# Coherent Plasma in a Lattice

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Hamiltonian

## 3. Selection of the Quantum State for the Electromagnetic Field

## 4. Effective Hamiltonian

## 5. Lower Bound of the Energy Gap for the Coherent Phase

## 6. Second-Order Perturbation Theory for Composite Coherent States

- ${}_{n}\langle \sigma ,\alpha ,\mathcal{A}|{\sigma}^{\prime},\alpha ,\mathcal{A}\rangle {}_{{n}^{\prime}}={\delta}_{\sigma {\sigma}^{\prime}}{\delta}_{n{n}^{\prime}}$
- The expectation value of ${H}_{\mathrm{int}}$ (Equation (19)) on the states ${|\sigma ,\alpha ,\mathcal{A}\rangle}_{n}$ (see Appendix C) is provided by$${}_{n}\langle \sigma ,\alpha ,\mathcal{A}|{H}_{\mathrm{int}}|{\sigma}^{\prime},\alpha ,\mathcal{A}\rangle {}_{{n}^{\prime}}=-{\omega}_{p}\sqrt{\frac{8\pi}{3}}\left|\alpha \mathcal{A}\right|\frac{\sigma}{{R}^{2}}{\delta}_{\sigma {\sigma}^{\prime}}{\delta}_{n{n}^{\prime}}$$
- The expectation value of the unperturbed Hamiltonian (see Appendix C) is$$\langle \sigma ,\alpha ,\mathcal{A}|H+{\widehat{H}}_{\mathrm{photon}}|\sigma ,\alpha ,\mathcal{A}\rangle ={\omega}^{\prime}\left[N\left(\sigma \frac{{\left|\alpha \right|}^{2}}{{R}^{2}}+\frac{3}{2}+{\left|\mathcal{A}\right|}^{2}\frac{\sigma}{{R}^{2}}\right)+\frac{3}{2}\right]$$

## 7. The Second-Order Contribution

## 8. Spatial Dimension of the Coherent States and Concept of Natural Resonating Cavity

## 9. Discussion

## 10. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Appendix A. The Jellium Crystal

## Appendix B. Renormalization of the Photon Field

## Appendix C. Detailed Calculation of the Expectation Values of the States${|\sigma ,\alpha ,\mathcal{A}\rangle}_{n}$

## Appendix D. Estimate of the Numerical Value of the Energy Gap

## Appendix E. Calculation of $\langle \mathrm{\Omega}|\delta \widehat{\overrightarrow{A}}(\overrightarrow{x},t)|\mathrm{\Omega}\rangle $

## References

- Rokaj, V.; Welakuh, D.; Ruggenthaler, M.; Rubio, A. Light–matter interaction in the long-wavelength limit: No ground-state without dipole self-energy. J. Phys. B At. Mol. Opt. Phys.
**2018**, 51, 034005. [Google Scholar] [CrossRef] - Andolina, G.; Pellegrino, F.; Giovannetti, V.; MacDonald, A.; Polini, M. Cavity quantum electrodynamics of strongly correlated electron systems: A no-go theorem for photon condensation. Phys. Rev. B
**2019**, 100, 121109. [Google Scholar] [CrossRef] - Andolina, G.; Pellegrino, F.; Giovannetti, V.; MacDonald, A.; Polini, M. Theory of photon condensation in a spatially varying electromagnetic field. Phys. Rev. B
**2020**, 102, 125137. [Google Scholar] [CrossRef] - Ashida, Y.; İmamoğlu, A.; Faist, J.; Jaksch, D.; Cavalleri, A.; Demler, E. Quantum electrodynamic control of matter: Cavity-enhanced ferroelectric phase transition. Phys. Rev. X
**2020**, 10, 041027. [Google Scholar] [CrossRef] - Guerci, D.; Simon, P.; Mora, C. Superradiant phase transition in electronic systems and emergent topological phases. Phys. Rev. Lett.
**2020**, 125, 257604. [Google Scholar] [CrossRef] - Stokes, A.; Nazir, A. Uniqueness of the phase transition in many-dipole cavity quantum electrodynamical systems. Phys. Rev. Lett.
**2020**, 125, 143603. [Google Scholar] [CrossRef] - Mivehvar, F.; Piazza, F.; Donner, T.; Ritsch, H. Cavity QED with quantum gases: New paradigms in many-body physics. Adv. Phys.
**2021**, 70, 1–153. [Google Scholar] [CrossRef] - Román-Roche, J.; Luis, F.; Zueco, D. Photon condensation and enhanced magnetism in cavity QED. Phys. Rev. Lett.
**2021**, 127, 167201. [Google Scholar] [CrossRef] - Rokaj, V.; Ruggenthaler, M.; Eich, F.; Rubio, A. Free electron gas in cavity quantum electrodynamics. Phys. Rev. Res.
**2022**, 4, 013012. [Google Scholar] [CrossRef] - Nataf, P.; Ciuti, C. No-go theorem for superradiant quantum phase transitions in cavity QED and counter-example in circuit QED. Nat. Commun.
**2010**, 1, 510–532. [Google Scholar] [CrossRef] [Green Version] - Le Boité, A. Theoretical methods for ultrastrong light–matter interactions. Adv. Quantum Technol.
**2020**, 3, 1900140. [Google Scholar] [CrossRef] - Ashida, Y.; İmamoğlu, A.; Demler, E. Cavity quantum electrodynamics at arbitrary light-matter coupling strengths. Phys. Rev. Lett.
**2021**, 126, 153603. [Google Scholar] [CrossRef] - Schlawin, F.; Kennes, D.M.; Sentef, M.A. Cavity quantum materials. Appl. Phys. Rev.
**2022**, 9, 011312. [Google Scholar] [CrossRef] - Savvidy, G. Infrared instability of the vacuum state of gauge theories and asymptotic freedom. Phys. Lett. B
**1977**, 71, 133–134. [Google Scholar] [CrossRef] - Lauscher, O.; Reuter, M.; Wetterich, C. Rotation symmetry breaking condensate in a scalar theory. Phys. Rev. D
**2000**, 62, 125021. [Google Scholar] [CrossRef] - Branchina, V.; Mohrbach, H.; Polonyi, J. Antiferromagnetic φ4 model. I. The mean-field solution. Phys. Rev. D
**1999**, 60, 045006. [Google Scholar] [CrossRef] - Modanese, G. Stability issues in Euclidean quantum gravity. Phys. Rev. D
**1998**, 59, 024004. [Google Scholar] [CrossRef] - Bonanno, A.; Reuter, M. Modulated ground state of gravity theories with stabilized conformal factor. Phys. Rev. D
**2013**, 87, 084019. [Google Scholar] [CrossRef] - Bonanno, A. On the Structure of the Vacuum in Quantum Gravity: A View from the Asymptotic Safety Scenario. Universe
**2019**, 5, 182. [Google Scholar] [CrossRef] - Modanese, G. Quantum metrics with very low action in R+R2 gravity. Phys. Rev. D
**2021**, 103, 106020. [Google Scholar] [CrossRef] - Chernodub, M.N.; Ferreiros, Y.; Grushin, A.G.; Landsteiner, K.; Vozmediano, M.A. Thermal transport, geometry, and anomalies. Phys. Rep.
**2022**, 977, 1–58. [Google Scholar] [CrossRef] - Burns, R. Mineralogical Applications of Crystal Field Theory; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Faisal, F. Theory of Multiphoton Processes; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Wang, Y.; Liu, Z.K.; Chen, L.Q. Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations. Acta Mater.
**2004**, 52, 2665–2671. [Google Scholar] [CrossRef] - Preparata, G. QED Coherence in Matter; World Scientific: Singapore, 1995. [Google Scholar]
- Frisk Kockum, A.; Miranowicz, A.; De Liberato, S.; Savasta, S.; Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys.
**2019**, 1, 19–40. [Google Scholar] [CrossRef] - Morse, P.; Feshbach, H. Methods of Theoretical Physics; McGraw-Hill Book Company Inc.: New York, NY, USA, 1953; Volume II, p. 999. [Google Scholar]
- Messiah, A. Quantum Mechanics; Courier Corporation: Chelmsford, MA, USA, 2014. [Google Scholar]
- Byrnes, T.; Kim, N.; Yamamoto, Y. Exciton–polariton condensates. Nat. Phys.
**2014**, 10, 803–813. [Google Scholar] [CrossRef] - Keeling, J.; Kéna-Cohen, S. Bose–Einstein condensation of exciton-polaritons in organic microcavities. Annu. Rev. Phys. Chem.
**2020**, 71, 435–459. [Google Scholar] [CrossRef] - McGhee, K.; Putintsev, A.; Jayaprakash, R.; Georgiou, K.; O’Kane, M.; Kilbride, R.; Cassella, E.; Cavazzini, M.; Sannikov, D.; Lagoudakis, P.; et al. Polariton condensation in an organic microcavity utilising a hybrid metal-DBR mirror. Sci. Rep.
**2021**, 11, 20879. [Google Scholar] [CrossRef] - Tilley, D.; Tilley, J. Superfluidity and Superconductivity; Routledge: London, UK, 2019. [Google Scholar]
- del Giudice, E.; Galimberti, A.; Gamberale, L.; Preparata, G. Electrodynamical coherence in water: A possible origin of the tetrahedral coordination. Mod. Phys. Lett. B
**1995**, 9, 953–961. [Google Scholar] [CrossRef] - Bono, I.; Del Giudice, E.; Gamberale, L.; Henry, M. Emergence of the Coherent Structure of Liquid Water. Water
**2012**, 4, 510–532. [Google Scholar] [CrossRef] - Hughes, R. Theoretical practice: The Bohm-Pines quartet. Perspect. Sci.
**2006**, 14, 457–524. [Google Scholar] [CrossRef]

**Figure 1.**Periodic harmonic potential in the 1—direction with square modulus of the wave functions of the oscillators in their ground state (

**left**) and elongated by $\xi $ due to their coherent oscillation (

**right**).

**Figure 2.**Normalized energy profile ${j}_{0}^{2}\left(\pi \frac{r}{{r}_{CD}}\right)$ as a function of the normalized radius of the coherence domain.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gamberale, L.; Modanese, G.
Coherent Plasma in a Lattice. *Symmetry* **2023**, *15*, 454.
https://doi.org/10.3390/sym15020454

**AMA Style**

Gamberale L, Modanese G.
Coherent Plasma in a Lattice. *Symmetry*. 2023; 15(2):454.
https://doi.org/10.3390/sym15020454

**Chicago/Turabian Style**

Gamberale, Luca, and Giovanni Modanese.
2023. "Coherent Plasma in a Lattice" *Symmetry* 15, no. 2: 454.
https://doi.org/10.3390/sym15020454