKα

i
) ,

∂2`

∂β∂λ
= α

n

∑
i=1

xi exp (λxi)Kα−1
i

(
Kα

i − 1
)(

1 + βKα
i
)2

and

∂2`

∂λ2 =
−n
λ2 + (α− 1)

n

∑
i=1

−x2
i exp (−λxi)

[1− exp (−λxi)]
2 + α2

(
β + β2

) n

∑
i=1

x2
i exp (2λxi)Kα−1

i(
1 + βKα

i
)2

−α (1 + β)
n

∑
i=1

x2
i exp (λxi)Kα−2

i [Ki + (α− 1) exp (λxi)]

1 + βKα
i

.

4.2. Least Squares and Weighted Least Squares Methods

The least squares (LS) and weighted least square (WLS) methods are used to estimate the
parameters of the beta distribution (Swain et al. [11]). Let x(1) < x(2) < · · · < x(n) be the sample
order statistics of size n from the EOWEx distribution; therefore, the LS estimators (LSEs) and WLS
estimators (WLSEs) of the EOWEx parameters α, β and λ can be obtained by minimizing

V (α, β, λ) =
n

∑
i=1

vi

(
1−

{
1 + β

[
exp

(
λx(i)

)
− 1
]α}−1

β − i
n + 1

)2

,

with respect to α, β, and λ, where vi = 1 in case of LSEs and vi = (n + 1)2(n + 2)/ [i(n− i + 1)] in
case of WLSEs. Furthermore, the LSEs and WLSEs follow by solving the nonlinear equations

n

∑
i=1

vi

(
1−

{
1 + β

[
exp

(
λx(i)

)
− 1
]α}−1

β − i
n + 1

)
∆s

(
x(i)|α, β, λ

)
= 0,

where

∆1

(
x(i)|α, β, λ

)
=

∂

∂α
F
(

x(i)|α, β, λ
)

, ∆2

(
x(i)|α, β, λ

)
=

∂

∂β
F
(

x(i)|α, β, λ
)

and ∆3

(
x(i)|α, β, λ

)
=

∂

∂λ
F
(

x(i)|α, β, λ
)

. (15)
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4.3. Maximum Product of Spacings Method

The maximum product of spacings (MPS) method is used to estimate the parameters of continuous
univariate models as an alternative to the ML method (Cheng and Amin, [12,13]). The uniform spacings
of a random sample of size n from the EOWEx distribution can be defined by

Di = F(x(i)|α, β, λ)− F(x(i−1)|α, β, λ),

where Di denotes to the uniform spacings, F(x(0)|α, β, λ) = 0, F(x(n+1)|α, β, λ) = 1 and D0(α, β, λ) +

D1(α, β, λ) + . . . + Dn+1(α, β, λ) = 1. The MPS estimators (MPSEs) of the EOWEx parameters can be
obtained by maximizing

G(α, β, λ) =
1

n + 1

n+1

∑
i=1

log Di(α, β, λ),

with respect to α, β, and λ. Further, the MPSEs of the EOWEx parameters can also be obtained
by solving

1
n + 1

n+1

∑
i=1

1
Di(α, β, λ)

[
∆s(x(i)|α, β, λ)− ∆s(x(i−1)|α, β, λ)

]
= 0, s = 1, 2, 3,

where ∆s

(
x(i)|α, β, λ

)
= 0, (for s = 1, 2, 3) is defined by (15).

4.4. Percentile Method

Here, we use the percentile method (Kao, [14]) to estimate the unknown parameters of the
EOWEx distribution by equating the sample percentile points with the population percentile points.
Let ui = i/ (n + 1) be an unbiased estimator of F

(
x(i)|a, b, λ

)
. Then, the percentile estimators (PCEs)

of the EOWEx parameters are obtained by minimizing the following function with respect to α, β,
and λ,

P(α, β, λ) =
n

∑
i=1

(
x(i) −

−1
λ

ln

{
1−

[
−1 + (1− ui)

−β
]1/α

β1/α +
[
−1 + (1− ui)−β

]1/α

})2

.

4.5. Cramér-von-Mises Method

The Cramér-von-Mises estimators (CVMEs) (Cramér [15]; von Mises [16]) can be obtained
based on the difference between the estimates of the CDF and the empirical distribution function
(Luceño, [17]). The CVMEs of the EOWEx parameters α, β and λ are obtained by minimizing the
following function with respect to α, β, and λ,

C(α, β, λ) =
1

12n
+

n

∑
i=1

(
1−

{
1 + β

[
exp

(
λx(i)

)
− 1
]α}−1

β − 2i− 1
2n

)2

.

Further, the CVMEs follow by solving the nonlinear equations

n

∑
i=1

(
1−

{
1 + β

[
exp

(
λx(i)

)
− 1
]α}−1

β − 2i− 1
2n

)
∆s

(
x(i)|α, β, λ

)
= 0,

where ∆s

(
x(i)|α, β, λ

)
= 0, (for s = 1, 2, 3) is defined by Equation (15).
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4.6. Anderson-Darling and Right-Tail Anderson-Darling Methods

The Anderson-Darling estimators (ADEs) are another type of minimum distance estimators.
The ADEs of the EOWEx parameters are obtained by minimizing

A(α, β, λ) = −n− 1
n

n

∑
i=1

(2i− 1)
[
log F

(
x(i)|α, β, λ

)
+ log F

(
x(n+1−i)|α, β, λ

)]
,

with respect to α, β, and λ. The ADEs can also be obtained by solving the nonlinear equations

n

∑
i=1

(2i− 1)

∆s

(
x(i)|α, β, λ

)
F
(

x(i)|α, β, λ
) − ∆j

(
x(n+1−i)|α, β, λ

)
S
(

x(n+1−i)|α, β, λ
)
 = 0,

where ∆s

(
x(i)|α, β, λ

)
= 0, (for s = 1, 2, 3) is defined by (15). The right-tail Anderson-Darling

estimators (RTADEs) of the EOWEx parameters α, β and λ are obtained by minimizing the following
function with respect to α, β and λ,

R(α, β, λ) =
n
2
− 2

n

∑
i=1

F
(

x(i)|α, β, λ
)
− 1

n

n

∑
i=1

(2i− 1) log F
(

x(n+1−i)|α, β, λ
)

.

5. Simulation Results

In this section, the performance of eight different estimators of the EOWEx parameters is assessed
by a simulation study. We consider different sample sizes n = {20, 50, 100} for different parameters
values α = (3.5, 0.75), β = (3, 1.5, 0.25) and λ = (1, 0.5). We generate N = 1000 random samples from
EOWEx distribution. For each estimate, we obtain the average values of the estimates (AEs) and their
corresponding mean squares error (MSEs).

The performance of different estimators are evaluated in terms of MSEs, i.e., the most efficient
estimation method will be the one whose MSEs values are closer to zero. The simulation results are
obtained via the R software. Tables 2–4 show the AEs and MSEs (in parentheses) of the MLEs, LSEs,
WLSEs, MPSEs, PCEs, CVMEs, ADEs, and RTADEs. Further, the AEs based on all estimation methods
tend to the true parameter values, as the sample size increase in all cases, which indicates that all
estimators are asymptotically unbiased. The figures in these tables means that MLEs, LSEs, WLSEs,
MPSEs, PCEs, CVMEs, ADEs, and RTADEs perform very well, in terms of MSEs, for estimating the
EOWEx parameters.

Table 2. The average values of the estimates (AEs) and mean squares errors (MSEs) for n = 20.

Parameters MLEs LSEs WLSEs MPSEs PCEs CVMEs ADEs RTADEs

α = 3.50 3.692(0.410) 3.406(0.427) 3.428(0.407) 3.256(0.417) 3.949(0.202) 3.627(0.434) 3.525(0.391) 3.582(0.421)
β = 3.00 3.019(0.234) 3.008(0.227) 2.993(0.225) 3.037(0.230) 2.751(0.062) 2.961(0.229) 2.981(0.229) 3.002(0.233)
λ = 1.00 1.005(0.017) 1.013(0.019) 1.010(0.018) 1.008(0.017) 1.125(0.026) 1.000(0.018) 1.004(0.017) 1.002(0.019)

α = 3.50 3.692(0.396) 3.426(0.440) 3.438(0.417) 3.262(0.430) 4.444(0.897) 3.644(0.445) 3.538(0.394) 3.607(0.438)
β = 3.00 2.991(0.232) 2.990(0.230) 2.961(0.226) 3.014(0.230) 2.517(0.246) 2.940(0.229) 2.960(0.227) 2.992(0.233)
λ = 0.50 0.504(0.004) 0.509(0.005) 0.506(0.004) 0.506(0.004) 0.584(0.009) 0.502(0.004) 0.504(0.004) 0.504(0.005)

α = 3.50 3.678(0.547) 3.481(0.532) 3.501(0.521) 3.377(0.514) 3.949(0.201) 3.649(0.550) 3.590(0.514) 3.646(0.553)
β = 1.50 1.457(0.468) 1.547(0.464) 1.547(0.446) 1.608(0.462) 1.256(0.062) 1.442(0.461) 1.499(0.422) 1.531(0.436)
λ = 1.00 0.991(0.013) 1.004(0.013) 1.002(0.013) 1.006(0.013) 1.016(0.010) 0.993(0.013) 0.996(0.012) 0.997(0.013)

α = 3.50 3.647(0.559) 3.446(0.534) 3.455(0.527) 3.350(0.529) 3.946(0.201) 3.621(0.554) 3.553(0.526) 3.580(0.540)
β = 1.50 1.422(0.500) 1.536(0.495) 1.514(0.471) 1.570(0.474) 1.262(0.062) 1.440(0.501) 1.476(0.454) 1.486(0.467)
λ = 0.50 0.495(0.004) 0.503(0.003) 0.501(0.003) 0.502(0.003) 0.525(0.006) 0.497(0.003) 0.498(0.003) 0.498(0.004)

α = 0.75 0.792(0.025) 0.749(0.028) 0.755(0.026) 0.706(0.024) 1.053(0.089) 0.797(0.031) 0.771(0.025) 0.790(0.030)
β = 0.25 0.237(0.014) 0.281(0.016) 0.280(0.016) 0.273(0.016) 0.159(0.010) 0.274(0.017) 0.279(0.018) 0.282(0.016)
λ = 0.50 0.530(0.016) 0.533(0.020) 0.533(0.019) 0.529(0.016) 0.662(0.038) 0.539(0.021) 0.536(0.019) 0.534(0.019)
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Table 3. The AEs and MSEs for n = 50.

Parameters MLEs LSEs WLSEs MPSEs PCEs CVMEs ADEs RTADEs

α = 3.50 3.650(0.270) 3.500(0.276) 3.528(0.254) 3.386(0.256) 3.949(0.202) 3.603(0.285) 3.557(0.248) 3.582(0.254)
β = 3.00 3.058(0.222) 3.014(0.219) 3.014(0.218) 3.027(0.216) 2.751(0.062) 2.999(0.218) 3.014(0.218) 3.037(0.223)
λ = 1.00 1.005(0.008) 1.006(0.008) 1.004(0.008) 1.002(0.007) 1.158(0.025) 1.101(0.008) 1.002(0.008) 1.004(0.009)

α = 3.50 3.627(0.254) 3.494(0.281) 3.511(0.248) 3.355(0.242) 3.949(0.201) 3.598(0.290) 3.544(0.240) 3.575(0.261)
β = 3.00 3.046(0.223) 3.010(0.218) 3.004(0.213) 3.007(0.215) 2.751(0.062) 2.995(0.216) 3.005(0.215) 3.030(0.227)
λ = 0.50 0.502(0.002) 0.502(0.002) 0.502(0.002) 0.500(0.002) 0.568(0.008) 0.500(0.002) 0.501(0.002) 0.501(0.002)

α = 3.50 3.600(0.404) 3.517(0.430) 3.537(0.411) 3.421(0.375) 3.949(0.200) 3.592(0.435) 3.571(0.395) 3.610(0.490)
β = 1.50 1.509(0.338) 1.526(0.371) 1.538(0.339) 1.568(0.325) 1.251(0.062) 1.489(0.366) 1.524(0.321) 1.546(0.363)
λ = 1.00 0.995(0.006) 0.998(0.007) 0.998(0.006) 1.000(0.006) 1.036(0.006) 0.994(0.007) 0.997(0.006) 0.997(0.007)

α = 3.50 3.601(0.407) 3.512(0.412) 3.518(0.394) 3.423(0.381) 3.929(0.202) 3.593(0.423) 3.570(0.390) 3.615(0.481)
β = 1.50 1.513(0.354) 1.533(0.403) 1.528(0.365) 1.571(0.339) 1.251(0.062) 1.502(0.399) 1.531(0.341) 1.558(0.379)
λ = 0.50 0.499(0.002) 0.501(0.002) 0.500(0.002) 0.502(0.002) 0.520(0.004) 0.499(0.002) 0.500(0.002) 0.501(0.002)

α = 0.75 0.774(0.011) 0.757(0.013) 0.762(0.012) 0.731(0.010) 1.048(0.085) 0.779(0.014) 0.768(0.012) 0.775(0.013)
β = 0.25 0.257(0.014) 0.282(0.016) 0.287(0.016) 0.290(0.016) 0.152(0.010) 0.281(0.016) 0.285(0.016) 0.290(0.016)
λ = 0.50 0.513(0.008) 0.520(0.011) 0.521(0.010) 0.518(0.008) 0.645(0.033) 0.523(0.011) 0.521(0.010) 0.522(0.010)

Table 4. The AEs and MSEs for n = 100.

Parameters MLEs LSEs WLSEs MPSEs PCEs CVMEs ADEs RTADEs

α = 3.50 3.556(0.163) 3.487(0.189) 3.496(0.163) 3.384(0.163) 3.948(0.201) 3.541(0.192) 3.509(0.159) 3.531(0.183)
β = 3.00 3.016(0.198) 3.003(0.207) 2.995(0.195) 2.970(0.192) 2.758(0.060) 2.997(0.205) 2.993(0.195) 3.002(0.213)
λ = 1.00 1.002(0.004) 1.002(0.004) 1.001(0.004) 0.997(0.004) 1.069(0.024) 0.999(0.004) 1.000(0.004) 0.999(0.005)

α = 3.50 3.588(0.181) 3.505(0.198) 3.519(0.176) 3.417(0.172) 3.949(0.201) 3.559(0.205) 3.534(0.174) 3.549(0.190)
β = 3.00 3.038(0.200) 3.012(0.209) 3.006(0.200) 2.995(0.196) 2.751(0.062) 3.007(0.210) 3.007(0.199) 3.013(0.208)
λ = 0.50 0.502(0.001) 0.502(0.001) 0.501(0.001) 0.500(0.001) 0.489(0.005) 0.500(0.001) 0.501(0.001) 0.500(0.001)

α = 3.50 3.568(0.267) 3.513(0.331) 3.524(0.280) 3.456(0.242) 3.949(0.198) 3.557(0.335) 3.543(0.270) 3.579(0.365)
β = 1.50 1.522(0.231) 1.516(0.305) 1.523(0.249) 1.552(0.219) 1.251(0.062) 1.504(0.303) 1.521(0.236) 1.537(0.270)
λ = 1.00 1.000(0.004) 0.999(0.004) 1.000(0.004) 1.002(0.004) 1.048(0.005) 0.997(0.004) 0.999(0.004) 0.999(0.004)

α = 3.50 3.587(0.275) 3.530(0.321) 3.544(0.282) 3.476(0.248) 3.919(0.198) 3.573(0.326) 3.564(0.275) 3.596(0.363)
β = 1.50 1.535(0.230) 1.533(0.298) 1.541(0.248) 1.565(0.219) 1.251(0.062) 1.521(0.294) 1.536(0.236) 1.551(0.271)
λ = 0.50 0.501(0.001) 0.501(0.001) 0.501(0.001) 0.502(0.001) 0.514(0.001) 0.500(0.001) 0.501(0.001) 0.501(0.001)

α = 0.75 0.764(0.006) 0.755(0.007) 0.758(0.006) 0.742(0.005) 1.045(0.080) 0.766(0.008) 0.761(0.006) 0.767(0.008)
β = 0.25 0.255(0.013) 0.275(0.015) 0.273(0.014) 0.288(0.015) 0.151(0.010) 0.275(0.015) 0.273(0.014) 0.278(0.015)
λ = 0.50 0.509(0.005) 0.513(0.006) 0.513(0.006) 0.517(0.005) 0.635(0.030) 0.515(0.006) 0.514(0.006) 0.514(0.006)

6. Applications in Medicine, Engineering, and Reliability

In this section, the EOWEx distribution is fitted to four data sets from fields of medicine,
engineering, and reliability. The EOWEx model is compared with other some competitive models
called, the exponentiated exponential (EEx) (Gupta and Kundu, [2]), beta exponential (BEx) (Nadarajah
and Kotz, [18]), alpha power exponential (APEx) (Mahdavi and Kundu, [19]), and exponential (Ex)
distributions. The densities of these models are given by

EEx: f (x) = αλexp(−λx) [1− exp(−λx)]α−1 , α, λ > 0.
BEx: f (x) = λ

B(a,b)exp(−bλx) [1− exp(−λx)]a−1 , a, b, λ > 0.

MOEx: f (x) = αλexp(−λx)/ [1− (1− α)exp(−λx)]2 , a, λ > 0.
APEx: f (x) = log(α)λexp(−λx)

(α−1) α1−exp(−λx), α > 0, α 6= 1, λ > 0.

The fit of these distributions is evaluated using some measures including Cramér-von Mises (W∗),
Anderson-Darling (A∗), and Kolmogorov Smirnov (KS) statistics with its p-value.

The first set of data was studied by Lee and Wang [20], and it represents the remission times (in
months) of a random sample of 128 bladder cancer patients. These data were analyzed by Sen et al. [21],
Afify et al. [22], and Mansour et al. [23]. The second set of data was studied by Kundu and Raqab [24],
and it represents the gauge lengths of 20 mm of a sample of 74 observations. This data set was analyzed
by Afify et al. [25] and Afify et al. [26]. The third set of data consists of the failure times of 20 mechanical
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components (Murthy et al. [27]). The fourth set of data refers to breaking stress of carbon fibres (in
Gba) and it consists of 100 observations (Nichols and Padgett, [28]). These data were analyzed by
Afify et al. [29].

Tables 5–8 provide the values of W∗, A∗, and KS as well as the p-value for the models fitted to the
four data sets, respectively. Further, Tables 5–8 display the MLEs and standard errors (SEs) (appear
in parentheses) of the parameters of the EOWEx, EEx, BEx, APEx, and Ex models. In Tables 5–8, we
compare the fits of the EOWEx model with the EEx, BEx, APEx, and Ex models. The figures in these
tables indicate that the EOWEx distribution has the lowest values of W∗, A∗, KS and largest p-value,
among all fitted models. The fitted EOWEx PDF, CDF, SF, and P–P plots of the four data sets are
displayed in Figures 3 and 4, respectively.

Table 5. The W∗, A∗, KS, p-value, MLEs, and SEs for cancer data.

Distribution W∗ A∗ KS p-Value Estimates (SEs)

EOWEx 0.0390 0.2597 0.0445 0.9617 α 1.4434(0.1992)
β 1.9774(0.6451)
λ 0.1306(0.0214)

EEx 0.1122 0.6741 0.0725 0.5113 α 1.2179(0.1488)
λ 0.1212(0.0136)

BEx 0.1195 0.7168 0.0733 0.4980 a 1.1752(0.1318)
b 5.0822(8.0755)
λ 0.0243(0.0381)

APEx 0.1283 0.7672 0.0793 0.3963 α 1.1744(0.8437)
λ 0.1113(0.0226)

Ex 0.1193 0.7160 0.0846 0.3184 λ 0.1068(0.0094)

Table 6. The W∗, A∗, KS, p-value, MLEs, and SEs for gauge lengths data.

Distribution W∗ A∗ KS p-Value Estimates (SEs)

EOWEx 0.0245 0.1831 0.0509 0.9908 α 4.9821(0.7601)
β 0.3111(0.2597)
λ 0.2674(0.0086)

EEx 0.2172 1.4053 0.0953 0.5121 α 89.435(32.476)
λ 2.0192(0.1716)

BEx 0.0874 0.5738 0.0682 0.8809 a 24.317(3.9884)
b 92.491(154.90)
λ 0.0947(0.1426)

APEx 0.1153 0.7486 0.1924 0.0083 α 1592046(16777)
λ 1.2536(0.0549)

Ex 0.0876 0.5749 0.4495 0.0000 λ 0.4037(0.0469)

Table 7. The W∗, A∗, KS, p-value, MLEs, and SEs for failure times data.

Distribution W∗ A∗ KS p-Value Estimates (SEs)

EOWEx 0.0586 0.4551 0.1193 0.9383 α 12.261(7.5036)
β 8.2078(6.5143)
λ 8.4547(0.9487)

EEx 0.1758 1.2510 0.1603 0.6831 α 13.825(8.3755)
λ 27.752(6.1078)

BEx 0.1826 1.2759 0.1624 0.6672 a 2056.2(4396.0)
b 0.1723(0.0730)
λ 113.18(34.244)

APEx 0.1799 1.2755 0.1602 0.6834 α 22078970(23726)
λ 29.463(2.3335)

Ex 0.2912 1.9025 0.4238 0.0015 λ 8.2271(1.8396)
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Table 8. The W∗, A∗, KS, p-value, MLEs, and SEs for breaking stress of carbon fibres data.

Distribution W∗ A∗ KS p-Value Estimates (SEs)

EOWEx 0.0620 0.3670 0.0626 0.8286 α 2.4872(0.3193)
β 0.3789(0.2345)
λ 0.2517(0.0143)

EEx 0.2267 1.1859 0.1077 0.1962 α 7.7882(1.4961)
λ 1.0132(0.0874)

BEx 0.1483 0.7588 0.0935 0.3461 a 5.9605(0.8217)
b 34.546(61.141)
λ 0.0615(0.1021)

APEx 0.1792 0.9118 0.0961 0.3139 α 19134.8(8983)
λ 1.0777(0.0509)

Ex 0.1493 0.7643 0.3206 0.0000 λ 0.3815(0.0381)

EOWEx

x

D
en

si
ty

0 20 40 60 80

0.
00

0.
04

0.
08

0 20 40 60 80

0.
0

0.
4

0.
8

x

F
(x

)

0 20 40 60 80

0.
0

0.
4

0.
8

EOWEx

F
(x

)

0 20 40 60 80

0.
0

0.
4

0.
8

x

S
(x

)

0 20 40 60 80

0.
0

0.
4

0.
8

EOWEx

S
(x

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

EOWEx

Observed

E
xp

ec
te

d

EOWEx

x

D
en

si
ty

1.0 2.0 3.0 4.0

0.
0

0.
4

0.
8

1.5 2.0 2.5 3.0 3.5

0.
0

0.
4

0.
8

x

F
(x

)

1.5 2.0 2.5 3.0 3.5

0.
0

0.
4

0.
8

EOWEx

F
(x

)

1.5 2.0 2.5 3.0 3.5

0.
0

0.
4

0.
8

x

S
(x

)

1.5 2.0 2.5 3.0 3.5

0.
0

0.
4

0.
8

EOWEx

S
(x

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

EOWEx

Observed

E
xp

ec
te

d

Figure 3. The fitted EOWEx PDF, CDF, SF, and P–P plots for cancer data (left panel) and for gauge
lengths data (right panel).
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Figure 4. The fitted EOWEx PDF, CDF, SF, and P–P plots for failure times data (left panel) and for
breaking stress of carbon fibers data (right panel).

Furthermore, we use the eight estimation methods discussed in Section 4 to estimate the EOWEx
parameters. Tables 9–12 display the estimates of the EOWEx parameters using these estimation
methods and the numerical values of KS and its p-value for the four data sets, respectively. Based on the
values of KS and p-value, in Tables 9–12, the LSEs is recommended to estimate the EOWEx parameters
for cancer data, failure times data, and breaking stress of carbon fibers data, whereas the MLEs is
recommended to estimate the EOWEx parameters for gauge lengths data. However, all estimation
methods perform very well for the four data sets. The P–P plots of the EOWEx distribution using the
four best estimation methods are displayed in Figures 5 and 6, for the four data sets, respectively.

Table 9. The estimates of the EOWEx parameters, KS and p-value for cancer data.

Method α̂ β̂ λ̂ KS p-Value

MLEs 1.4434 1.9774 0.1306 0.0445 0.9617
LSEs 1.5585 2.1115 0.1364 0.0297 0.9999
WLSEs 1.5055 2.0333 0.1347 0.0302 0.9998
MPSEs 1.3593 1.8593 0.1266 0.0545 0.8414
PCEs 1.5444 3.2551 0.1752 0.0653 0.6466
CVMEs 1.5774 2.1054 0.1360 0.0305 0.9998
ADEs 1.5020 2.0006 0.1338 0.0299 0.9998
RTADEs 1.7470 2.6811 0.1485 0.0337 0.9986

Table 10. The estimates of the EOWEx parameters, KS and p-value for gauge lengths data.

Method α̂ β̂ λ̂ KS p-Value

MLEs 4.9821 0.3111 0.2674 0.0509 0.9908
LSEs 4.5195 0.1217 0.2628 0.0562 0.9735
WLSEs 4.7775 0.2655 0.2663 0.0559 0.9751
MPSEs 4.8804 0.3746 0.2688 0.0593 0.9572
PCEs 4.8023 0.3481 0.2681 0.0611 0.9452
CVMEs 4.5925 0.1116 0.2628 0.0512 0.9901
ADEs 4.8986 0.2922 0.2669 0.0530 0.9856
RTADEs 5.0533 0.3383 0.2678 0.0512 0.9900
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Table 11. The estimates of the EOWEx parameters, KS and p-value for failure times data.

Method α̂ β̂ λ̂ KS p-Value

MLEs 12.261 8.2078 8.4547 0.1193 0.9383
LSEs 8.2758 4.6100 8.1032 0.1115 0.9649
WLSEs 7.6719 3.9912 7.9537 0.1166 0.9484
MPSEs 9.6030 7.3144 8.3930 0.1561 0.7143
PCEs 8.8209 11.152 10.809 0.2360 0.2151
CVMEs 10.031 5.3648 8.1602 0.1221 0.9267
ADEs 9.9942 5.5882 8.2107 0.1144 0.9560
RTADEs 11.981 7.0147 8.4120 0.1138 0.9579

Table 12. The estimates of the EOWEx parameters, KS and p-value for breaking stress of carbon
fibres data.

Method α̂ β̂ λ̂ KS p-Value

MLEs 2.4872 0.3789 0.2517 0.0628 0.8286
LSEs 2.0913 0.0489 0.2369 0.0524 0.9725
WLSEs 2.3597 0.2562 0.2467 0.0587 0.9301
MPSEs 2.2562 0.4245 0.2536 0.0653 0.8619
PCEs 2.3148 0.4696 0.2556 0.0661 0.8531
CVMEs 2.1166 0.0222 0.2362 0.0540 0.9640
ADEs 2.2854 0.3545 0.2504 0.0613 0.9060
RTADEs 2.5169 0.5115 0.2562 0.0633 0.8859
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Figure 5. P–P plots of the EOWEx distribution using the four best estimation methods for cancer data
(left panel) and for gauge lengths data (right panel).
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Figure 6. P-P plots of the EOWEx distribution using the four best estimation methods for failure times
data (left panel) and for breaking stress of carbon fibers data (right panel).

7. Concluding Remarks

In this paper, we propose the three-parameter extended odd Weibull exponential (EOWEx)
distribution. The EOWEx density is a linear combination of exponential densities. Some of its
mathematical properties are obtained. The EOWEx parameters are estimated by eight different
estimation methods called, MLEs, LSEs, WLSEs, MPSEs, PCEs, CVMES, ADEs, and RTADEs.
An extensive simulation study is conducted to compare the performance of these different estimators
to identify the best performing estimators. The simulation results reveal that all estimators perform
very well in terms of their mean square errors. Four real data applications are used to prove the
EOWEx flexibility and potentiality. These applications show that the EOWEx model can yield better
fits than some other existing extensions of the exponential distribution. We expect the utility of the
newly proposed model in several fields such as reliability, medicine, engineering, and life testing.
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