Investigation of the Spatio-Temporal Characteristics of High-Order Harmonic Generation Using a Bohmian Trajectory Scheme
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yan, J.Z.; Zhao, S.S.; Lan, W.D.; Li, S.Y.; Zhou, S.S.; Chen, J.G.; Zhang, J.Y.; Yang, Y.J. Calculation of high-order harmonic generation of atoms and molecules by combining time series prediction and neural networks. Opt. Express 2022, 30, 35444–35456. [Google Scholar] [CrossRef]
- Yang, Y.J.; Chen, J.G.; Chi, F.P.; Zhu, Q.R.; Zhang, H.X.; Sun, J.Z. Ultrahigh harmonic generation from an atom with superposition of ground state and highly excited states. Chin. Phys. Lett. 2007, 24, 1537–1540. [Google Scholar]
- Krause, J.L.; Schafer, K.J.; Kulander, K.C. High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 1992, 68, 3535. [Google Scholar] [CrossRef]
- Burnett, K.; Reed, V.; Knight, P. Atoms in ultra-intense laser fields. J. Phys. B At. Mol. Opt. Phys. 1993, 26, 561. [Google Scholar] [CrossRef]
- Krausz, F.; Ivanov, M. Attosecond physics. Rev. Mod. Phys. 2009, 81, 163. [Google Scholar] [CrossRef]
- Zhou, S.S.; Lan, W.D.; Chen, J.G.; Wang, J.; Guo, F.M.; Yang, Y.J. High-order harmonic generation of 1-nonene under linearly polarized laser pulses. Phys. Rev. A 2022, 106, 023510. [Google Scholar] [CrossRef]
- Itatani, J.; Levesque, J.; Zeidler, D.; Niikura, H.; Pépin, H.; Kieffer, J.C.; Corkum, P.B.; Villeneuve, D.M. Tomographic imaging of molecular orbitals. Nature 2004, 432, 867–871. [Google Scholar] [CrossRef]
- Vozzi, C.; Negro, M.; Calegari, F.; Sansone, G.; Nisoli, M.; De Silvestri, S.; Stagira, S. Generalized molecular orbital tomography. Nat. Phys. 2011, 7, 822–826. [Google Scholar] [CrossRef]
- van der Zwan, E.V.; Lein, M. Molecular imaging using high-order harmonic generation and above-threshold ionization. Phys. Rev. Lett. 2012, 108, 043004. [Google Scholar] [CrossRef]
- Hay, N.; de Nalda, R.; Halfmann, T.; Mendham, K.; Mason, M.; Castillejo, M.; Marangos, J. High-order harmonic generation from organic molecules in ultra-short pulses. Eur. Phys. J. D At. Mol. Opt. Plasma Phys. 2001, 14, 231–240. [Google Scholar] [CrossRef]
- Christov, I.P. Molecular dynamics with time dependent quantum Monte Carlo. J. Chem. Phys. 2008, 129, 214107. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Huo, Y.Q.; Jiang, S.C.; Yang, Y.J.; Chen, J.G. All-optical reconstruction of three-band transition dipole moments by the crystal harmonic spectrum from a two-color laser pulse. Opt. Express 2022, 30, 9971–9982. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Yu, C.; Chen, J.; Huang, Y.; Lu, R.; Lin, C. Smooth periodic gauge satisfying crystal symmetry and periodicity to study high-harmonic generation in solids. Phys. Rev. B 2020, 102, 155201. [Google Scholar] [CrossRef]
- Qiao, Y.; Chen, J.; Chen, J. Review on the Reconstruction of Transition Dipole Moments by Solid Harmonic Spectrum. Symmetry 2022, 14, 2646. [Google Scholar] [CrossRef]
- Qiao, Y.; Huo, Y.; Liang, H.; Chen, J.; Liu, W.; Yang, Y.; Jiang, S. Robust retrieval method of crystal transition dipole moments by high-order harmonic spectrum. Phys. Rev. B 2023, 107, 075201. [Google Scholar]
- Gilbertson, S.; Khan, S.D.; Wu, Y.; Chini, M.; Chang, Z. Isolated attosecond pulse generation without the need to stabilize the carrier-envelope phase of driving lasers. Phys. Rev. Lett. 2010, 105, 093902. [Google Scholar] [CrossRef]
- Gibson, E.A.; Paul, A.; Wagner, N.; Tobey, R.; Gaudiosi, D.; Backus, S.; Christov, I.P.; Aquila, A.; Gullikson, E.M.; Attwood, D.T.; et al. Coherent soft X-ray generation in the water window with quasi-phase matching. Science 2003, 302, 95–98. [Google Scholar] [CrossRef]
- Cingöz, A.; Yost, D.C.; Allison, T.K.; Ruehl, A.; Fermann, M.E.; Hartl, I.; Ye, J. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 2012, 482, 68–71. [Google Scholar] [CrossRef]
- Qiao, Y.; Wu, D.; Chen, J.G.; Wang, J.; Guo, F.M.; Yang, Y.J. High-order harmonic generation from H 2+ irradiated by a co-rotating two-color circularly polarized laser field. Phys. Rev. A 2019, 100, 063428. [Google Scholar] [CrossRef]
- Eckle, P.; Pfeiffer, A.; Cirelli, C.; Staudte, A.; Dorner, R.; Muller, H.; Buttiker, M.; Keller, U. Attosecond ionization and tunneling delay time measurements in helium. Science 2008, 322, 1525–1529. [Google Scholar] [CrossRef]
- Schultze, M.; Ramasesha, K.; Pemmaraju, C.; Sato, S.; Whitmore, D.; Gandman, A.; Prell, J.S.; Borja, L.; Prendergast, D.; Yabana, K.; et al. Attosecond band-gap dynamics in silicon. Science 2014, 346, 1348–1352. [Google Scholar] [CrossRef]
- Kraus, P.M.; Mignolet, B.; Baykusheva, D.; Rupenyan, A.; Hornỳ, L.; Penka, E.F.; Grassi, G.; Tolstikhin, O.I.; Schneider, J.; Jensen, F.; et al. Measurement and laser control of attosecond charge migration in ionized iodoacetylene. Science 2015, 350, 790–795. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.T.; Luu, T.T.; Moulet, A.; Raskazovskaya, O.; Zhokhov, P.; Garg, M.; Karpowicz, N.; Zheltikov, A.; Pervak, V.; Krausz, F.; et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature 2016, 530, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Calegari, F.; Trabattoni, A.; Palacios, A.; Ayuso, D.; Castrovilli, M.C.; Greenwood, J.B.; Decleva, P.; Martín, F.; Nisoli, M. Charge migration induced by attosecond pulses in bio-relevant molecules. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 142001. [Google Scholar] [CrossRef]
- Dong, F.; Tian, Y.; Yu, S.; Wang, S.; Yang, S.; Chen, Y. Polarization properties of below-threshold harmonics from aligned molecules H2+ in linearly polarized laser fields. Opt. Express 2015, 23, 18106–18116. [Google Scholar] [CrossRef]
- Goulielmakis, E.; Schultze, M.; Hofstetter, M.; Yakovlev, V.S.; Gagnon, J.; Uiberacker, M.; Aquila, A.L.; Gullikson, E.; Attwood, D.T.; Kienberger, R.; et al. Single-cycle nonlinear optics. Science 2008, 320, 1614–1617. [Google Scholar] [CrossRef]
- Qin, M.; Zhu, X.; Zhang, Q.; Lu, P. Tomographic imaging of asymmetric molecular orbitals with a two-color multicycle laser field. Opt. Lett. 2012, 37, 5208–5210. [Google Scholar] [CrossRef]
- Jiang, S.; Dorfman, K. Detecting electronic coherences by time-domain high-harmonic spectroscopy. Proc. Natl. Acad. Sci. USA 2020, 117, 9776–9781. [Google Scholar] [CrossRef]
- Corkum, P.B. Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 1993, 71, 1994. [Google Scholar] [CrossRef]
- Santra, R.; Gordon, A. Three-step model for high-harmonic generation in many-electron systems. Phys. Rev. Lett. 2006, 96, 073906. [Google Scholar] [CrossRef]
- Augstein, B.; de Morisson Faria, C.F. High-order harmonic generation in diatomic molecules: Quantum interference, nodal structures and multiple orbitals. Mod. Phys. Lett. B 2012, 26, 1130002. [Google Scholar] [CrossRef]
- Jin, C.; Le, A.T.; Lin, C. Medium propagation effects in high-order harmonic generation of Ar and N2. Phys. Rev. A 2011, 83, 023411. [Google Scholar] [CrossRef]
- Gaarde, M.B.; Tate, J.L.; Schafer, K.J. Macroscopic aspects of attosecond pulse generation. J. Phys. B At. Mol. Opt. Phys. 2008, 41, 132001. [Google Scholar] [CrossRef]
- Serebryannikov, E.; Zheltikov, A. Strong-field photoionization as excited-state tunneling. Phys. Rev. Lett. 2016, 116, 123901. [Google Scholar] [CrossRef] [PubMed]
- Heslar, J.; Chu, S.I. Ab initio study of high-lying doubly excited states of helium in static electric fields: Complex-scaling generalized pseudospectral method in hyperspherical coordinates. Phys. Rev. A 2012, 86, 032506. [Google Scholar] [CrossRef]
- Schneider, B.I.; Gharibnejad, H. Numerical methods every atomic and molecular theorist should know. Nat. Rev. Phys. 2020, 2, 89–102. [Google Scholar] [CrossRef]
- Geng, L.; Liang, H.; Peng, L.Y. Laser-Induced Electron Fresnel Diffraction in Tunneling and Over-Barrier Ionization. Chin. Phys. Lett. 2022, 39, 044203. [Google Scholar]
- Peng, Q.; Peng, Z.; Lang, Y.; Zhu, Y.; Zhang, D.; Lu, Z.; Zhao, Z. Decoherence Effects of Terahertz Generation in Solids under Two-Color Femtosecond Laser Fields. Chin. Phys. Lett. 2022, 39, 053301. [Google Scholar]
- Nishimura, K.; Xu, L.; Suda, A.; Midorikawa, K.; Fu, Y.; Takahashi, E.J. A Robust Scaling Up Method of Output Energy and Photon Energy on High-Order Harmonic Generation: Towards Sub-pJ Water Window Soft X-rays. CLEO: QELS_Fundamental Science. Opt. Soc. Am. 2020, 2020, FW4D–4. [Google Scholar]
- Lai, X.; Cai, Q.Y.; Zhan, M. From a quantum to a classical description of intense laser–atom physics with Bohmian trajectories. New J. Phys. 2009, 11, 113035. [Google Scholar] [CrossRef]
- Takemoto, N.; Becker, A. Visualization and interpretation of attosecond electron dynamics in laser-driven hydrogen molecular ion using Bohmian trajectories. J. Chem. Phys. 2011, 134, 074309. [Google Scholar] [CrossRef]
- Song, Y.; Guo, F.M.; Li, S.Y.; Chen, J.G.; Zeng, S.L.; Yang, Y.J. Investigation of the generation of high-order harmonics through Bohmian trajectories. Phys. Rev. A 2012, 86, 033424. [Google Scholar] [CrossRef]
- Wu, J.; Augstein, B.; de Morisson Faria, C.F. Local dynamics in high-order-harmonic generation using Bohmian trajectories. Phys. Rev. A 2013, 88, 023415. [Google Scholar] [CrossRef]
- Staudte, A.; Ruiz, C.; Schöffler, M.; Schössler, S.; Zeidler, D.; Weber, T.; Meckel, M.; Villeneuve, D.; Corkum, P.; Becker, A.; et al. Binary and recoil collisions in strong field double ionization of helium. Phys. Rev. Lett. 2007, 99, 263002. [Google Scholar] [CrossRef] [PubMed]
- Protopapas, M.; Keitel, C.H.; Knight, P.L. Atomic physics with super-high intensity lasers. Rep. Prog. Phys. 1997, 60, 389. [Google Scholar] [CrossRef]
- Song, Y.; Li, S.Y.; Liu, X.S.; Guo, F.M.; Yang, Y.J. Investigation of atomic radiative recombination processes by the Bohmian- mechanics method. Phys. Rev. A 2013, 88, 053419. [Google Scholar] [CrossRef]
- Bauschlicher, C.W.; Langhoff, S.R. The calculation of accurate harmonic frequencies of large molecules: The polycyclic aromatic hydrocarbons, a case study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1997, 53, 1225–1240. [Google Scholar] [CrossRef]
- Zhou, S.S.; Yang, Y.J.; Yang, Y.; Suo, M.Y.; Li, D.Y.; Qiao, Y.; Yuan, H.Y.; Lan, W.D.; Hu, M.H. High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse. Chin. Phys. B 2022, 32, 013201. [Google Scholar] [CrossRef]
- Wang, J.; Chen, G.; Guo, F.M.; Li, S.Y.; Chen, J.G.; Yang, Y.J. High-intensity molecular harmonic generation without ionization. Chin. Phys. B 2013, 22, 033203. [Google Scholar] [CrossRef]
- Tian, Y.Y.; Li, S.Y.; Wei, S.S.; Guo, F.M.; Zeng, S.L.; Chen, J.G.; Yang, Y.J. Investigation on the influence of atomic potentials on the above threshold ionization. Chin. Phys. B 2014, 23, 053202. [Google Scholar] [CrossRef]
- Wei, S.S.; Li, S.Y.; Guo, F.M.; Yang, Y.J.; Wang, B. Dynamic stabilization of ionization for an atom irradiated by high-frequency laser pulses studied with the Bohmian-trajectory scheme. Phys. Rev. A 2013, 87, 063418. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.; Wu, L.; Qiao, Y.; Zhou, S.; Wang, J.; Guo, F.; Yang, Y. Investigation of the Spatio-Temporal Characteristics of High-Order Harmonic Generation Using a Bohmian Trajectory Scheme. Symmetry 2023, 15, 581. https://doi.org/10.3390/sym15030581
Song S, Wu L, Qiao Y, Zhou S, Wang J, Guo F, Yang Y. Investigation of the Spatio-Temporal Characteristics of High-Order Harmonic Generation Using a Bohmian Trajectory Scheme. Symmetry. 2023; 15(3):581. https://doi.org/10.3390/sym15030581
Chicago/Turabian StyleSong, Simeng, Linyan Wu, Yue Qiao, Shushan Zhou, Jun Wang, Fuming Guo, and Yujun Yang. 2023. "Investigation of the Spatio-Temporal Characteristics of High-Order Harmonic Generation Using a Bohmian Trajectory Scheme" Symmetry 15, no. 3: 581. https://doi.org/10.3390/sym15030581
APA StyleSong, S., Wu, L., Qiao, Y., Zhou, S., Wang, J., Guo, F., & Yang, Y. (2023). Investigation of the Spatio-Temporal Characteristics of High-Order Harmonic Generation Using a Bohmian Trajectory Scheme. Symmetry, 15(3), 581. https://doi.org/10.3390/sym15030581