Genuine q-Stancu-Bernstein–Durrmeyer Operators
Abstract
:1. Introduction
2. Operators and Estimation of Their Moments
3. Convergence of Genuine q-Stancu-Bernstein-Durrmeyer Operators
4. Approximation Properties of q-Stancu-Bernstein–Durrmeyer Operators
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stancu, D.D. Approximation of functions by a new class of linear polynomial operators. Rev. Roum. Math. Pures Appl. 1968, 13, 1173–1194. [Google Scholar]
- Lupas, L.; Lupas, A. Polynomials of binomial type and approximation operators. Studia Univ. Babes-Bolyai Math. 1987, 32, 61–69. [Google Scholar]
- Nowak, G. Approximation properties for generalized q-Bernstein polynomials. J. Math. Anal. Appl. 2009, 350, 50–55. [Google Scholar] [CrossRef]
- Phillips, G.M. Bernstein polynomials based on the q-integers. Ann. Numer. Math. 1997, 4, 511–518. [Google Scholar]
- Durrmeyer, J.L. Une formule d inversion de la Transformee Laplace, Applications a la Theorie des Moments. Ph.D. Thesis, Faculte des Sciences de I Universite de Paris, Paris, France, 1967. [Google Scholar]
- Agrawal, P.N.; Gupta, V. Simultaneous approximation by linear combination of modified Bernstein polynomials. Bull. Greek Math. Soc. 1989, 39, 29–43. [Google Scholar]
- Gupta, V.; Agarwal, R.P.; Verma, D.K. Approximation for a new sequence of summation-integral type operators. Adv. Math. Sci. Appl. 2013, 23, 35–42. [Google Scholar]
- Gupta, V.; Rassias, T.M. Direct estimates for certain Szasz type operators. Appl. Math. Comput. 2015, 251, 469–474. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Finta, Z.; Gupta, V. Direct results for a certain family of summation-integral type operators. Appl. Math. Comput. 2007, 190, 449–457. [Google Scholar] [CrossRef]
- Chen, W. On the modified Bernstein-Durrmeyer operator. In Proceedings of the Report of the Fifth Chinese Conference on Approximation Theory, Zhenzhou, China, 1987. [Google Scholar]
- Goodman, T.N.T.; Sharma, A. A Bernstein type operator on the simplex. Math. Balk. 1991, 5, 129–145. [Google Scholar]
- Parvanov, P.E.; Popov, B.D. The limit case of Bernstein’s operators with Jacobi-weights. Math. Balk. 1994, 8, 165–177. [Google Scholar]
- Gonska, H.; Kacşo, D.; Raşa, I. On Genuine Bernstein–Durrmeyer Operators. Result Math. 2007, 50, 213–225. [Google Scholar]
- Gupta, V. Some approximation properties of q-Durrmeyer operators. Appl. Math. Comput. 2008, 197, 172–178. [Google Scholar] [CrossRef]
- Gupta, V.; Heping, W. The rate of convergence of q-Durrmeyer operators for 0 < q < 1. Math. Methods Appl. Sci. 2008, 31, 1946–1955. [Google Scholar]
- Mahmudov, N.I.; Sabancigil, P. On Genuine q-Bernstein–Durrmeyer Operators. Publ. Math. Debrecen 2010, 76, 221–229. [Google Scholar] [CrossRef]
- Neer, T.; Agrawal, P.N.; Aracı, S. Stancu-Durrmeyer Type Operators Based on q-Integers. Appl. Math. Inf. Sci. 2017, 11, 767–775. [Google Scholar] [CrossRef]
- Gupta, V.; Finta, Z. On certain q-Durrmeyer type operators. Appl. Math. Comput. 2009, 209, 415–420. [Google Scholar] [CrossRef]
- Sabancıgil, P. Some Approximation Properties of q-Stancu-Durrmeyer Operators. In Proceedings of the 5th Mediterranean International Conference of Pure & Applied Mathematics and Related Areas, MICOPAM 2022, Antalya, Turkey, 27–30 October 2022. [Google Scholar]
- Sabancigil, P. New q-Stancu-Durrmeyer Operators and Their Moments. In Proceedings of the Euro Asia 8th International Congress On Applied Sciences, Tashkent Chemical-Technological Institute, Tashkent, Uzbekistan, 15–16 March 2021. [Google Scholar]
- Mursaleen, M.; Ansari, K.J.; Khan, A. Some approximation results by (p,q)-analogue of Bernstein-Stancu operators. Appl. Math. Comput. 2015, 264, 392–402. [Google Scholar] [CrossRef]
- Acar, T.; Mohiuddine, S.A.; Mursaleen, M. Approximation by (p,q)-Baskakov-Durrmeyer-Stancu Operators. Complex Anal. Oper. Theory 2018, 12, 1453–1468. [Google Scholar] [CrossRef]
- Mursaleen, M.; Ahasan, M.; Ansari, K.J. Bivariate Bernstein-Schurer-Stancu type GBS operators in (p,q)-analogue. Adv. Differ. Equ. 2020, 2020, 76. [Google Scholar] [CrossRef] [Green Version]
- Mursaleen, M.; Ansari, K.J.; Khan, A. On (p,q)-analogue of Bernstein operators. Appl. Math. Comput. 2015, 266, 874–882, Erratum: Appl. Math. Comput. 2016, 278, 70–71. [Google Scholar] [CrossRef]
- Cai, Q.B.; Zhou, G. On (p,q)-analogue of Kantorovich type Bernstein-Stancu-Schurer operators. Appl. Math. Comput. 2016, 276, 12–20. [Google Scholar] [CrossRef]
- Mishra, V.N.; Pandey, S. On (p,q) Baskakov-Durrmeyer-Stancu Operators. Adv. Appl. Clifford Algebr. 2017, 27, 1633–1646. [Google Scholar] [CrossRef]
- Yuksel, I.; Kantar, U.D.; Altın, B. On the (p,q)-Stancu Generalization of a Genuine Baskakov-Durrmeyer Type Operators. Int. J. Anal. Appl. 2017, 15, 138–145. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Wang, H. Properties of convergence for ω,q-Bernstein polynomials. J. Math. Anal. Appl. 2008, 340, 1096–1108. [Google Scholar] [CrossRef] [Green Version]
- Ditzian, Z.; Totik, V. Moduli of Smoothness; Springer: New York, NY, USA, 1987. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabancıgil, P. Genuine q-Stancu-Bernstein–Durrmeyer Operators. Symmetry 2023, 15, 437. https://doi.org/10.3390/sym15020437
Sabancıgil P. Genuine q-Stancu-Bernstein–Durrmeyer Operators. Symmetry. 2023; 15(2):437. https://doi.org/10.3390/sym15020437
Chicago/Turabian StyleSabancıgil, Pembe. 2023. "Genuine q-Stancu-Bernstein–Durrmeyer Operators" Symmetry 15, no. 2: 437. https://doi.org/10.3390/sym15020437
APA StyleSabancıgil, P. (2023). Genuine q-Stancu-Bernstein–Durrmeyer Operators. Symmetry, 15(2), 437. https://doi.org/10.3390/sym15020437