Collective Excitation in High-Energy Nuclear Collisions—In Memory of Professor Lianshou Liu
Abstract
:1. Collectivity: Azimuthal Angular Anisotropy in High-Energy Nuclear Collisions
2. Chirality: Chiral Magnetic Effect in High-Energy Nuclear Collisions
3. Criticality: Search for the QCD Critical Point and the Limit of Thermalization in Heavy-Ion Collisions
3.1. High Order Moments and Search for the QCD Critical Point
3.2. Limits of Thermalization in High-Energy Nuclear Collisions
4. Strange Quark Probes of Parton Dynamics and QCD Interactions
5. Outlook: Physics at High Baryon Density
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdallah, M.S.; Aboona, B.E.; Adam, J.; Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, I.; Aggarwal, M.M.; Ahammed, Z.; et al. Centrality and transverse momentum dependence of higher-order flow harmonics of identified hadrons in Au+Au collisions at = 200 GeV. Phys. Rev. C 2022, 105, 064911. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Ajitanand, N.N.; Alekseev, I.; Anderson, D.M.; Aoyama, R.; Aparin, A.; et al. Measurement of D0 Azimuthal Anisotropy at Midrapidity in Au+Au Collisions at = 200 GeV. Phys. Rev. Lett. 2017, 118, 212301. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E.C.; Averichev, G.S.; et al. Centrality and transverse momentum dependence of elliptic flow of multistrange hadrons and ϕ meson in Au+Au collisions at = 200 GeV. Phys. Rev. Lett. 2016, 116, 062301. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C.D.; Aparin, A.; Arkhipkin, D.; et al. Beam-Energy Dependence of the Directed Flow of Protons, Antiprotons, and Pions in Au+Au Collisions. Phys. Rev. Lett. 2014, 112, 162301. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Ajitanand, N.N.; Alekseev, I.; Anderson, D.M.; Aoyama, R.; et al. Beam-Energy Dependence of Directed Flow of Λ, , K±, and ϕ in Au+Au Collisions. Phys. Rev. Lett. 2018, 120, 062301. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, L.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alakhverdyants, A.V.; Alekseev, I.; Alford, J.; Anderson, B.D.; Anson, C.D.; Arkhipkin, D.; et al. Inclusive charged hadron elliptic flow in Au + Au collisions at = 7.7–39 GeV. Phys. Rev. C 2012, 86, 054908. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C.D.; Aparin, A.; Arkhipkin, D.; et al. Elliptic flow of identified hadrons in Au+Au collisions at = 7.7–62.4 GeV. Phys. Rev. C 2013, 88, 014902. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C.D.; Aparin, A.; Arkhipkin, D.; et al. Observation of an Energy-Dependent Difference in Elliptic Flow between Particles and Antiparticles in Relativistic Heavy Ion Collisions. Phys. Rev. Lett. 2013, 110, 142301. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E.C.; Averichev, G.S.; et al. Centrality dependence of identified particle elliptic flow in relativistic heavy ion collisions at = 7.7–62.4 GeV. Phys. Rev. C 2016, 93, 014907. [Google Scholar] [CrossRef]
- The ALICE experiment—A journey through QCD. arXiv 2022, arXiv:2211.04384.
- CMS Collaboration; Sirunyan, A.M.; Bachmair, F.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; et al. Measurement of prompt D0 meson azimuthal anisotropy in Pb-Pb collisions at = 5.02 TeV. Phys. Rev. Lett. 2018, 120, 202301. [Google Scholar] [CrossRef] [Green Version]
- Stoecker, H. Collective flow signals the quark gluon plasma. Nucl. Phys. A 2005, 750, 121–147. [Google Scholar] [CrossRef]
- Nara, Y.; Jinno, A.; Murase, K.; Ohnishi, A. Directed flow of Λ in high-energy heavy-ion collisions and Λ potential in dense nuclear matter. Phys. Rev. C 2022, 106, 044902. [Google Scholar] [CrossRef]
- Nara, Y.; Ohnishi, A. Mean-field update in the JAM microscopic transport model: Mean-field effects on collective flow in high-energy heavy-ion collisions at = 2–20 GeV energies. Phys. Rev. C 2022, 105, 014911. [Google Scholar] [CrossRef]
- Nayak, K.; Shi, S.; Xu, N.; Lin, Z.W. Energy dependence study of directed flow in Au+Au collisions using an improved coalescence in a multiphase transport model. Phys. Rev. C 2019, 100, 054903. [Google Scholar] [CrossRef]
- Dunlop, J.C.; Lisa, M.A.; Sorensen, P. Constituent quark scaling violation due to baryon number transport. Phys. Rev. C 2011, 84, 044914. [Google Scholar] [CrossRef]
- Steinheimer, J.; Koch, V.; Bleicher, M. Hydrodynamics at large baryon densities: Understanding proton vs. anti-proton v2 and other puzzles. Phys. Rev. C 2012, 86, 044903. [Google Scholar] [CrossRef]
- Hatta, Y.; Monnai, A.; Xiao, B.W. Flow harmonics vn at finite density. Phys. Rev. D 2015, 92, 114010. [Google Scholar] [CrossRef]
- Xu, J.; Song, T.; Ko, C.M.; Li, F. Elliptic flow splitting as a probe of the QCD phase structure at finite baryon chemical potential. Phys. Rev. Lett. 2014, 112, 012301. [Google Scholar] [CrossRef] [PubMed]
- Tu, B.; Shi, S.; Liu, F. Elliptic flow of transported and produced protons in Au+Au collisions with the UrQMD model. Chin. Phys. C 2019, 43, 054106. [Google Scholar] [CrossRef]
- Liu, H.; Wang, F.T.; Sun, K.J.; Xu, J.; Ko, C.M. Isospin splitting of pion elliptic flow in relativistic heavy-ion collisions. Phys. Lett. B 2019, 798, 135002. [Google Scholar] [CrossRef]
- Li, P.; Wang, Y.; Steinheimer, J.; Li, Q.; Zhang, H. Elliptic flow splitting between protons and antiprotons from hadronic potentials. Mod. Phys. Lett. A 2020, 35, 2050289. [Google Scholar] [CrossRef]
- Abdallah, M.; Aboona, B.; Adam, J.; Adamczyk, L.; Adams, J.; Adkins, J.; Agakishiev, G.; Aggarwal, I.; Aggarwal, M.; Ahammed, Z.; et al. Disappearance of partonic collectivity in sNN = 3 GeV Au+Au collisions at RHIC. Phys. Lett. B 2022, 827, 137003. [Google Scholar] [CrossRef]
- Abdallah, M.; Aboona, B.; Adam, J.; Adamczyk, L.; Adams, J.; Adkins, J.; Agakishiev, G.; Aggarwal, I.; Aggarwal, M.; Ahammed, Z.; et al. Light nuclei collectivity from = 3 GeV Au+Au collisions at RHIC. Phys. Lett. B 2022, 827, 136941. [Google Scholar] [CrossRef]
- Lan, S.W.; Shi, S.S. Anisotropic flow in high baryon density region. Nucl. Sci. Tech. 2022, 33, 21. [Google Scholar] [CrossRef]
- Kuich, M. Highlights from the NA61/SHINE strong-interactions programme. EPJ Web Conf. 2022, 259, 01001. [Google Scholar] [CrossRef]
- Alt, C.; Anticic, T.; Baatar, B.; Barna, D.; Bartke, J.; Behler, M.; Betev, L.; Białkowska, H.; Billmeier, A.; Blume, C.; et al. Directed and elliptic flow of charged pions and protons in Pb + Pb collisions at 40-A-GeV and 158-A-GeV. Phys. Rev. C 2003, 68, 034903. [Google Scholar] [CrossRef]
- Adamczewski-Musch, J.; Arnold, O.; Behnke, C.; Belounnas, A.; Belyaev, A.; Berger-Chen, J.C.; Blanco, A.; Blume, C.; Böhmer, M.; Bordalo, P.; et al. Directed, Elliptic, and Higher Order Flow Harmonics of Protons, Deuterons, and Tritons in Au+Au Collisions at = 2.4 GeV. Phys. Rev. Lett. 2020, 125, 262301. [Google Scholar] [CrossRef]
- Parfenov, P. Elliptic (v2) and triangular (v3) anisotropic flow of identified hadrons from the STAR Beam Energy Scan program. J. Phys. Conf. Ser. 2020, 1690, 012128. [Google Scholar] [CrossRef]
- Karpenko, I.A.; Huovinen, P.; Petersen, H.; Bleicher, M. Estimation of the shear viscosity at finite net-baryon density from A + A collision data at = 7.7–200 GeV. Phys. Rev. C 2015, 91, 064901. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Ajitanand, N.N.; Alekseev, I.; Anderson, D.M.; Aoyama, R.; Aparin, A.; et al. Bulk Properties of the Medium Produced in Relativistic Heavy-Ion Collisions from the Beam Energy Scan Program. Phys. Rev. C 2017, 96, 044904. [Google Scholar] [CrossRef] [Green Version]
- Bernhard, J.E.; Moreland, J.S.; Bass, S.A. Bayesian estimation of the specific shear and bulk viscosity of quark–gluon plasma. Nature Phys. 2019, 15, 1113–1117. [Google Scholar] [CrossRef]
- Xu, Y.; Bernhard, J.E.; Bass, S.A.; Nahrgang, M.; Cao, S. Data-driven analysis for the temperature and momentum dependence of the heavy-quark diffusion coefficient in relativistic heavy-ion collisions. Phys. Rev. C 2018, 97, 014907. [Google Scholar] [CrossRef]
- Csernai, L.P.; Kapusta, J.I.; McLerran, L.D. On the Strongly-Interacting Low-Viscosity Matter Created in Relativistic Nuclear Collisions. Phys. Rev. Lett. 2006, 97, 152303. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E.C.; Attri, A.; et al. Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au+Au Collisions at RHIC. Phys. Rev. Lett. 2016, 116, 112302. [Google Scholar] [CrossRef]
- Lee, T.; Wick, G. Vacuum stability and vacuum excitation in a spin 0 field theory. Phys.Rev. 1974, D9, 2291–2316. [Google Scholar] [CrossRef]
- Morley, P.D.; Schmidt, I.A. Strong P, CP, T violations in heavy ion collisions. Z. Phys. 1985, C26, 627. [Google Scholar] [CrossRef]
- Kharzeev, D.; Pisarski, R.; Tytgat, M.H. Possibility of spontaneous parity violation in hot QCD. Phys. Rev. Lett. 1998, 81, 512–515. [Google Scholar] [CrossRef]
- Kharzeev, D. Parity violation in hot QCD: Why it can happen, and how to look for it. Phys. Lett. 2006, B633, 260–264. [Google Scholar] [CrossRef]
- Fukushima, K.; Kharzeev, D.E.; Warringa, H.J. The chiral magnetic effect. Phys. Rev. 2008, D78, 074033. [Google Scholar] [CrossRef]
- Dine, M.; Kusenko, A. The Origin of the matter-antimatter asymmetry. Rev. Mod. Phys. 2003, 76, 1. [Google Scholar] [CrossRef] [Green Version]
- Kharzeev, D.E.; Liao, J.; Voloshin, S.A.; Wang, G. Chiral magnetic and vortical effects in high-energy nuclear collisions—A status report. Prog. Part. Nucl. Phys. 2016, 88, 1–28. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, F. Experimental searches for the chiral magnetic effect in heavy-ion collisions. Prog. Part. Nucl. Phys. 2019, 107, 200–236. [Google Scholar] [CrossRef]
- Skokov, V.; Illarionov, A.Y.; Toneev, V. Estimate of the magnetic field strength in heavy-ion collisions. Int. J. Mod. Phys. 2009, A24, 5925–5932. [Google Scholar] [CrossRef]
- Voloshin, S.A. Parity violation in hot QCD: How to detect it. Phys. Rev. C 2004, 70, 057901. [Google Scholar] [CrossRef]
- Poskanzer, A.M.; Voloshin, S. Methods for analyzing anisotropic flow in relativistic nuclear collisions. Phys. Rev. 1998, C58, 1671–1678. [Google Scholar] [CrossRef]
- Choudhury, S.; Dong, X.; Drachenberg, J.; Dunlop, J.; Esumi, S.; Feng, Y.; Finch, E.; Hu, Y.; Jia, J.; Lauret, J.; et al. Investigation of experimental observables in search of the chiral magnetic effect in heavy-ion collisions in the STAR experiment. Chin. Phys. C 2022, 46, 014101. [Google Scholar] [CrossRef]
- Abelev, B.I.; Aggarwal, M.M.; Ahammed, Z.; Alakhverdyants, A.V.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Balewski, J.; Barannikova, O.; Barnby, L.S.; et al. Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation. Phys. Rev. Lett. 2009, 103, 251601. [Google Scholar] [CrossRef]
- Abelev, B.I.; Aggarwal, M.M.; Ahammed, Z.; Alakhverdyants, A.V.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Balewski, J.; Barannikova, O.; Barnby, L.S.; et al. Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions. Phys. Rev. 2010, C81, 054908. [Google Scholar] [CrossRef]
- Abelev, B.; Adam, J.; Adamová, D.; Adare, A.M.; Aggarwal, M.M.; Rinella, G.A.; Agocs, A.G.; Agostinelli, A.; Salazar, S.A.; Ahammed, Z.; et al. Charge separation relative to the reaction plane in Pb-Pb collisions at = 2.76 TeV. Phys. Rev. Lett. 2013, 110, 012301. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C.D.; Aparin, A.; Arkhipkin, D.; et al. Fluctuations of charge separation perpendicular to the event plane and local parity violation in = 200 GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider. Phys. Rev. 2013, C88, 064911. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C.D.; Aparin, A.; Arkhipkin, D.; et al. Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC. Phys. Rev. Lett. 2014, 113, 052302. [Google Scholar] [CrossRef] [PubMed]
- Wang, F. Effects of Cluster Particle Correlations on Local Parity Violation Observables. Phys. Rev. 2010, C81, 064902. [Google Scholar] [CrossRef]
- Bzdak, A.; Koch, V.; Liao, J. Remarks on possible local parity violation in heavy ion collisions. Phys. Rev. 2010, C81, 031901. [Google Scholar] [CrossRef]
- Schlichting, S.; Pratt, S. Charge conservation at energies available at the BNL Relativistic Heavy Ion Collider and contributions to local parity violation observables. Phys. Rev. 2011, C83, 014913. [Google Scholar] [CrossRef]
- Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; et al. Observation of charge-dependent azimuthal correlations in p-Pb collisions and its implication for the search for the chiral magnetic effect. Phys. Rev. Lett. 2017, 118, 122301. [Google Scholar] [CrossRef]
- Adam, J.; Adamczyk, L.; Adams, J.; Adkins, J.; Agakishiev, G.; Aggarwal, M.; Ahammed, Z.; Alekseev, I.; Anderson, D.; Aoyama, R.; et al. Charge-dependent pair correlations relative to a third particle in p + Au and d + Au collisions at RHIC. Phys. Lett. 2019, B798, 134975. [Google Scholar] [CrossRef]
- Zhao, J.; Li, H.; Wang, F. Isolating the chiral magnetic effect from backgrounds by pair invariant mass. Eur. Phys. J. 2019, C79, 168. [Google Scholar] [CrossRef]
- Abdallah, M.S.; Adam, J.; Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, I.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; et al. Pair invariant mass to isolate background in the search for the chiral magnetic effect in Au + Au collisions at sNN = 200 GeV. Phys. Rev. C 2022, 106, 034908. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alakhverdyants, A.V.; Alekseev, I.; Alford, J.; Anson, C.D.; Arkhipkin, D.; et al. Measurement of charge multiplicity asymmetry correlations in high-energy nucleus-nucleus collisions at = 200 GeV. Phys. Rev. 2014, C89, 044908. [Google Scholar] [CrossRef]
- Schukraft, J.; Timmins, A.; Voloshin, S.A. Ultra-relativistic nuclear collisions: Event shape engineering. Phys. Lett. 2013, B719, 394–398. [Google Scholar] [CrossRef] [Green Version]
- Acharya, S.; Adam, J.; Adamová, D.; Adolfsson, J.; Aggarwal, M.; Rinella, G.A.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; et al. Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb-Pb collisions at = 2.76 TeV. Phys. Lett. 2018, B777, 151–162. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; et al. Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in pPb and PbPb collisions at the CERN Large Hadron Collider. Phys. Rev. 2018, C97, 044912. [Google Scholar] [CrossRef]
- Koch, V.; Schlichting, S.; Skokov, V.; Sorensen, P.; Thomas, J.; Voloshin, S.; Wang, G.; Yee, H.-U. Status of the chiral magnetic effect and collisions of isobars. Chin. Phys. 2017, C41, 072001. [Google Scholar] [CrossRef]
- Voloshin, S.A. Testing the chiral magnetic effect with central U+U collisions. Phys. Rev. Lett. 2010, 105, 172301. [Google Scholar] [CrossRef] [PubMed]
- Adam, J.; Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Anderson, D.M.; Aparin, A.; et al. Methods for a blind analysis of isobar data collected by the STAR collaboration. Nucl. Sci. Tech. 2021, 32, 48. [Google Scholar] [CrossRef]
- Abdallah, M.S.; Aboona, B.E.; Adam, J.; Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, I.; Aggarwal, M.M.; Ahammed, Z.; et al. Search for the chiral magnetic effect with isobar collisions at = 200 GeV by the STAR Collaboration at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 2022, 105, 014901. [Google Scholar] [CrossRef]
- Xu, H.-J.; Wang, X.; Li, H.; Zhao, J.; Lin, Z.-W.; Shen, C.; Wang, F. Importance of isobar density distributions on the chiral magnetic effect search. Phys. Rev. Lett. 2018, 121, 022301. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, H.-J.; Zhao, J.; Lin, Z.-W.; Zhang, H.; Wang, X.; Shen, C.; Wang, F. Multiphase transport model predictions of isobaric collisions with nuclear structure from density functional theory. Phys. Rev. 2018, C98, 054907. [Google Scholar] [CrossRef]
- Xu, H.-J.; Li, H.; Wang, X.; Shen, C.; Wang, F. Determine the neutron skin type by relativistic isobaric collisions. Phys. Lett. B 2021, 819, 136453. [Google Scholar] [CrossRef]
- Kharzeev, D.E.; Liao, J.; Shi, S. Implications of the isobar-run results for the chiral magnetic effect in heavy-ion collisions. Phys. Rev. C 2022, 106, L051903. [Google Scholar] [CrossRef]
- Feng, Y.; Zhao, J.; Li, H.; Xu, H.j.; Wang, F. Two- and three-particle nonflow contributions to the chiral magnetic effect measurement by spectator and participant planes in relativistic heavy ion collisions. Phys. Rev. C 2022, 105, 024913. [Google Scholar] [CrossRef]
- Feng, Y. Estimate of a nonflow baseline for the chiral magnetic effect in isobar collisions at RHIC. In Proceedings of the 20th International Conference on Strangeness in Quark Matter 2022, Busan, Republic of Korea, 13–17 June 2022. [Google Scholar]
- Tribedy, P. STAR Hightlights. In Proceedings of the 29th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, Krakow, Poland, 4–10 April 2022. [Google Scholar]
- Wang, F. CME–Experimental Results and Interpretation. In Proceedings of the 29th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, Krakow, Poland, 4–10 April 2022. [Google Scholar]
- Xu, H.-J.; Zhao, J.; Wang, X.-B.; Li, H.-L.; Lin, Z.-W.; Shen, C.-W.; Wang, F.-Q. Varying the chiral magnetic effect relative to flow in a single nucleus-nucleus collision. Chin. Phys. 2018, C42, 084103. [Google Scholar] [CrossRef]
- Voloshin, S.A. Estimate of the signal from the chiral magnetic effect in heavy-ion collisions from measurements relative to the participant and spectator flow planes. Phys. Rev. 2018, C98, 054911. [Google Scholar] [CrossRef]
- Abdallah, M.S.; Adam, J.; Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, I.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; et al. Search for the Chiral Magnetic Effect via Charge-Dependent Azimuthal Correlations Relative to Spectator and Participant Planes in Au+Au Collisions at = 200 GeV. Phys. Rev. Lett. 2022, 128, 092301. [Google Scholar] [CrossRef]
- Feng, Y.; Lin, Y.; Zhao, J.; Wang, F. Revisit the chiral magnetic effect expectation in isobaric collisions at the relativistic heavy ion collider. Phys. Lett. B 2021, 820, 136549. [Google Scholar] [CrossRef]
- Anticic, T.; Baatar, B.; Bartke, J.; Beck, H.; Betev, L.; Białkowska, H.; Blume, C.; Bogusz, M.; Boimska, B.; Book, J.; et al. Critical fluctuations of the proton density in A+A collisions at 158A GeV. Eur. Phys. J. C 2015, 75, 587. [Google Scholar] [CrossRef]
- Czopowicz, T. Search for critical point via intermittency analysis in NA61/SHINE. PoS 2022, 400, 039. [Google Scholar] [CrossRef]
- Aggarwal, M.M.; Ahammed, Z.; Alakhverdyants, A.V.; Alekseev, I.; Alford, J.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Balewski, J.; Barnby, L.S.; et al. Higher Moments of Net-proton Multiplicity Distributions at RHIC. Phys. Rev. Lett. 2010, 105, 022302. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C.D.; Aparin, A.; Arkhipkin, D.; et al. Energy Dependence of Moments of Net-proton Multiplicity Distributions at RHIC. Phys. Rev. Lett. 2014, 112, 032302. [Google Scholar] [CrossRef] [PubMed]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C.D.; Aparin, A.; Arkhipkin, D.; et al. Beam energy dependence of moments of the net-charge multiplicity distributions in Au+Au collisions at RHIC. Phys. Rev. Lett. 2014, 113, 092301. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adams, J.; Adkins, J.; Agakishiev, G.; Aggarwal, M.; Ahammed, Z.; Ajitanand, N.; Alekseev, I.; Anderson, D.; Aoyama, R.; et al. Collision Energy Dependence of Moments of Net-Kaon Multiplicity Distributions at RHIC. Phys. Lett. B 2018, 785, 551–560. [Google Scholar] [CrossRef]
- Adam, J.; Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Anderson, D.M.; Aparin, A.; et al. Nonmonotonic Energy Dependence of Net-Proton Number Fluctuations. Phys. Rev. Lett. 2021, 126, 092301. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.S.; Adam, J.; Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, I.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; et al. Cumulants and correlation functions of net-proton, proton, and antiproton multiplicity distributions in Au+Au collisions at energies available at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 2021, 104, 024902. [Google Scholar] [CrossRef]
- Abdallah, M.S.; Adam, J.; Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, I.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; et al. Measurement of the sixth-order cumulant of net-proton multiplicity distributions in Au+Au collisions at = 27, 54.4, and 200 GeV at RHIC. Phys. Rev. Lett. 2021, 127, 262301. [Google Scholar] [CrossRef]
- Abdallah, M.S.; Aboona, B.E.; Adam, J.; Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, I.; Aggarwal, M.M.; Ahammed, Z.; et al. Measurements of Proton High Order Cumulants in = 3 GeV Au+Au Collisions and Implications for the QCD Critical Point. Phys. Rev. Lett. 2022, 128, 202303. [Google Scholar] [CrossRef]
- Beam Energy Dependence of Triton Production and Yield Ratio (Nt × Np/) in Au+Au Collisions at RHIC. arXiv 2022, arXiv:2209.08058.
- Beam Energy Dependence of Fifth and Sixth-Order Net-proton Number Fluctuations in Au+Au Collisions at RHIC. arXiv 2022, arXiv:2207.09837.
- Stephanov, M.A. QCD phase diagram: An Overview. PoS 2006, LAT2006, 024. [Google Scholar] [CrossRef]
- Fukushima, K.; Hatsuda, T. The phase diagram of dense QCD. Rept. Prog. Phys. 2011, 74, 014001. [Google Scholar] [CrossRef]
- Stephanov, M.A. On the sign of kurtosis near the QCD critical point. Phys. Rev. Lett. 2011, 107, 052301. [Google Scholar] [CrossRef] [PubMed]
- Stephanov, M.; Yin, Y. Hydrodynamics with parametric slowing down and fluctuations near the critical point. Phys. Rev. D 2018, 98, 036006. [Google Scholar] [CrossRef]
- Bazavov, A.; Ding, H.T.; Hegde, P.; Kaczmarek, O.; Karsch, F.; Laermann, E.; Maezawa, Y.; Mukherjee, S.; Ohno, H.; Wagner, M.; et al. The QCD Equation of State to from Lattice QCD. Phys. Rev. D 2017, 95, 054504. [Google Scholar] [CrossRef] [Green Version]
- Fu, W.J.; Pawlowski, J.M.; Rennecke, F. QCD phase structure at finite temperature and density. Phys. Rev. D 2020, 101, 054032. [Google Scholar] [CrossRef]
- Fu, W.j.; Luo, X.; Pawlowski, J.M.; Rennecke, F.; Wen, R.; Yin, S. Hyper-order baryon number fluctuations at finite temperature and density. Phys. Rev. D 2021, 104, 094047. [Google Scholar] [CrossRef]
- Bzdak, A.; Esumi, S.; Koch, V.; Liao, J.; Stephanov, M.; Xu, N. Mapping the Phases of Quantum Chromodynamics with Beam Energy Scan. Phys. Rept. 2020, 853, 1–87. [Google Scholar] [CrossRef]
- Bazavov, A.; Bollweg, D.; Ding, H.-T.; Enns, P.; Goswami, J.; Hegde, P.; Kaczmarek, O.; Karsch, F.; Larsen, R.; Mukherjee, S.; et al. Skewness, kurtosis, and the fifth and sixth order cumulants of net baryon-number distributions from lattice QCD confront high-statistics STAR data. Phys. Rev. D 2020, 101, 074502. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Q.; Xu, N.; Zhuang, P. (Eds.) Properties of QCD Matter at High Baryon Density; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Gavai, R.V.; Gupta, S. The Critical end point of QCD. Phys. Rev. D 2005, 71, 114014. [Google Scholar] [CrossRef]
- Cheng, M.; Hegde, P.; Jung, C.; Karsch, F.; Kaczmarek, O.; Laermann, E.; Mawhinney, R.D.; Miao, C.; Petreczky, P.; Schmidt, C.; et al. Baryon Number, Strangeness and Electric Charge Fluctuations in QCD at High Temperature. Phys. Rev. D 2009, 79, 074505. [Google Scholar] [CrossRef]
- Gavai, R.V.; Gupta, S. Lattice QCD predictions for shapes of event distributions along the freezeout curve in heavy-ion collisions. Phys. Lett. B 2011, 696, 459–463. [Google Scholar] [CrossRef]
- Bazavov, A.; Ding, H.-T.; Hegde, P.; Kaczmarek, O.; Karsch, F.; Laermann, E.; Mukherjee, S.; Petreczky, P.; Schmidt, C.; Smith, D.; et al. Freeze-out Conditions in Heavy Ion Collisions from QCD Thermodynamics. Phys. Rev. Lett. 2012, 109, 192302. [Google Scholar] [CrossRef]
- Borsanyi, S.; Fodor, Z.; Katz, S.; Krieg, S.; Ratti, C.; Szabo, K.K. Freeze-out parameters from electric charge and baryon number fluctuations: Is there consistency? Phys. Rev. Lett. 2014, 113, 052301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellwied, R.; Borsanyi, S.; Fodor, Z.; Katz, S.D.; Ratti, C. Is there a flavor hierarchy in the deconfinement transition of QCD? Phys. Rev. Lett. 2013, 111, 202302. [Google Scholar] [CrossRef]
- Adamczewski-Musch, J.; Arnold, O.; Behnke, C.; Belounnas, A.; Belyaev, A.; Berger-Chen, J.C.; Blanco, A.; Blume, C.; Böhmer, M.; Bordalo, P.; et al. Proton-number fluctuations in = 2.4 GeV Au + Au collisions studied with the High-Acceptance DiElectron Spectrometer (HADES). Phys. Rev. C 2020, 102, 024914. [Google Scholar] [CrossRef]
- Bass, S.; Belkacem, M.; Bleicher, M.; Brandstetter, M.; Bravina, L.; Ernst, C.; Gerland, L.; Hofmann, M.; Konopka, J.; Mao, G.; et al. Microscopic models for ultrarelativistic heavy ion collisions. Prog. Part. Nucl. Phys. 1998, 41, 255–369. [Google Scholar] [CrossRef]
- Bleicher, M.; Zabrodin, E.; Spieles, C.; Bass, S.A.; Ernst, C.; Soff, S.; Bravina, L.; Belkacem, M.; Weber, H.; Stöcker, H.; et al. Relativistic hadron hadron collisions in the ultrarelativistic quantum molecular dynamics model. J. Phys. G 1999, 25, 1859–1896. [Google Scholar] [CrossRef]
- Braun-Munzinger, P.; Friman, B.; Redlich, K.; Rustamov, A.; Stachel, J. Relativistic nuclear collisions: Establishing a non-critical baseline for fluctuation measurements. Nucl. Phys. A 2021, 1008, 122141. [Google Scholar] [CrossRef]
- Vovchenko, V.; Koch, V.; Shen, C. Proton number cumulants and correlation functions in Au-Au collisions at sNN = 7.7–200 GeV from hydrodynamics. Phys. Rev. C 2022, 105, 014904. [Google Scholar] [CrossRef]
- Abdallah, M.; Xu, Z. Higher-Order Cumulants and Correlation Functions of Proton Multiplicity Distributions in = 3 GeV Au+Au Collisions at the STAR Experiment. arXiv 2022, arXiv:2209.11940. [Google Scholar]
- Almaalol, D.; Hippert, M.; Noronha-Hostler, J.; Noronha, J.; Speranza, E.; Basar, G.; Bass, S.; Cebra, D.; Dexheimer, V.; Shen, C.; et al. QCD Phase Structure and Interactions at High Baryon Density: Completion of BES Physics Program with CBM at FAIR. arXiv 2022, arXiv:2209.05009. [Google Scholar]
- Sorensen, A.; Oliinychenko, D.; Koch, V.; McLerran, L. Speed of Sound and Baryon Cumulants in Heavy-Ion Collisions. Phys. Rev. Lett. 2021, 127, 042303. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Mallick, D.; Mishra, D.K.; Mohanty, B.; Xu, N. Limits of thermalization in relativistic heavy ion collisions. Phys. Lett. B 2022, 829, 137021. [Google Scholar] [CrossRef]
- Andronic, A.; Braun-Munzinger, P.; Redlich, K.; Stachel, J. Decoding the phase structure of QCD via particle production at high energy. Nature 2018, 561, 321–330. [Google Scholar] [CrossRef]
- Gupta, S.; Luo, X.; Mohanty, B.; Ritter, H.G.; Xu, N. Scale for the Phase Diagram of Quantum Chromodynamics. Science 2011, 332, 1525–1528. [Google Scholar] [CrossRef] [Green Version]
- Bzdak, A.; Koch, V.; Skokov, V. Baryon number conservation and the cumulants of the net proton distribution. Phys. Rev. C 2013, 87, 014901. [Google Scholar] [CrossRef]
- The STAR Collaboration. Studying the Phase Diagram of QCD Matter at RHIC—A STAR Whitepaper for BES-II. 2014. Available online: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598 (accessed on 1 February 2023).
- Rafelski, J.; Muller, B. Strangeness Production in the Quark - Gluon Plasma. Phys. Rev. Lett. 1982, 48, 1066, Erratum in Phys. Rev. Lett. 1986, 56, 2334. [Google Scholar] [CrossRef]
- Koch, P.; Müller, B.; Rafelski, J. Strangeness in relativistic heavy ion collisions. Phys. Rep. 1986, 142, 167–262. [Google Scholar] [CrossRef]
- Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; et al. Particle-Type Dependence of Azimuthal Anisotropy and Nuclear Modification of Particle Production in Au+Au Collisions at = 200 GeV. Phys. Rev. Lett. 2004, 92, 052302. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; Bai, Y.; Balewski, J.; et al. Multistrange Baryon Elliptic Flow in Au + Au Collisions at = 200 GeV. Phys. Rev. Lett. 2005, 95, 122301. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Jin, F.; Gangadharan, D.; Cai, X.Z.; Huang, H.Z.; Ma, Y.G. Parton distributions at hadronization from bulk dense matter produced in Au + Au collisions at = 200 GeV. Phys. Rev. C 2008, 78, 034907. [Google Scholar] [CrossRef]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E.C.; Attri, A.; et al. Probing parton dynamics of QCD matter with Ω and ϕ production. Phys. Rev. C 2016, 93, 021903. [Google Scholar] [CrossRef]
- Adam, J.; Adamczyk, L.; Adams, J.R.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Anderson, D.M.; Aoyama, R.; et al. Strange hadron production in Au + Au collisions at = 7.7, 11.5, 19.6, 27, and 39 GeV. Phys. Rev. C 2020, 102, 034909. [Google Scholar] [CrossRef]
- Wu, X. Baryon Number Transport, Strangeness Conservation and Ω-hadron Correlations. In Proceedings of the 20th International Conference on Strangeness in Quark Matter, Busan, Republic of Korea, 13–17 June 2022. [Google Scholar]
- Adamczyk, L.; Adkins, J.K.; Agakishiev, G.; Aggarwal, M.M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C.D.; Aparin, A.; Arkhipkin, D.; et al. ΛΛ Correlation Function in Au + Au Collisions at = 200 GeV. Phys. Rev. Lett. 2015, 114, 022301. [Google Scholar] [CrossRef] [PubMed]
- Iritani, T.; Aoki, S.; Doi, T.; Etminan, F.; Gongyo, S.; Hatsuda, T.; Ikeda, Y.; Inoue, T.; Ishii, N.; Miyamoto, T.; et al. NΩ dibaryon from lattice QCD near the physical point. Phys. Lett. B 2019, 792, 284–289. [Google Scholar] [CrossRef]
- Adam, J.; Adamczyk, L.; Adams, J.; Adkins, J.; Agakishiev, G.; Aggarwal, M.; Ahammed, Z.; Ajitanand, N.; Alekseev, I.; Anderson, D.; et al. The Proton-Ω correlation function in Au+Au collisions at = 200 GeV. Phys. Lett. B 2019, 790, 490–497. [Google Scholar] [CrossRef]
- Deb, S.; Rath, R.; Roy, A.; Sahoo, R. Unveiling the strong interaction among hadrons at the LHC. Nature 2020, 588, 232–238, Erratum in Nature 2021, 590, E13. [Google Scholar] [CrossRef]
- Andronic, A.; Braun-Munzinger, P.; Stachel, J.; Stocker, H. Production of light nuclei, hypernuclei and their antiparticles in relativistic nuclear collisions. Phys. Lett. B 2011, 697, 203–207. [Google Scholar] [CrossRef]
- Andronic, A.; Braun-Munzinger, P.; Stachel, J. Hadron production in central nucleus-nucleus collisions at chemical freeze-out. Nucl. Phys. A 2006, 772, 167–199. [Google Scholar] [CrossRef]
- Steinheimer, J.; Gudima, K.; Botvina, A.; Mishustin, I.; Bleicher, M.; Stöcker, H. Hypernuclei, dibaryon and antinuclei production in high energy heavy ion collisions: Thermal production versus Coalescence. Phys. Lett. B 2012, 714, 85–91. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, J.; Crawford, H.; Keane, D.; Ma, Y.; Xu, Z. Searching for onset of deconfinement via hypernuclei and baryon-strangeness correlations. Phys. Lett. B 2010, 684, 224–227. [Google Scholar] [CrossRef]
- Guo, Y.; Liao, J.; Wang, E.; Xing, H.; Zhang, H. Hyperon polarization from the vortical fluid in low-energy nuclear collisions. Phys. Rev. C 2021, 104, L041902. [Google Scholar] [CrossRef]
- Ivanov, Y.B. Global Λ polarization in moderately relativistic nuclear collisions. Phys. Rev. C 2021, 103, L031903. [Google Scholar] [CrossRef]
- Adam, J.; Adamová, D.; Aggarwal, M.; Rinella, G.A.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S.; Aimo, I.; Aiola, S.; et al. production in Pb-Pb collisions at = 2.76 TeV. Phys. Lett. B 2016, 754, 360–372. [Google Scholar] [CrossRef]
- Acharya, S.; Adamová, D.; Adhya, S.; Adler, A.; Adolfsson, J.; Aggarwal, M.; Rinella, G.A.; Agnello, M.; Agrawal, N.; Ahammed, Z.; et al. lifetime measurement in Pb-Pb collisions at = 5.02 TeV via two-body decay. Phys. Lett. B 2019, 797, 134905. [Google Scholar] [CrossRef]
- Gläßel, S.; Kireyeu, V.; Voronyuk, V.; Aichelin, J.; Blume, C.; Bratkovskaya, E.; Coci, G.; Kolesnikov, V.; Winn, M. Cluster and hypercluster production in relativistic heavy-ion collisions within the parton-hadron-quantum-molecular-dynamics approach. Phys. Rev. C 2022, 105, 014908. [Google Scholar] [CrossRef]
- Friedman, E.; Gal, A. ΛNN content of Λ-nucleus potential. EPJ Web Conf. 2022, 271, 06002. [Google Scholar] [CrossRef]
- Adams, J.; Aggarwal, M.; Ahammed, Z.; Amonett, J.; Anderson, B.; Arkhipkin, D.; Averichev, G.; Badyal, S.; Bai, Y.; Balewski, J.; et al. Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 2005, 757, 102–183. [Google Scholar] [CrossRef]
- Luo, X.; Xu, N. Search for the QCD Critical Point with Fluctuations of Conserved Quantities in Relativistic Heavy-Ion Collisions at RHIC: An Overview. Nucl. Sci. Tech. 2017, 28, 112. [Google Scholar] [CrossRef]
- Cleymans, J.; Oeschler, H.; Redlich, K.; Wheaton, S. Comparison of chemical freeze-out criteria in heavy-ion collisions. Phys. Rev. C 2006, 73, 034905. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.Z.; Liu, F.; Luo, X.; Shi, S.; Wang, F.; Xu, N. Collective Excitation in High-Energy Nuclear Collisions—In Memory of Professor Lianshou Liu. Symmetry 2023, 15, 499. https://doi.org/10.3390/sym15020499
Huang HZ, Liu F, Luo X, Shi S, Wang F, Xu N. Collective Excitation in High-Energy Nuclear Collisions—In Memory of Professor Lianshou Liu. Symmetry. 2023; 15(2):499. https://doi.org/10.3390/sym15020499
Chicago/Turabian StyleHuang, Huan Zhong, Feng Liu, Xiaofeng Luo, Shusu Shi, Fuqiang Wang, and Nu Xu. 2023. "Collective Excitation in High-Energy Nuclear Collisions—In Memory of Professor Lianshou Liu" Symmetry 15, no. 2: 499. https://doi.org/10.3390/sym15020499
APA StyleHuang, H. Z., Liu, F., Luo, X., Shi, S., Wang, F., & Xu, N. (2023). Collective Excitation in High-Energy Nuclear Collisions—In Memory of Professor Lianshou Liu. Symmetry, 15(2), 499. https://doi.org/10.3390/sym15020499