Semilocal Convergence of a Multi-Step Parametric Family of Iterative Methods
Abstract
:1. Introduction
2. Semilocal Convergence
- (I)
- There exists such that . Furthermore, such that .
- (II)
- , where is a continuous non-decreasing function.
- (III)
- We suppose that there exists for each pair , such that the divided differences operator satisfies the following:
- (1)
- (2)
- (3)
- and, therefore,
- We start by proving (2) for , using (1), (2) and (3) for q:It is, therefore, proven.
- Using the hypothesis on q, we prove (3) for :With this, it is proved that and (3) is satisfied for .
- Finally we prove (1) for provided that :Applying the rules, we obtain
- (4)
- (5)
- .
- (6)
- and, therefore, .
- (7)
- for and
- (8)
- for .
- (9)
- and for where
- (A)
- (B)
- (C)
- and , .
3. Numerical Experiments
3.1. Numerical Study of Semilocal Convergence
3.2. Dynamical Planes for Different Steps
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sihwail, R.; Solaiman, O.S.; Ariffin, K.A.Z. New robust hybrid Jarratt-Butterfly optimization algorithm for nonlinear models. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 8207–8220. [Google Scholar] [CrossRef]
- Sihwail, R.; Solaiman, O.S.; Omar, K.; Ariffin, K.A.Z.; Alswaitti, M.; Hashim, I. A Hybrid Approach for Solving Systems of Nonlinear Equations Using Harris Hawks Optimization and Newton’s Method. IEEE Access 2021, 9, 95791–95807. [Google Scholar] [CrossRef]
- Ostrowski, A.M. Solutions of Equations in Euclidean and Banach Spaces; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice-Hall: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Argyros, I.K. On a theorem of L. V. Kantorovich concerning Newton’s method. J. Comput. Appl. Math. 2003, 155, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Argyros, I.K. On the Secant method. Publ. Math. Debrecen 1993, 43, 223–238. [Google Scholar] [CrossRef]
- Hernández, M.A.; Rubio, M.J. The secant method for nondifferentiable operators. Appl. Math. Lett. 2002, 4, 395–399. [Google Scholar] [CrossRef] [Green Version]
- Cordero, A.; Torregrosa, J.R. A class of Steffensen type methods with optimal order of convergence. Appl. Math. Comput. 2011, 217, 7653–7659. [Google Scholar] [CrossRef]
- Grau-Sánchez, M.; Noguera, M.; Amat, S. On the approximation of derivatives using divided difference operators preserving the local convergence order of iterative methods. J. Comput. Appl. Math. 2013, 237, 363–372. [Google Scholar] [CrossRef]
- Feng, X.; He, Y. High order oterative methods without derivatives for solving nonlinear equations. Appl. Math. Comput. 2007, 186, 1617–1623. [Google Scholar]
- Narang, M.; Bhatia, S.; Saleh Alshomrani, A.; Kanwar, V. General efficient class of Steffensen type methods with memory for solving systems of nonlinear equations. J. Comput. Appl. Math. 2019, 352, 23–39. [Google Scholar] [CrossRef]
- Argyros, I.K. Local Convergence for Multistep Simplifled Newton-like Methods. J. Math. 2008, 40, 1–7. [Google Scholar]
- Argyros, I.K.; Behl, R.; González, D.; Motsa, S.S. Local convergence for multistep high order methods under weak conditions. Appl. Math. 2020, 47, 293–304. [Google Scholar] [CrossRef]
- Amat, S.; Argyros, I.K.; Busquier, S.; Hernández-Verón, M.A.; Magreñán, Á.A.; Martínez, E. A multistep Steffensen-type method for solving nonlinear systems of equations. Math. Meth. Appl. Sci. 2020, 43, 7518–7536. [Google Scholar] [CrossRef]
- Cordero, A.; Villalba, E.G.; Torregrosa, J.R.; Triguero-Navarro, P. Introducing memory to a family of multi-step multidimensional iterative methods with weight function. arXiv 2023, arXiv:2301.07991. [Google Scholar] [CrossRef]
- Solaiman, O.S.; Karim, S.A.A.; Hashim, I. Dynamical Comparison of Several Third-Order Iterative Methods for Nonlinear Equations. Comput. Mater. Contin. 2021, 67, 1951–1962. [Google Scholar] [CrossRef]
- Magreñán, A. A new tool to study real dynamics: The Convergence Plane. Appl. Math. Comput. 2014, 248, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Hueso, J.L.; Martinez, E. Semilocal convergence of a family of iterative methods in Banach spaces. Numer. Algorithms 2014, 67, 365–384. [Google Scholar] [CrossRef] [Green Version]
r | R | b | ||||
---|---|---|---|---|---|---|
⋯ | ⋯ | ⋯ | ⋯ | ⋯ | ⋯ | ⋯ |
0.2202 | ||||||
⋯ | ⋯ | ⋯ | ⋯ | ⋯ | ⋯ | ⋯ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villalba, E.G.; Martínez, E.; Triguero-Navarro, P. Semilocal Convergence of a Multi-Step Parametric Family of Iterative Methods. Symmetry 2023, 15, 536. https://doi.org/10.3390/sym15020536
Villalba EG, Martínez E, Triguero-Navarro P. Semilocal Convergence of a Multi-Step Parametric Family of Iterative Methods. Symmetry. 2023; 15(2):536. https://doi.org/10.3390/sym15020536
Chicago/Turabian StyleVillalba, Eva G., Eulalia Martínez, and Paula Triguero-Navarro. 2023. "Semilocal Convergence of a Multi-Step Parametric Family of Iterative Methods" Symmetry 15, no. 2: 536. https://doi.org/10.3390/sym15020536
APA StyleVillalba, E. G., Martínez, E., & Triguero-Navarro, P. (2023). Semilocal Convergence of a Multi-Step Parametric Family of Iterative Methods. Symmetry, 15(2), 536. https://doi.org/10.3390/sym15020536