High-Intensity Harmonic Generation with Energy Tunability Produced by Robust Two-Color Linearly Polarized Laser Fields
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, M.C.; Arpin, P.; Popmintchev, T.; Gerrity, M.; Zhang, B.; Seaberg, M.; Popmintchev, D.; Murnane, M.; Kapteyn, H. Bright, coherent, ultrafast soft X-ray harmonics spanning the water window from a tabletop light source. Phys. Rev. Lett. 2010, 105, 173901. [Google Scholar] [CrossRef] [PubMed]
- Krausz, F.; Ivanov, M. Attosecond physics. Rev. Mod. Phys. 2009, 81, 163. [Google Scholar] [CrossRef]
- Gilbertson, S.; Khan, S.D.; Wu, Y.; Chini, M.; Chang, Z. Isolated attosecond pulse generation without the need to stabilize the carrier-envelope phase of driving lasers. Phys. Rev. Lett. 2010, 105, 093902. [Google Scholar] [CrossRef]
- Dong, F.; Tian, Y.; Yu, S.; Wang, S.; Yang, S.; Chen, Y. Polarization properties of below-threshold harmonics from aligned molecules H2+ in linearly polarized laser fields. Opt. Express 2015, 23, 18106–18116. [Google Scholar] [CrossRef] [PubMed]
- Staudte, A.; Ruiz, C.; Schöffler, M.; Schössler, S.; Zeidler, D.; Weber, T.; Meckel, M.; Villeneuve, D.; Corkum, P.; Becker, A.; et al. Binary and recoil collisions in strong field double ionization of helium. Phys. Rev. Lett. 2007, 99, 263002. [Google Scholar] [CrossRef] [PubMed]
- Rudenko, A.; De Jesus, V.; Ergler, T.; Zrost, K.; Feuerstein, B.; Schröter, C.; Moshammer, R.; Ullrich, J. Correlated two-electron momentum spectra for strong-field nonsequential double ionization of He at 800 nm. Phys. Rev. Lett. 2007, 99, 263003. [Google Scholar] [CrossRef]
- Wu, D.; Guo, F.M.; Chen, J.G.; Wang, J.; Yang, Y.J. Ionization of an atom with different initial angular momenta in an intense circular polarized laser field. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 235601. [Google Scholar] [CrossRef]
- Peterson, E.; Bucksbaum, P. Above-threshold double-ionization spectroscopy of argon. Phys. Rev. A 2001, 64, 053405. [Google Scholar] [CrossRef]
- Ishikawa, K.L.; Midorikawa, K. Above-threshold double ionization of helium with attosecond intense soft X-ray pulses. Phys. Rev. A 2005, 72, 013407. [Google Scholar] [CrossRef]
- Tian, Y.Y.; Li, S.Y.; Wei, S.S.; Guo, F.M.; Zeng, S.L.; Chen, J.G.; Yang, Y.J. Investigation on the influence of atomic potentials on the above threshold ionization. Chin. Phys. B 2014, 23, 053202. [Google Scholar] [CrossRef]
- Niikura, H.; Corkum, P.; Villeneuve, D. Controlling vibrational wave packet motion with intense modulated laser fields. Phys. Rev. Lett. 2003, 90, 203601. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Huo, Y.Q.; Jiang, S.C.; Yang, Y.J.; Chen, J.G. All-optical reconstruction of three-band transition dipole moments by the crystal harmonic spectrum from a two-color laser pulse. Opt. Express 2022, 30, 9971–9982. [Google Scholar] [CrossRef] [PubMed]
- L’Huillier, A.; Schafer, K.J.; Kulander, K.C. Theoretical aspects of intense field harmonic generation. J. Phys. B At. Mol. Opt. Phys. 1991, 24, 3315. [Google Scholar] [CrossRef]
- Protopapas, M.; Keitel, C.H.; Knight, P.L. Atomic physics with super-high intensity lasers. Rep. Prog. Phys. 1997, 60, 389. [Google Scholar] [CrossRef]
- Vampa, G.; McDonald, C.; Orlando, G.; Klug, D.; Corkum, P.; Brabec, T. Theoretical analysis of high-harmonic generation in solids. Phys. Rev. Lett. 2014, 113, 073901. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, G.; Guo, F.M.; Li, S.Y.; Chen, J.G.; Yang, Y.J. High-intensity molecular harmonic generation without ionization. Chin. Phys. B 2013, 22, 033203. [Google Scholar] [CrossRef]
- Wang, J.; Chen, G.; Li, S.Y.; Ding, D.J.; Chen, J.G.; Guo, F.M.; Yang, Y.J. Ultrashort-attosecond-pulse generation by reducing harmonic chirp with a spatially inhomogeneous electric field. Phys. Rev. A 2015, 92, 033848. [Google Scholar] [CrossRef]
- Odžak, S.; Hasović, E.; Milošević, D.B. High-order harmonic generation in polyatomic molecules induced by a bicircular laser field. Phys. Rev. A 2016, 94, 033419. [Google Scholar] [CrossRef]
- Heslar, J.; Telnov, D.A.; Chu, S.I. Generation of circularly polarized XUV and soft-X-ray high-order harmonics by homonuclear and heteronuclear diatomic molecules subject to bichromatic counter-rotating circularly polarized intense laser fields. Phys. Rev. A 2017, 96, 063404. [Google Scholar] [CrossRef]
- Heslar, J.; Telnov, D.A.; Chu, S.I. Controlling electron quantum paths for generation of circularly polarized high-order harmonics by H 2+ subject to tailored (ω, 2 ω) counter-rotating laser fields. Phys. Rev. A 2018, 97, 043419. [Google Scholar] [CrossRef]
- Li, M.Z.; Xu, Y.; Jia, G.R.; Bian, X.B. Controlling polarization of high-order harmonic generation by molecular alignment in a bicircular laser field. Phys. Rev. A 2019, 100, 033410. [Google Scholar] [CrossRef]
- Qin, M.; Wang, F.; Liu, K.; Wang, Z.; Zhang, X.; Liao, Q.; Zhu, X. Polarization control of the high-order harmonics generated from molecules by the carrier envelope phase of few-cycle laser field. Opt. Commun. 2021, 485, 126763. [Google Scholar] [CrossRef]
- Bian, X.B.; Bandrauk, A.D. Probing nuclear motion by frequency modulation of molecular high-order harmonic generation. Phys. Rev. Lett. 2014, 113, 193901. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Yu, C.; Chen, J.; Huang, Y.; Lu, R.; Lin, C. Smooth periodic gauge satisfying crystal symmetry and periodicity to study high-harmonic generation in solids. Phys. Rev. B 2020, 102, 105201. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, X.; Jiang, S.; Zhao, X.; Chen, J.; Yang, Y. Cooper minimum of high-order harmonic spectra from an MgO crystal in an ultrashort laser pulse. Phys. Rev. A 2020, 101, 033413. [Google Scholar] [CrossRef]
- Zhao, Y.T.; Ma, S.Y.; Jiang, S.C.; Yang, Y.J.; Zhao, X.; Chen, J.G. All-optical reconstruction of k-dependent transition dipole moment by solid harmonic spectra from ultrashort laser pulses. Opt. Express 2019, 27, 34392–34404. [Google Scholar] [CrossRef]
- Zhao, Y.T.; Jiang, S.C.; Zhao, X.; Chen, J.G.; Yang, Y.J. Effect of interband polarization on a solid’s high-order-harmonic generation just belowthe band gap. Opt. Lett. 2020, 45, 2874–2877. [Google Scholar] [CrossRef]
- Yu-Jun, Y.; Gao, C.; Ji-Gen, C.; Qi-Ren, Z. A time-distinguished analysis of the harmonic structure from a model molecular ion. Chin. Phys. Lett. 2004, 21, 652. [Google Scholar] [CrossRef]
- Yan, J.Z.; Zhao, S.S.; Lan, W.D.; Li, S.Y.; Zhou, S.S.; Chen, J.G.; Zhang, J.Y.; Yang, Y.J. Calculation of high-order harmonic generation of atoms and molecules by combining time series prediction and neural networks. Opt. Express 2022, 30, 35444–35456. [Google Scholar] [CrossRef]
- Qiao, Y.; Chen, J.; Chen, J. Review on the Reconstruction of Transition Dipole Moments by Solid Harmonic Spectrum. Symmetry 2022, 14, 2646. [Google Scholar] [CrossRef]
- Yuan, H.; He, L.; Njoroge, S.M.; Wang, D.; Shao, R.; Lan, P.; Lu, P. Generation of Near-Circularly Polarized Attosecond Pulse with Tunable Helicity by Unidirectionally Rotating Laser Field. Ann. Der Phys. 2020, 532, 1900570. [Google Scholar] [CrossRef]
- Ansari, I.N.; Hofmann, C.; Medišauskas, L.; Lewenstein, M.; Ciappina, M.F.; Dixit, G. Controlling polarization of attosecond pulses with plasmonic-enhanced bichromatic counter-rotating circularly polarized fields. Phys. Rev. A 2021, 103, 013104. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, F.; Zhang, Y.; Shao, R.; Long, H. Near-circularly polarized isolated attosecond pulse generation from coherent superposition state by a circularly polarized laser field. Opt. Quantum Electron. 2019, 51, 1–15. [Google Scholar] [CrossRef]
- Hentschel, M.; Kienberger, R.; Spielmann, C.; Reider, G.A.; Milosevic, N.; Brabec, T.; Corkum, P.; Heinzmann, U.; Drescher, M.; Krausz, F. Attosecond metrology. Nature 2001, 414, 509–513. [Google Scholar] [CrossRef]
- Sansone, G.; Benedetti, E.; Calegari, F.; Vozzi, C.; Avaldi, L.; Flammini, R.; Poletto, L.; Villoresi, P.; Altucci, C.; Velotta, R.; et al. Isolated single-cycle attosecond pulses. Science 2006, 314, 443–446. [Google Scholar] [CrossRef]
- Fu-Ming, G.; Yu-Jun, Y.; Ming-Xing, J.; Da-Jun, D.; Qi-Ren, Z. A theoretical strategy to generate an isolated 80-attosecond pulse. Chin. Phys. Lett. 2009, 26, 053201. [Google Scholar] [CrossRef]
- Xia, C.L.; Miao, X.Y. Generation of linear isolated sub-60 attosecond pulses by combining a circularly polarized pulse with an elliptically polarized pulse. Chin. Phys. Lett. 2015, 32, 043202. [Google Scholar] [CrossRef]
- Li, J.; Ren, X.; Yin, Y.; Zhao, K.; Chew, A.; Cheng, Y.; Cunningham, E.; Wang, Y.; Hu, S.; Wu, Y.; et al. 53-attosecond X-ray pulses reach the carbon K-edge. Nat. Commun. 2017, 8, 186. [Google Scholar] [CrossRef]
- Zhou, S.S.; Lan, W.D.; Chen, J.G.; Wang, J.; Guo, F.M.; Yang, Y.J. High-order harmonic generation of 1-nonene under linearly polarized laser pulses. Phys. Rev. A 2022, 106, 023510. [Google Scholar] [CrossRef]
- Zhou, S.S.; Yang, Y.J.; Yang, Y.; Suo, M.Y.; Li, D.Y.; Qiao, Y.; Yuan, H.Y.; Lan, W.D.; Hu, M.H. High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse. Chin. Phys. B 2023, 32, 013201. [Google Scholar] [CrossRef]
- Faisal, F.; Abdurrouf, A.; Miyazaki, K.; Miyaji, G. Origin of anomalous spectra of dynamic alignments observed in N2 and O2. Phys. Rev. Lett. 2007, 98, 143001. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Dorfman, K. Detecting electronic coherences by time-domain high-harmonic spectroscopy. Proc. Natl. Acad. Sci. USA 2020, 117, 9776–9781. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Huo, Y.; Liang, H.; Chen, J.; Liu, W.; Yang, Y.; Jiang, S. Robust retrieval method of crystal transition dipole moments by high-order harmonic spectrum. Phys. Rev. B 2023, 107, 075201. [Google Scholar] [CrossRef]
- Geng, L.; Liang, H.; Peng, L.Y. Laser-Induced Electron Fresnel Diffraction in Tunneling and Over-Barrier Ionization. Chin. Phys. Lett. 2022, 39, 044203. [Google Scholar] [CrossRef]
- Kim, I.J.; Kim, C.M.; Kim, H.T.; Lee, G.H.; Lee, Y.S.; Park, J.Y.; Cho, D.J.; Nam, C.H. Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field. Phys. Rev. Lett. 2005, 94, 243901. [Google Scholar] [CrossRef]
- Lehtovaara, L.; Havu, V.; Puska, M. All-electron density functional theory and time-dependent density functional theory with high-order finite elements. J. Chem. Phys. 2009, 131, 054103. [Google Scholar] [CrossRef]
- Lara-Astiaso, M.; Silva, R.; Gubaydullin, A.; Rivière, P.; Meier, C.; Martín, F. Enhancing high-order harmonic generation in light molecules by using chirped pulses. Phys. Rev. Lett. 2016, 117, 093003. [Google Scholar] [CrossRef]
- Roscam Abbing, S.D.; Campi, F.; Zeltsi, A.; Smorenburg, P.; Kraus, P.M. Divergence and efficiency optimization in polarization-controlled two-color high-harmonic generation. Sci. Rep. 2021, 11, 24253. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Peng, Z.; Lang, Y.; Zhu, Y.; Zhang, D.; Lü, Z.; Zhao, Z. Decoherence Effects of Terahertz Generation in Solids under Two-Color Femtosecond Laser Fields. Chin. Phys. Lett. 2022, 39, 053301. [Google Scholar] [CrossRef]
- Jin, C.; Wang, G.; Wei, H.; Le, A.T.; Lin, C. Waveforms for optimal sub-keV high-order harmonics with synthesized two-or three-colour laser fields. Nat. Commun. 2014, 5, 4003. [Google Scholar] [CrossRef]
- Zhang, G.T.; Wu, J.; Xia, C.L.; Liu, X.S. Enhanced high-order harmonics and an isolated short attosecond pulse generated by using a two-color laser and an extreme-ultraviolet attosecond pulse. Phys. Rev. A 2009, 80, 055404. [Google Scholar] [CrossRef]
- Wang, X.; Jin, C.; Lin, C.D. Coherent control of high-harmonic generation using waveform-synthesized chirped laser fields. Phys. Rev. A 2014, 90, 023416. [Google Scholar] [CrossRef]
- Li, Y.; Feng, L.; Qiao, Y. Selective enhancement of single-order and two-order harmonics from He atom via two-color and three-color laser fields. Chem. Phys. 2019, 527, 110497. [Google Scholar] [CrossRef]
- Qiao, Y.; Wu, D.; Chen, J.G.; Wang, J.; Guo, F.M.; Yang, Y.J. High-order harmonic generation from H 2+ irradiated by a co-rotating two-color circularly polarized laser field. Phys. Rev. A 2019, 100, 063428. [Google Scholar] [CrossRef]
- Yang, Y.J.; Chen, J.G.; Chi, F.P.; Zhu, Q.R.; Zhang, H.X.; Sun, J.Z. Ultrahigh harmonic generation from an atom with superposition of ground state and highly excited states. Chin. Phys. Lett. 2007, 24, 1537–1540. [Google Scholar]
- Lehtovaara, L.; Toivanen, J.; Eloranta, J. Solution of time-independent Schrödinger equation by the imaginary time propagation method. J. Comput. Phys. 2007, 221, 148–157. [Google Scholar] [CrossRef]
- Abbate, A.; DeCusatis, C.M.; Das, P.K. Time-Frequency Analysis of Signals. In Wavelets and Subbands: Fundamentals and Applications; Birkhäuser Boston: Boston, MA, USA, 2002; pp. 103–187. [Google Scholar] [CrossRef]
- Han, J.X.; Wang, J.; Qiao, Y.; Liu, A.H.; Guo, F.M.; Yang, Y.J. Significantly enhanced conversion efficiency of high-order harmonic generation by introducing chirped laser pulses into scheme of spatially inhomogeneous field. Opt. Express 2019, 27, 8768–8776. [Google Scholar] [CrossRef]
- Ferrari, F.; Calegari, F.; Lucchini, M.; Vozzi, C.; Stagira, S.; Sansone, G.; Nisoli, M. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields. Nat. Photonics 2010, 4, 875–879. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, W.; Wang, X.; Qiao, Y.; Zhou, S.; Chen, J.; Wang, J.; Guo, F.; Yang, Y. High-Intensity Harmonic Generation with Energy Tunability Produced by Robust Two-Color Linearly Polarized Laser Fields. Symmetry 2023, 15, 580. https://doi.org/10.3390/sym15030580
Lan W, Wang X, Qiao Y, Zhou S, Chen J, Wang J, Guo F, Yang Y. High-Intensity Harmonic Generation with Energy Tunability Produced by Robust Two-Color Linearly Polarized Laser Fields. Symmetry. 2023; 15(3):580. https://doi.org/10.3390/sym15030580
Chicago/Turabian StyleLan, Wendi, Xinyu Wang, Yue Qiao, Shushan Zhou, Jigen Chen, Jun Wang, Fuming Guo, and Yujun Yang. 2023. "High-Intensity Harmonic Generation with Energy Tunability Produced by Robust Two-Color Linearly Polarized Laser Fields" Symmetry 15, no. 3: 580. https://doi.org/10.3390/sym15030580
APA StyleLan, W., Wang, X., Qiao, Y., Zhou, S., Chen, J., Wang, J., Guo, F., & Yang, Y. (2023). High-Intensity Harmonic Generation with Energy Tunability Produced by Robust Two-Color Linearly Polarized Laser Fields. Symmetry, 15(3), 580. https://doi.org/10.3390/sym15030580