Blow-Up Criterion and Persistence Property to a Generalized Camassa–Holm Equation
Abstract
:1. Introduction
2. Blow-Up Criterion
3. Analytical Solutions
4. Persistence Property
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novikov, V. Generalizations of the Camassa–Holm equation. J. Phys. A 2009, 42, 342002. [Google Scholar] [CrossRef]
- Fokas, A.; Fuchssteiner, B. Symplectic structures, their Baklund transformations and hereditary symmetries. Phys. D Nonlinear Phenom. 1981, 4, 47–66. [Google Scholar]
- Camassa, R.; Holm, D. An integrable shallow water wave equation with peaked solitons. Phys. Rev. Lett. 1993, 71, 1661–1664. [Google Scholar] [CrossRef] [PubMed]
- Constantin, A.; Escher, J. Wave-breaking for nonlinear nonlocal shallow water equations. Acta Math. 1998, 181, 229–243. [Google Scholar] [CrossRef]
- Danchin, R. A note on well-posedness for Camassa–Holm equation. J. Differ. Equ. 2003, 192, 429–444. [Google Scholar] [CrossRef]
- Fu, Y.P.; Guo, B.L. Time periodic solution of the viscous Camassa–Holm equation. J. Math. Anal. Appl. 2006, 313, 311–321. [Google Scholar] [CrossRef]
- Guo, Z.; Jiang, M.; Wang, Z.; Zheng, G. Global weak solutions to the Camassa–Holm equation. Discrete Contin. Dyn. Syst. 2008, 21, 883–906. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Y. Several Dynamic Properties for the gkCH Equation. Symmetry 2022, 14, 1772. [Google Scholar] [CrossRef]
- Hakkaev, S.; Kirchev, K. Local well-posedness and orbital stability of solitary wave solutions for the generalized Camassa–Holm equation. Comm. Partial Differ. Equ. 2005, 30, 761–781. [Google Scholar] [CrossRef]
- Lai, S.; Wu, Y. The local well-posedness and existence of weak solutions for a generalized Camassa–Holm equation. J. Differ. Equ. 2010, 248, 2038–2063. [Google Scholar] [CrossRef]
- Constantin, A.; Molinet, L. Global Weak Solutions for a Shallow Water Equation. Commun. Math. Phys. 2000, 211, 45–61. [Google Scholar] [CrossRef]
- Degasperis, A.; Holm, D.D.; Hone, A.N.W. A new integrable equation with peakon solution. Theor. Math. Phys. 2002, 133, 1463–1474. [Google Scholar] [CrossRef]
- Yin, Z. On the Cauchy problem for an integrable equation with peakon solutions. Ill. J. Math. 2003, 47, 649–666. [Google Scholar] [CrossRef]
- Yin, Z. Global existence for a new periodic integrable equation. J. Math. Anal. Appl. 2003, 283, 129–139. [Google Scholar] [CrossRef]
- Lenells, J. Traveling wave solutions of the Degasperis–Procesi eqaution. J. Math. Anal. Appl. 2005, 306, 72–82. [Google Scholar] [CrossRef]
- Matsuno, Y. Multisolution solutions of Degasperis–Procesi equation and their peakon limit. Inverse Probl. 2005, 21, 1553–1570. [Google Scholar] [CrossRef]
- Escher, J.; Liu, Y.; Yin, Z. Shock waves and blow-up phenomena for the periodic Degasperis–Procesi equation. Indiana Univ. Math. J. 2007, 56, 87–117. [Google Scholar] [CrossRef]
- Coclite, G.M.; Holden, H.; Karlsen, K.H. Well-posedness of a parabolic-elliptic system. Discret. Contin. Dyn. Syst. 2005, 13, 659–682. [Google Scholar] [CrossRef]
- Coclite, G.M.; Karlsen, K.H. Periodic solutions of the Degasperis–Procesi eqution: Well-posedness and asymptotics. J. Funct. Anal. 2015, 268, 1053–1077. [Google Scholar] [CrossRef]
- Coclite, G.M.; Karlsen, K.H. On the well-posedness of the Degasperis–Procesi equations. J. Funct. Anal. 2006, 233, 60–91. [Google Scholar] [CrossRef]
- Lundmark, H. Formation and dynamics of shock waves in the Degasperis–Procesi equation. J. Nonlinear Sci. 2007, 17, 169–198. [Google Scholar] [CrossRef]
- Chen, R.M.; Guo, F.; Liu, Y.; Qu, C.Z. Analysis on the blow-up of solutions to a class of integrable peakon equations. J. Funct. Anal. 2016, 270, 2343–2374. [Google Scholar] [CrossRef]
- Fuchssteiner, B. Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa–Holm equation. Phys. D Nonlinear Phenom. 1996, 95, 229–243. [Google Scholar] [CrossRef]
- Zhou, Y. Blow-up phenomenon for the integrable Degasperis–Procesi equation. Phys. Lett. A 2004, 328, 157–162. [Google Scholar] [CrossRef]
- Guo, Z.; Ni, L. Wave breaking for the periodic weakly dissipative Dullin-Gottwald-Holm equation. Nonlinear Anal. 2011, 74, 965–973. [Google Scholar] [CrossRef]
- Henry, D. Infinite propagation speed for Degasperis–Procesi equation. J. Math. Anal. Appl. 2005, 311, 755–759. [Google Scholar] [CrossRef]
- Himonas, A.; Misiolek, G.; Ponce, G.; Zhou, Y. Persistence properties and unique continuation of solution of the Camassa–Holm equation. Commun. Math. Phys. 2007, 271, 511–522. [Google Scholar] [CrossRef]
- Li, J.; Yin, Z. Well-poseness and global existence for a generalized Degasperis–Procesi equation. Nonlinear Anal. RWA 2016, 28, 72–92. [Google Scholar] [CrossRef]
- Mi, Y.S.; Liu, Y.; Guo, B.L.; Luo, T. The Cauchy problem for a generalized Camassa–Holm equation. J. Differ. Equ. 2019, 266, 6739–6770. [Google Scholar] [CrossRef]
- Kumar, K.H.; Jiwari, R.R. A note on numerical solution of classical Darboux problem. Math. Methods Appl. Sci. 2021, 44, 12998–13007. [Google Scholar] [CrossRef]
- Kumar, S.; Jiwari, R.; Mittal, R.C. Radial basis functions based meshfree schemes for the simulation of non-linear extended Fisher-Kolmogorov model. Wave Motion 2022, 109, 102863. [Google Scholar] [CrossRef]
- Pandit, S. Local radial basis functions and scale-3 Haar wavelets operational matrices based numerical algorithms for generalized regularized long wave model. Wave Motion 2022, 109, 102846. [Google Scholar] [CrossRef]
- Ma, Y.K.; Raja, M.M.; Vijayakumar, V.; Shukla, A.; Nisar, K.S. Results on controllability for Sobolev type fractional differential equations of order 1 < r < 2 with finite delay. AIMS Math. 2022, 7, 10215–10233. [Google Scholar]
- Ma, Y.K.; Raja, M.M.; Vijayakumar, V.; Shukla, A.; Nisar, K.S. Existence and continuous dependence results for fractional evolution integrodifferential equations of order r ∈ (1,2). Alex. Eng. J. 2022, 61, 9929–9939. [Google Scholar] [CrossRef]
- Raja, M.M.; Vijayakumar, V. Existence results for Caputo fractional mixed Volterra-Fredholm-type integrodifferential inclusions of order r ∈ (1,2) with sectorial operators. Chaos Solitons Fractals 2022, 159, 112127. [Google Scholar] [CrossRef]
- Guo, Y.X. On weak solutions to a generalized Camassa–Holm equation with solitary wave. Bound. Value Probl. 2020, 2020, 15. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Guo, Y. Blow-Up Criterion and Persistence Property to a Generalized Camassa–Holm Equation. Symmetry 2023, 15, 493. https://doi.org/10.3390/sym15020493
Wang Y, Guo Y. Blow-Up Criterion and Persistence Property to a Generalized Camassa–Holm Equation. Symmetry. 2023; 15(2):493. https://doi.org/10.3390/sym15020493
Chicago/Turabian StyleWang, Ying, and Yunxi Guo. 2023. "Blow-Up Criterion and Persistence Property to a Generalized Camassa–Holm Equation" Symmetry 15, no. 2: 493. https://doi.org/10.3390/sym15020493
APA StyleWang, Y., & Guo, Y. (2023). Blow-Up Criterion and Persistence Property to a Generalized Camassa–Holm Equation. Symmetry, 15(2), 493. https://doi.org/10.3390/sym15020493