Wire-Grid and Sparse MoM Antennas: Past Evolution, Present Implementation, and Future Possibilities
Abstract
:1. Introduction
2. Why MoM?
2.1. Overview of Computional Methods
2.2. The Use of MoM
2.3. MoM Acceleration
2.4. MoM Hybridization
2.5. MoM Antennas
3. Optimization
3.1. Optimizing Methods
3.2. GA
3.3. The Use of GA
3.4. Antennas and GA
3.5. MoM Antennas and GA
3.6. Special Cases
4. Reconfigurable and Smart Antennas
4.1. Overview
4.2. Reconfigurable and Smart Antennas: GA
4.3. Reconfigurable and Smart Antennas: The Field of Use
4.4. An Example of the Current Problem
5. Wire-Grid Sparse Antennas
5.1. Overview
5.2. OCGA Method: Explanation
- Obtain an integral equation for a given structure from Maxwell’s equations;
- Describe (input or import) the task geometry;
- Specify the required frequency range;
- Select the required characteristics to be calculated;
- Select the excitation source;
- Construct the grid (divide the boundaries of the structure into N subdomains, select the type of basis functions, and approximate the desired function in each subdomain by the corresponding basis function);
- Select the type of test functions and test the approximated desired function by MoM;
- Calculate the entries of impedance matrix Z of order N and the entries of the SLAE right-hand side voltage matrix V;
- Solve the obtained SLAE ZI = V to find the matrix of surface currents I;
- Calculate the required characteristics of the antenna from matrix I.
5.3. Wire Grid: Application and Example
5.3.1. Real Commercial Parabolic Antenna
5.3.2. Modeling Using Wire Grids
5.4. OCGA Method
5.4.1. General OCGA
5.4.2. Connected OCGA Approach
5.4.3. OCGA Sparse Antenna
5.4.4. Discussion and Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, O.P.; Kumar, P.; Ali, T.; Kumar, P.; Vincent, S. Ultrawideband Antennas: Growth and Evolution. Micromachines 2022, 13, 60. [Google Scholar] [CrossRef] [PubMed]
- Ojaroudi Parchin, N.; Jahanbakhsh Basherlou, H.; Al-Yasir, Y.I.A.; Abd-Alhameed, R.A.; Abdulkhaleq, A.M.; Noras, J.M. Recent Developments of Reconfigurable Antennas for Current and Future Wireless Communication Systems. Electronics 2019, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Jabbar, A.; Abbasi, Q.H.; Anjum, N.; Kalsoom, T.; Ramzan, N.; Ahmed, S.; Rafi-ul-Shan, P.M.; Falade, O.P.; Imran, M.A.; Ur Rehman, M. Millimeter-Wave Smart Antenna Solutions for URLLC in Industry 4.0 and Beyond. Sensors 2022, 22, 2688. [Google Scholar] [CrossRef] [PubMed]
- Ikram, M.; Sultan, K.; Lateef, M.F.; Alqadami, A.S.M. A Road towards 6G Communication—A Review of 5G Antennas, Arrays, and Wearable Devices. Electronics 2022, 11, 169. [Google Scholar] [CrossRef]
- Ali, Q.; Shahzad, W.; Ahmad, I.; Safiq, S.; Bin, X.; Abbas, S.M.; Sun, H. Recent Developments and Challenges on Beam Steering Characteristics of Reconfigurable Transmitarray Antennas. Electronics 2022, 11, 587. [Google Scholar] [CrossRef]
- Abu Bakar, H.; Abd Rahim, R.; Soh, P.J.; Akkaraekthalin, P. Liquid-Based Reconfigurable Antenna Technology: Recent Developments, Challenges and Future. Sensors 2021, 21, 827. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.; Al-Yasir, Y.I.A.; Ojaroudi Parchin, N.; Abdulkhaleq, A.M.; Abd-Alhameed, R.A. A Survey on Reconfigurable Microstrip Filter–Antenna Integration: Recent Developments and Challenges. Electronics 2020, 9, 1249. [Google Scholar] [CrossRef]
- Ojaroudi Parchin, N.; Jahanbakhsh Basherlou, H.; Al-Yasir, Y.I.A.; Abdulkhaleq, A.M.; Abd-Alhameed, R.A. Reconfigurable Antennas: Switching Techniques—A Survey. Electronics 2020, 9, 336. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Soh, P.J.; Yan, S. Meta-Wearable Antennas—A Review of Metamaterial Based Antennas in Wireless Body Area Networks. Materials 2021, 14, 149. [Google Scholar] [CrossRef]
- Goudarzi, A.; Honari, M.M.; Mirzavand, R. Resonant Cavity Antennas for 5G Communication Systems: A Review. Electronics 2020, 9, 1080. [Google Scholar] [CrossRef]
- Chishti, A.R.; Aziz, A.; Qureshi, M.A.; Abbasi, M.N.; Algarni, A.M.; Zerguine, A.; Hussain, N.; Hussain, R. Optically Transparent Antennas: A Review of the State-of-the-Art, Innovative Solutions and Future Trends. Appl. Sci. 2023, 13, 210. [Google Scholar] [CrossRef]
- Sharma, P.; Tiwari, R.N.; Singh, P.; Kumar, P.; Kanaujia, B.K. MIMO Antennas: Design Approaches, Techniques and Applications. Sensors 2022, 22, 7813. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Tan, W.; Ali, Q.; Sun, H. Latest Performance Improvement Strategies and Techniques Used in 5G Antenna Designing Technology, a Comprehensive Study. Micromachines 2022, 13, 717. [Google Scholar] [CrossRef]
- Benavente-Peces, C.; Herrero-Sebastián, I. Worldwide Coverage Mobile Systems for Supra-Smart Cities Communications: Featured Antennas and Design. Smart Cities 2020, 3, 556–584. [Google Scholar] [CrossRef]
- Mirmozafari, M.; Zhang, Z.; Gao, M.; Zhao, J.; Honari, M.M.; Booske, J.H.; Behdad, N. Mechanically Reconfigurable, Beam-Scanning Reflectarray and Transmitarray Antennas: A Review. Appl. Sci. 2021, 11, 6890. [Google Scholar] [CrossRef]
- Mohamadzade, B.; Simorangkir, R.B.V.B.; Maric, S.; Lalbakhsh, A.; Esselle, K.P.; Hashmi, R.M. Recent Developments and State of the Art in Flexible and Conformal Reconfigurable Antennas. Electronics 2020, 9, 1375. [Google Scholar] [CrossRef]
- Paknys, R.J. The near field of a wire grid model. IEEE Trans. Antennas Propag. 1991, 39, 994–999. [Google Scholar] [CrossRef]
- Yatsenko, V.V.; Tretyakov, S.A.; Maslovski, S.I.; Sochava, A.A. Higher order impedance boundary conditions for sparse wire grids. IEEE Trans. Antennas Propag. 2000, 48, 720–727. [Google Scholar] [CrossRef]
- Rubinstein, A.; Rachidi, F.; Rubinstein, M. On wire-grid representation of solid metallic surfaces. IEEE Trans. Electromagn. Compat. 2005, 47, 192–195. [Google Scholar] [CrossRef]
- Manabe, T.; Murk, A. Transmission and reflection characteristics of slightly irregular wire-grids with finite conductivity for arbitrary angles of incidence and grid rotation. IEEE Trans. Antennas Propag. 2005, 53, 250–259. [Google Scholar] [CrossRef]
- Abd-Alhameed, R.A.; Zhou, D.; See, C.H.; Excell, P.S. A Wire-Grid Adaptive-Meshing Program for Microstrip-Patch Antenna Designs Using a Genetic Algorithm [EM Programmer’s Notebook]. IEEE Antennas Propag. Mag. 2009, 51, 147–151. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, M.; Cui, X.; Li, L. Effect of Wire Grid Covering Aperture on the Shielding Performance of Metal Rectangular Enclosure. IEEE Trans. Magn. 2009, 45, 1068–1071. [Google Scholar] [CrossRef]
- Topa, T.; Karwowski, A.; Noga, A. Using GPU With CUDA to Accelerate MoM-Based Electromagnetic Simulation of Wire-Grid Models. IEEE Antennas Wirel. Propag. Lett. 2011, 10, 342–345. [Google Scholar] [CrossRef]
- Sallam, M.O.; Vandenbosch, G.A.E.; Gielen, G.G.E.; Soliman, E.A. Novel Wire-Grid Nano-Antenna Array With Circularly Polarized Radiation for Wireless Optical Communication Systems. J. Light. Technol. 2017, 35, 4700–4706. [Google Scholar] [CrossRef]
- Happ, F.; Brüns, H.D.; Gronwald, F. An Efficient Implementation of the Periodic Method of Moments for Shielding Effectiveness Calculations of Thin-Wire Grids. In Proceedings of the 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC), Gran Canaria, Spain, 28 May–1 June 2018; pp. 1–4. [Google Scholar]
- Rao, S. A Simple and Efficient Method of Moments Solution Procedure for Solving Time-Domain Integral Equation—Application to Wire-Grid Model of Perfect Conducting Objects. IEEE J. Multiscale Multiphysics Comput. Tech. 2019, 4, 57–63. [Google Scholar] [CrossRef]
- Colgan, M.A.; Mirotznik, M.S. Design and Fabrication of 3D Wire Grid Antenna An Integrated Method for Optimization in Constrained Volumes. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 5–10 July 2020; pp. 1553–1554. [Google Scholar]
- Topa, T. Porting Wire-Grid MoM Framework to Reconfigurable Computing Technology. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1630–1633. [Google Scholar] [CrossRef]
- Zhu, X.; Wu, W.; Zhang, G.; Cai, L. Analysis of Radiation Field of a New Wire-grid TEM Horn. In Proceedings of the 2019 Photonics & Electromagnetics Research Symposium—Fall (PIERS—Fall), Xiamen, China, 17–20 December 2019; pp. 3188–3191. [Google Scholar]
- Guan, N.; Tayama, H.; Kaushal, S.; Yamaguchi, Y. A wire-grid type transparent film UWB antenna. In Proceedings of the 2017 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Verona, Italy, 11–15 September 2017; pp. 166–169. [Google Scholar]
- Sallam, M.O.; Serry, M.; Shamim, A.; Sedky, S.; Soliman, E.A. Novel micromachined on-chip 10-elements wire-grid array operating at 60 GHz. In Proceedings of the 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, France, 19–24 March 2017; pp. 202–206. [Google Scholar]
- Hestenes, M.R.; Stiefel, E. Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 1952, 49, 409–436. [Google Scholar] [CrossRef]
- Axelsson, O.; Barker, V.A. Finite Element Solution of Boundary Value Problems: Theory and Computation; Academic: New York, NY, USA, 1984; ISBN 978-089-871-499-9. [Google Scholar]
- Yee, K.S. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar]
- Taflove, A. Application of the finite-difference time-domain method to sinusoidal steady state electromagnetic penetration problems. IEEE Trans. Electromagn. Compat. 1980, EMC-22, 191–202. [Google Scholar] [CrossRef]
- Kunz, K.S.; Luebbers, R.J. The Finite Difference Time Domain Method for Electromagnetics; CRC Press: Boca Raton, FL, USA, 1993; p. 464. ISBN 978-036-740-237-2. [Google Scholar]
- Zivanovic, S.S.; Yee, K.S.; Mei, K.K. A subgridding method for the time-domain finite-difference method to solve Maxwell’s equations. IEEE Trans. Microw. Theory Tech. 1991, 39, 471–479. [Google Scholar] [CrossRef]
- Chew, W.C. Waves and Fields in Inhomogeneous Media; Van Nostrand Reinhold: New York, NY, USA, 1990; ISBN 978-047-054-705-2. [Google Scholar]
- Courant, R. Variational methods for the solution of problems of equilibrium and vibrations. Bull. Am. Math. Soc. 1943, 49, 1–23. [Google Scholar] [CrossRef]
- Silvester, P.P.; Ferrari, R.L. Finite Elements for Electrical Engineers, 2nd ed.; Cambridge University Press: Cambridge, UK, 1996; p. 514. ISBN 978-113-917-061-1. [Google Scholar]
- Jin, J.M.; Volakis, J.L.; Collins, J.D. A finite element-boundary integral method for scattering and radiation by two- and three-dimensional structures. IEEE Antennas Propag. Mag. 1991, 33, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.M.; Volakis, J.L. Scattering and radiation analysis of three-dimensional cavity arrays via a hybrid finite-element method. IEEE Trans. Antennas Propag. 1993, 41, 1580–1586. [Google Scholar]
- Jin, J.; Lee, S.W. Hybrid finite-element analysis of scattering and radiation by a class of waveguide-fed structures. Microw. Opt. Technol. Lett. 1994, 7, 798–803. [Google Scholar] [CrossRef]
- Jin, J.M.; Lu, N. Application of adaptive absorbing boundary condition to finite element solution of three-dimensional scattering. IEEE Proc. Microw. Antennas Propag. 1996, 143, 57–61. [Google Scholar] [CrossRef]
- Ling, F.X.; Sheng, Q.; Jin, J.M. Hybrid MoM/SBR and FEM/SBR methods for scattering by large bodies with inhomogeneous protrusions. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Digest, Montreal, QC, Canada, 13–18 July 1997; Volume 2, pp. 644–647. [Google Scholar]
- Sheng, X.Q.; Jin, J.M.; Song, J.; Lu, C.C.; Chew, W.C. On the formulation of hybrid finite-element and boundary-integral methods for 3-D scattering IEEE Trans. Antennas Propag. 1998, 46, 303–311. [Google Scholar] [CrossRef]
- Forgy, E.A.; Chew, W.C.; Jin, J.M. A hybrid MoM/FDTD technique for studying human head/antenna interactions. In Proceedings of the IEEE-APS Conference on Antennas and Propagation for Wireless Communications (Cat. No. 98EX184), Waltham, MA, USA, 1–4 November 1998; pp. 81–84. [Google Scholar]
- Desai, C.S.; Abel., J.F. Introduction to the Finite Element Method: A Numerical Approach for Engineering Analysis; Van Nostrand Reinhold: New York, NY, USA, 1972; p. 477. ISBN 978-044-222-083-9. [Google Scholar]
- Silvester, P.; Chari, M. Finite element solution of saturate magnetic field problems. IEEE Trans. Power Appar. Syst. 1970, 89, 1642–1651. [Google Scholar] [CrossRef]
- Jin, J.M. The Finite Element Method in Electromagnetics, 3rd ed.; Wiley: Hoboken, NJ, USA, 2014; p. 876. ISBN 978-1-118-84198-3. [Google Scholar]
- Monk, P. Finite Element Methods for Maxwell’s Equations; Clarendon Press: Oxford, UK, 2003; p. 450. ISBN 978-019-850-888-5. [Google Scholar]
- Jin, J.M.; Liepa, V.V. A note on hybrid finite element method for solving scattering problems. IEEE Trans. Antennas Propag. 1988, 36, 1486–1490. [Google Scholar] [CrossRef]
- Nasir, M.A.; Chew, W.C.; Raghaven, P.; Heath, M.T. O(N15) solution of hybrid FEM problems. In Proceedings of the IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting, Seattle, WA, USA, 20–24 June 1994; pp. 447–450. [Google Scholar]
- George, A. Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 1973, 10, 345–363. [Google Scholar] [CrossRef]
- Bayliss, A.; Goldstein, C.I.; Turkel, E. On accuracy conditions for the numerical computation of waves. J. Comput. Phys. 1985, 59, 396–404. [Google Scholar] [CrossRef]
- Scott, W.R. Errors due to spatial discretization and numerical precision in the finite-element method. IEEE Trans. Antennas Propag. 1994, 42, 1565–1570. [Google Scholar] [CrossRef]
- Lee, R.; Cangellaris, A.C. A study of discretization error in the finite element approximation of wave solution. IEEE Trans. Antennas Propag. 1992, 40, 542–549. [Google Scholar] [CrossRef]
- Deveze, T.; Beaulieu, L.; Tabbara, W. A fourth-order scheme for the FDTD algorithm applied to Maxwell’s equations. In Proceedings of the IEEE Antennas and Propagation Society International Symposium 1992 Digest, Chicago, IL, USA, 20–24 July 1992; pp. 346–349. [Google Scholar]
- Manry, C.W.; Broschat, S.L.; Schneider, J.B. Higher-order FDTD methods for large problems. Appl. Comput. Electromagn. Soc. J. (ACES) 1995, 10, 17–29. [Google Scholar]
- Harrington, R.F. Matrix methods for field problems. Proc. IEEE 1967, 55, 136–149. [Google Scholar] [CrossRef] [Green Version]
- Jobava, R.; Bogdanov, F.; Gheonjian, A.; Frei, S. Application of adaptive scheme for the Method of Moments in EMC automotive problems. In Proceedings of the 16th International Zurich EMC Symposium, Zurich, Switzerland, 13–18 February 2005; pp. 131–136. [Google Scholar]
- Davidson, D.B. Computational Electromagnetics for RF and Microwave Engineering, 2nd ed.; University Press: Cambridge, UK, 2011; p. 505. ISBN 978-051-177-811-7. [Google Scholar]
- Bonsall, F.F.; Kantorovich, L.V.; Akilov, G.P. Functional Analysis in Normed Spaces; Translated from the Russian by D. E. Brown; Robertson, A.P., Ed.; Pergamon Press: Oxford, UK, 1964; p. 771. [Google Scholar]
- Kravchuk, M.F. Application of the Method of Moments to the Solution of Linear Differential and Integral Equations; Science Academy Journal: Kiev, Ukrain, 1932; Volume 1. [Google Scholar]
- Fletcher, K. Numerical Methods Based on the Galerkin Method; Mir: Moscow, Russia, 1988; p. 352. [Google Scholar]
- Harrington, R.F. Field Computation by Moment Methods; Macmillan: New York, NY, USA, 1968; p. 240. [Google Scholar]
- Swanson, D.G.; Hofer, W.J. Microwave Circuit Modeling Using Electromagnetic Field Simulation; Artech House Publishers: Norwood, SA, Australia, 2003; p. 474. ISBN 978-158-053-308-9. [Google Scholar]
- Crandall, S.H. Engineering Analysis; McGraw-Hill: New York, NY, USA, 1956; p. 417. [Google Scholar]
- Ames, W.F. Nonlinear Partial Differential Equations in Engineering; Academic Press: New York, NY, USA, 1965; p. 305. ISBN 978-148-322-292-9. [Google Scholar]
- Finlayson, B.A. The Method of Weighted Residuals and Variational Principles; Academic Press: New York, NY, USA, 1972; p. 412. ISBN 978-161-197-323-5. [Google Scholar]
- Finlayson, A.; Scriven, L.E. The method of weighted residuals: A review. Appl. Mech. Rev. 1966, 19, 735–748. [Google Scholar]
- Afendikova, N.G. History of Galerkin’s Method and Its Role in M.B. Keldysh’s Work; Institute of Applied Mathematics Named after M.B. Keldysh, Russian Academy of Sciences: Moscow, Russia, 2014; p. 16, Preprint No. 77. (In Russian) [Google Scholar]
- Young, L. Orthogonal collocation revisited. Comput. Methods Appl. Mech. Eng. 2019, 345, 1033–1076. [Google Scholar] [CrossRef]
- Lucka, T.F.; Lucka, A.Y. Development of direct methods in mathematical physics in the works of M. P. Kravchuk. Ukr. Math. J. 1992, 44, 931–939. [Google Scholar]
- Kutateladze, S.S.; Makarov, V.L.; Romanovsky, J.V. The scientific legacy of LV Kantorovich (1912–1986). Sib. Zhurnal Ind. Mat. 2001, 4, 3–17. [Google Scholar]
- Jansen, R.H. The spectral-domain approach for microwave integrated circuits. IEEE Trans. Microw. Theory Tech. 1985, 33, 1043–1056. [Google Scholar] [CrossRef]
- Mosig, J.R. Integral equation technique. In Numerical Techniques for Microwave and Millimeter-Wave Passive Structures; Itoh, T., Ed.; Wiley: New York, NY, USA, 1989; pp. 133–213. [Google Scholar]
- Rautio, J.C.; Harrington, R.F. An electromagnetic time-harmonic analysis of shielded microstrip circuits. IEEE Trans. Microw. Theory Tech. 1987, 35, 726–730. [Google Scholar] [CrossRef] [Green Version]
- Dunleavy, L.P.; Katehi, P.B. A generalized method for analyzing shielded thin microstrip discontinuities. IEEE Trans. Microw. Theory Tech. 1988, 36, 1758–1766. [Google Scholar] [CrossRef]
- Horng, T.-S.; McKinzie, W.E.; Alexopoulos, N.G. Full-wave spectral-domain analysis of compensation of microstrip discontinuities using triangular subdomain functions. IEEE Trans. Microw. Theory Tech. 1992, 40, 2137–2147. [Google Scholar] [CrossRef] [Green Version]
- Becks, T.; Wolff, I. Analysis of 3-D metallization structures by a full-wave spectral domain technique. IEEE Trans. Microw. Theory Tech. 1992, 40, 2219–2227. [Google Scholar] [CrossRef]
- Nmhadham, K.; Nuteson, T.W. Efficient analysis of passive microstnp elements in MMICs. Int. J. Microw. Millim.-Wave Comput.-Aided Eng. 1994, 4, 219–229. [Google Scholar]
- Chew, W.C.; Jin, J.M.; Lu, C.C.; Michielssen, E.; Song, J.M. Fast solution methods in electromagnetics. IEEE Trans. Antennas Propag. 1997, 45, 533–543. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, T.K. On the application of the generalized biconjugate gradient method. J. Electromagn. Waves Appl. 1987, 1, 223–242. [Google Scholar] [CrossRef]
- Naishadam, K.; Misra, P. Order recursive method of moments: A powerful computational tool for microwave CAD and optimization. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 22–27 May 1996; pp. 1463–1466. [Google Scholar]
- Rokhlin, V. Rapid solution of integral equations of scattering theory in two dimensions. J. Comput. Phys. 1990, 36, 414–439. [Google Scholar] [CrossRef]
- Canning, F.X. Transformations that produce a sparse moment matrix. J. Electromagn. Waves Appl. 1990, 4, 893–913. [Google Scholar] [CrossRef]
- Boag, A.; Mittra, R. Complex multipole beam approach to electromagnetic scattering problems. IEEE Trans. Antennas Propag. 1994, 42, 366–372. [Google Scholar] [CrossRef]
- Chang, D.C.; Zheng, J.-X. Electromagnetic modeling of passive circuit elements in MMIC. IEEE Trans. Microw. Theory Tech. 1992, 40, 1741–1747. [Google Scholar] [CrossRef]
- Misra, P. Order recursive Gaussian elimnation. IEEE Trans. Aerosp. Electron. Syst. 1996, 32, 396–400. [Google Scholar] [CrossRef]
- Johnson, J.M.; Rahmat-Samii, Y. Genetic algorithms and method of moments (GA/MOM) for the design of integrated an-tennas. IEEE Trans. Antennas Propag. 1999, 47, 1606–1614. [Google Scholar] [CrossRef]
- Loison, R.; Gillard, R.; Citerne, J.; Piton, G.; Legay, H. Optimized 2D multi-resolution method of moments for printed antenna array modeling. IEE Proc. Microw. Antennas Propag. 2001, 148, 1–8. [Google Scholar] [CrossRef]
- Cormos, D.; Loison, R.; Gillard, R.A. multistructure method of moments for EM optimization. Microw. Opt. Technol Lett. 2004, 40, 114–117. [Google Scholar] [CrossRef]
- Stavtsev, S.L. Block LU Preconditioner for the Electric Field Integral Equation. In Proceedings of the PIERS 2015 Prague—Progress in Electromagnetics Research Symposium, Proceedings, Prague, Czech Republic, 6–9 July 2015; pp. 1523–1527. [Google Scholar]
- Il’in, V.P. Problems of parallel solution of large systems of linear algebrai equations. J. Math. Sci. 2016, 216, 795–804. [Google Scholar] [CrossRef]
- Li, R.; Saad, Y. Divide and conquer low-rank preconditioners for symmetric matrices. SIAM J. Sci. Comput. 2013, 35, A2069–A2095. [Google Scholar] [CrossRef]
- Carson, E.; Knight, N.; Demmel, J. Avoiding communication in nonsymmetric Lanczosbased Krylov subspace methods. SIAM J. Sci. Comput. 2013, 35, S42–S61. [Google Scholar] [CrossRef]
- Bebendorf, M.; Kramer, F. Hierarchical matrix preconditioning for low-frequency-full-Maxwell simulations. Proc. IEEE 2013, 101, 423–433. [Google Scholar] [CrossRef]
- Shaeffer, J. Million Plus Unknown MOM LU Factorization on a PC. In Proceedings of the International Conference on Electromagnetics in Advanced Applications (ICEAA), Turin, Italy, 7–11 September 2015; pp. 62–65. [Google Scholar]
- Puzyrev, V.; Cela, J.M. A review of block Krylov subspace methods for multisource electromagnetic modeling. Geophys. J. Int. 2015, 202, 1241–1252. [Google Scholar] [CrossRef] [Green Version]
- Birk, S. Deflated Shifted Block Krylov Subspace Methods for Hermitian Positive Definite Matrices. Ph.D. Thesis, Fachbereich Mathematik und Naturwissenschaften der Bergischen Universität Wuppertal, Wuppertal, Germany, 2015. [Google Scholar]
- Olyslager, F.; De Zutter, D.; Blomme, K. Rigorous analysis of the propagation characteristics of general lossless and lossy multiconductor transmission lines in multilayered media. IEEE Trans. Microw. Theory Tech. 1993, 41, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Gillard, R.; Citerne, J. An electromagnetic optimization of microwave and millimeter-wave planar circuits with the use of the method of moments. Microw. Opt. Technol Lett. 1996, 12, 298–301. [Google Scholar] [CrossRef]
- Bretones, A.R.; Martin, R.G.; Rubio, R.G.; Garcia, S.G.; Pantoja, M.F. On the simulation of a GPR using an ADI-FDTD/MoMTD hybrid method. In Proceedings of the Tenth International Conference on Grounds Penetrating Radar, GPR 2004, Delft, The Netherlands, 21–24 June 2004; pp. 13–15. [Google Scholar]
- Zhou, B.; Lou, J.; Tu, Z.; Xing, F. An FDTD/MoMTD hybrid technique for modeling HF antennas located on lossy ground. In Proceedings of the 2008 International Conference on Microwave and Millimeter Wave Technology, Nanjing, China, 21–24 April 2008; pp. 726–729. [Google Scholar]
- Chakarothai, J.; Wang, J.; Fujiwara, O.; Wake, K.; Watanabe, S. A Hybrid MoM/FDTD Method for Dosimetry of Small Animal in Reverberation Chamber. IEEE Trans. Electromagn. Compat. 2014, 56, 549–558. [Google Scholar] [CrossRef]
- Chakarothai, J.; Kojima, M.; Sasaki, K.; Suzuki, Y.; Taki, M.; Wake, K.; Watanabe, S. Analysis of millimeter-wave exposure on rabbit eye using a hybrid PMCHWT-MoM-FDTD method. In Proceedings of the International Symposium on Antennas & Propagation, Nanjing, China, 23–25 October 2013; pp. 59–62. [Google Scholar]
- Karwowski, A.; Noga, A. Fast MM-PO-based numerical modelling technique for wideband analysis of antennas near conducting objects. Electron. Lett. 2007, 43, 486–487. [Google Scholar] [CrossRef]
- Karwowski, A.; Noga, A. Wide-band hybrid MM-PO computational electromagnetics technique using [Z] matrix interpolation and adaptive frequency sampling. In Proceedings of the IEEE International Symposium on Electromagnetic Compatibility, Honolulu, HI, USA, 8–13 July 2007; pp. 1–4. [Google Scholar]
- Bingle, M.; Burger, W.; Ludick, D.; Schoeman, M.; van Tonder, J.; Jakobus, U. Method of moments accelerations and extensions in FEKO. In Proceedings of the 2011 International Conference on Electromagnetics in Advanced Applications, Turin, Italy, 12–16 September 2011; pp. 62–65. [Google Scholar]
- Commens, M.; Zhao, K. Efficient large scale simulations with a hybrid finite element boundary integral technique. In Proceedings of the WAMICON 2012 IEEE Wireless & Microwave Technology Conference, Cocoa Beach, FL, USA, 15–17 April 2012; pp. 1–4. [Google Scholar]
- Mei, K.K. On the integral equations of thin wire antennas. IEEE Trans. Antennas Propag. 1965, 13, 374–378. [Google Scholar] [CrossRef] [Green Version]
- Tang, C. Input impedance of arc antennas and short helical radiators. IEEE Trans. Antennas Propag. 1964, 12, 2–9. [Google Scholar] [CrossRef]
- Nie, Z.; Que, X. Analysis of wire antennas mounted on large perfectly conducting platforms using MLFMA. J. Syst. Eng. Electron. 2007, 18, 679–684. [Google Scholar]
- Cui, T.J.; Chew, W.C. Accurate model of arbitrary wire antennas in free space, above or inside ground. IEEE Trans. Antennas Propag. 2000, 48, 482–493. [Google Scholar]
- Altman, Z.; Mittra, R.; Boag, A. New designs of ultra-wide–band communication antennas using a genetic algorithm/Z. Altman. IEEE Trans. Antennas Propag. 1997, 45, 1494–1501. [Google Scholar] [CrossRef]
- Altshuler, E.E. Electrically small self-resonant wire antennas optimized using a genetic algorithm. IEEE Trans. Antennas Propag. 2002, 50, 297–300. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory: Analysis and Design, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2005; p. 1097. ISBN 978-111-917-899-6. [Google Scholar]
- Schantz, H.G. The Art and Science of Ultrawideband Antennas, 2nd ed.; Artech House: Boston, MA, USA; London, UK, 2015; p. 591. ISBN 978-160-807-955-1. [Google Scholar]
- Stutzman, W.L.; Thiele, G.A. Antenna Theory and Design, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2012; p. 598. ISBN 978-047-057-664-9. [Google Scholar]
- Tesche, F.M.; Ianoz, M.; Karlsson, T. EMC Analysis Methods and Computational Models; Wiley-Interscience: New York, NY, USA, 1996; p. 656. ISBN 978-0-471-15573-7. [Google Scholar]
- Pocklington, H.C. Electrical oscillations in wires. Math. Proc. Camb. Philos. Soc. 1897, 9, 324–332. [Google Scholar]
- Hallen, E. Theoretical Investigation into the Transmitting and Receiving Qualities of Antennas; Nova Acta Regiae Societatis Scientiarum Upsaliensis IV: Uppsala, Sweden, 1938; pp. 1–44. [Google Scholar]
- Levin, B.M. The Theory of Thin Antennas and Its Use in Antenna Engineering; Bentham Science Publishers: Sharjah, United Arab Emirates, 2013; p. 318. ISBN 978-1-60805-774-0. [Google Scholar]
- King, R.W.P.; Smith, G.S.; Owens, M.; Wu, T.T. Antennas in Matter: Fundamentals Theory and Applications; MIT Press: Cambridge MA, USA, 1981. [Google Scholar]
- Richmond, J.H. Digital computer solution of the rigorous equations for scattering problems. Proc. IEEE 1965, 53, 796–804. [Google Scholar] [CrossRef] [Green Version]
- Werner, D.H.; Werner, P.L.; Breakall, J.K. Some computational aspects of Pocklington electric field integral equation for thin wires. IEEE Trans. Antennas Propag. 1994, 42, 561–563. [Google Scholar] [CrossRef]
- Kraus, J.D.; Marhefka, R.J. Antennas for All Applications, 3rd ed.; McGraw-Hill: New Delhi, India, 2006; p. 892. ISBN 978-007-232-103-6. [Google Scholar]
- Vorozhtsov, E.V.; Shapeev, V.P. On combining the techniques for convergence acceleration of iteration processes during the numerical solution of Navier-Stokes equations. Num. Meth. Prog. 2017, 18, 80–102. [Google Scholar]
- Pissanetzky, S. Sparse Matrix Technology; Academic Press: London, UK, 1984; p. 321. [Google Scholar]
- Tewarson, R.P. Sparse Matrices; Academic Press: Cambridge, MA, USA, 1973; p. 160. [Google Scholar]
- Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd ed.; SIAM: Philadelphia, PA, USA, 2003; p. 547. ISBN 978-089-871-534-7. [Google Scholar]
- Das, A.; Nair, R.R.; Gope, D. Efficient adaptive mesh refinement for MoM-based package-board 3D full-wave extraction. In Proceedings of the IEEE 22nd Conference on Electrical Performance of Electronic Packaging and Systems, San Jose, CA, USA, 27–30 October 2013; pp. 239–242. [Google Scholar]
- Sarkar, T.K.; Djordjevic, T.K.; Arvas, E. On the choice of expansion and weighting functions in the numerical solution of operator equations. IEEE Trans. Antennas Propag. 1985, 33, 988–996. [Google Scholar] [CrossRef]
- Klein, C.A.; Mittra, R. The effect of different testing functions in the moment method solution of thin–wire antenna problem. IEEE Trans. Antennas Propag. 1975, 23, 258–261. [Google Scholar] [CrossRef]
- Sarkar, T.K. Nonconvergence results for the application of the moment method (Galerkin’s method) for some simple problems. In Proceedings of the Antennas and Propagation Society International Symposium, Quebec, QC, Canada, 2–6 June 1980; pp. 676–679. [Google Scholar]
- Xunwang, Z.; Zhongchao, L.; Yu, Z. Performance of parallel out-of-core MoM accelerated by SSD. In Proceedings of the IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 19–24 July 2015; pp. 562–563. [Google Scholar]
- Hai, L.; Mei, X.; Zhang, Y. OpenMP-CUDA accelerated moment method for homogeneous dielectric objects. In Proceedings of the 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), Memphis, TN, USA, 6–11 July 2014; pp. 1634–1635. [Google Scholar]
- Kuksenko, S.P.; Gazizov, T.R.; Kostarev, I.S. Approximation of an initial matrix by a Toeplitz one for acceleration of iterative solution of dense linear algebraic systems in scattering problems. In Proceedings of the International Siberian Conference on Control and Communications (SIBCON 2016), Moscow, Russia, 12−14 May 2016; pp. 1–5. [Google Scholar]
- Tyrtyshnikov, E.E. Incomplete Cross Approximation in the Mosaic-Skeleton Method. Computing 2000, 64. [Google Scholar] [CrossRef]
- Antonini, G.; Orlandi, A.; Ruehli, A.E. Analytical integration of quasi–static potential integrals on nonorthogonal coplanar quadrilaterals for the PEEC method. IEEE Trans. Electromagn. Compat. 2002, 44, 399–403. [Google Scholar] [CrossRef]
- John, A.; Jansen, R.H. Evolutionary generation of (M)MIC component shapes using 2.5 D EM simulation and discrete genetic optimization. In Proceedings of the 1996 IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 17–21 June 1996; pp. 745–748. [Google Scholar]
- Luenberger, D.G. Introduction to Linear and Nonlinear Programming, Reading, 2nd ed.; Addison Wesley: Boston, MA, USA, 1973; p. 554. ISBN 978-020-104-347-1. [Google Scholar]
- Arora, J.S. Introduction to Optimum Design, 4th ed.; McGraw-Hill: New York, NY, USA, 2017; p. 968. ISBN 978-012-800-806-5. [Google Scholar]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning, 13th ed.; Addison-Wesley: Boston, MA, USA, 1989; ISBN 978-0201157673. [Google Scholar]
- Davis, L. Genetic Algorithms and Simulated Annealing; Pitman: London, UK, 1987. [Google Scholar]
- Rudolph, G. Convergence analysis of canonical genetic algorithms. IEEE Trans. Neural Netw. 1994, 5, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Davis, L. Handbook of Genetic Algorithms; Thomson Publishing Group: New York, NY, USA, 1991; p. 385. ISBN 978-04-4200-173-5. [Google Scholar]
- Goldberg, D.E.; Deb, K.; Clark, J.H. Genetic algorithms, noise, and the sizing of populations. Complex Syst. 1992, 6, 333–362. [Google Scholar]
- Holland, J.H. Adaptation in Natural and Artificial Systems; The University of Michigan Press: Ann Arbor, MI, USA, 1975; p. 232. ISBN 978-02-6258-111-0. [Google Scholar]
- De Jong, K.A. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1975. [Google Scholar]
- Sridharan, B. Modifications in Genetic Algorithm using additional parameters to make them computationally efficient. In Proceedings of the 2010 IEEE 2nd International Advance Computing Conference (IACC) 2010, Patiala, India, 19–20 February 2010; pp. 55–59. [Google Scholar]
- Sywerda, G. Uniform Crossover in Genetic Algorithms. In Proceedings of the Third International Conference on Genetic Algorithms and their Applications, 4–7 June 1989; Schaffer, J.D., Ed.; Morgan Kaufmann: Burlington, MA, USA, 1989; pp. 2–9. [Google Scholar]
- Haupt, R.L.; Haupt, S.E. Continuous Parameter vs. Binary Genetic Algorithms. In Proceedings of the Applied Computational Electro-magnetics Society Symposium, Monterey, CA, USA, 17–21 March 1997; Volume II; pp. 1387–1392. [Google Scholar]
- Weile, D.S.; Michielssen, E. Community-Based Evolutionary Optimization of Frequency Selective Surfaces. In Proceedings of the 1996 URSI Symposium, Baltimore, MD, USA, 21–26 July 1996; p. 345. [Google Scholar]
- Duan, D.W.; Rahmat-Samii, Y. A Generalized Diffraction Synthesis Technique for High Performance Reflector Antennas. IEEE Trans. Antennas Propag. 1995, 43, 27–40. [Google Scholar] [CrossRef]
- Ilavarasan, P.; Rothwell, E.J.; Chen, K.; Nyquist, D.P. Natural Resonance Extraction from Multiple Data Sets Using Genetic Algorithm. IEEE Trans. Antennas Propag. 1995, 43, 900–904. [Google Scholar] [CrossRef]
- Michielssen, E.; Sajer, J.; Ranjithan, S.; Mittra, R. Design of Lightweight, Broad-Band Microwave Absorbers Using Genetic Algorithms. IEEE Trans. Microw. Theory Tech. 1993, 41, 1024–1031. [Google Scholar] [CrossRef]
- Haupt, R.L. An Introduction to Genetic Algorithms for Electromagnetic. IEEE Antennas Propag. Mag. 1995, 37, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Uler, G.F.; Mohammed, O.A.; Koh, C.S. Utilizing genetic algorithms for the optimal design of electromagnetic devices. IEEE Trans. Magn. 1994, 30, 4296–4298. [Google Scholar] [CrossRef]
- Johnson, J.M.; Rahmat-Samii, Y. Genetic Algorithms in Electromagnetics. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, 1996 Digest, Baltimore, MD, USA, 21–26 July 1996; pp. 1480–1483. [Google Scholar]
- Weile, D.S.; Michielssen, E. Genetic algorithm optimization applied to electromagnetics: A review. IEEE Trans. Antennas Propag. 1997, 45, 343–353. [Google Scholar] [CrossRef]
- Jones, D.P.; Sabet, K.F.; Cheng, J.; Katehi, L.P.B.; Sarabandi, K.; Harvey, J.F. An accelerated hybrid genetic algorithm for optimization of electromagnetic structures. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, 1999 Digest, Held in Conjunction with: USNC/URSI National Radio Science Meeting (Cat. No. 99CH37010), Orlando, FL, USA, 11–16 July 1999; pp. 426–429. [Google Scholar]
- Haupt, R.L. Optimum population size and mutation rate for a simple real genetic algorithm that optimizes array factors. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Transmitting Waves of Progress to the Next Millennium, 2000 Digest, Held in Conjunction with: USNC/URSI National Radio Science Meeting C, Salt Lake City, UT, USA, 16–21 July 2000; pp. 1034–1037. [Google Scholar]
- Johnson, J.M.; Rahmat-Samii, Y. Genetic Algorithms Optimization of Wireless Communication Networks. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, 1995 Digest, Newport Beach, CA, USA, 18–23 June 1995; pp. 1964–1967. [Google Scholar]
- Haupt, S.E.; Haupt, R.L. Phase-only adaptive nulling with a genetic algorithm. IEEE Trans. Antennas Propag. 1997, 45, 1009–1015. [Google Scholar] [CrossRef] [Green Version]
- Sherman, K.N. Phased array shaped multi-beam optimization for LEO satellite communications using a genetic algorithm. In Proceedings of the 2000 IEEE International Conference on Phased Array Systems and Technology (Cat. No. 00TH8510), Dana Point, CA, USA, 21–25 May 2000; pp. 501–504. [Google Scholar]
- Chambers, B.; Tennant, A. Design of wideband Jaumann radar absorbers with optimum oblique incidence performance. Electron. Lett. 1994, 30, 1530–1532. [Google Scholar] [CrossRef]
- Mosallaei, H.; Rahmat-Samii, Y. RCS reduction of canonical targets using genetic algorithm synthesized RAM. IEEE Trans. Antennas Propag. 2000, 48, 1594–1606. [Google Scholar] [CrossRef]
- Nishino, T.; Itoh, T. Evolutionary generation of microwave line-segment circuits by genetic algorithms. IEEE Trans. Microw. Theory Tech. 2002, 50, 2048–2055. [Google Scholar] [CrossRef]
- Hussein, Y.A.; El-Ghazaly, S.M. Modeling and optimization of microwave devices and circuits using genetic algorithms. IEEE Trans. Microw. Theory Tech. 2004, 52, 329–336. [Google Scholar] [CrossRef]
- Johnsonm, J.M.; Rahmat-Samii, Y. Genetic algorithm optimization and its application to antenna design. In Proceedings of the IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting, Seattle, WA, USA, 20–24 June 1994; pp. 326–329. [Google Scholar]
- Linden, D.S.; Altshuler, E.E. Automating Wire Antenna Design Using Genetic Algorithms. Microw. J. 1996, 39, 74–86. [Google Scholar]
- Boag, A.; Boag, A.; Michielssen, E.; Mittra, R. Design of Electrically Loaded Wire Antennas using Genetic Algorithms. IEEE Trans. Antennas Propag. 1996, 44, 687. [Google Scholar] [CrossRef]
- Rogers, S.D.; Butler, C.M.; Martin, A.Q. Realization of a genetic-algorithm-optimized wire antenna with 5:1 bandwidth. Radio Sci. 2001, 36, 1315–1325. [Google Scholar] [CrossRef]
- Mosallaei, H.; Rahmat-Samii, Y. Non-uniform Luneburg lens antennas: A design approach based on genetic algorithms. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, 1999 Digest, Held in Conjunction with: USNC/URSI National Radio Science Meeting (Cat. No. 99CH37010), Orlando, FL, USA, 11–16 July 1999; pp. 434–437. [Google Scholar]
- Rahmat-Samii, Y.; Mosallaei, H. GA optimized Luneburg lens antennas; characterizations and measurements. In Proceedings of the International Symposium Antennas and Propagation, Fukuoka, Japan, 24–27 August 2000; pp. 979–982. [Google Scholar]
- Rahmat-Samii, Y.; Mosallaei, H. Nonuniform Luneburg and two-shell lens antennas: Radiation characteristics and design optimization. IEEE Trans. Antennas Propag. 2001, 49, 60–69. [Google Scholar]
- Hang, H.X.; Yun, L.D. Sidelobe reduction of plane array using genetic algorithm. Acta Electron. Sin. 1999, 27, 119–120. [Google Scholar]
- Chung, Y.C.; Haupt, R.L. Amplitude and phase adaptive nulling with a genetic algorithm. J. Electromagn. Waves Appl. 2000, 14, 631–649. [Google Scholar] [CrossRef] [Green Version]
- Le, Q.T.; Nguyen, N.D.; Dam, T.T. Amplitude and phase adaptive nulling with a genetic algorithm for array antennas. In Proceedings of the 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), Zhengzhou, China, 8–10 August 2011; pp. 1887–1890. [Google Scholar]
- Altshuler, E.E. Design of a vehicular antenna for GPS/Iridium using a genetic algorithm. IEEE Trans. Antennas Propag. 2000, 48, 968–972. [Google Scholar] [CrossRef]
- Aljibouri, B.; Lim, E.G.; Evans, H.; Sambell, A. Multiobjective genetic algorithm approach for a dual-feed circular polarized patch antenna design. Electron. Lett. 2000, 36, 1005–1006. [Google Scholar] [CrossRef]
- Barbisch, B.J.; Werner, D.H.; Werner, P.L. A genetic algorithm optimization procedure for the design of uniformly excited and nonuniformly spaced broadband low sidelobe arrays. Appl. Comput. Electromagn. Soc. J. (ACES) 2000, 15, 34–42. [Google Scholar]
- Maloney, J.C.; Kesler, M.P.; Lust, L.M.; Pringle, L.N.; Fountain, T.L.; Harms, P.H.; Smith, G.S. Switched fragmented aperture antennas. In Proceedings of the IEEE Antennas and Propagation Society International Symposium. Transmitting Waves of Progress to the Next Millennium, 2000 Digest, Held in Conjunction with: USNC/URSI National Radio Science Meeting Salt Lake City, UT, USA, 16–21 July 2000; pp. 310–313. [Google Scholar]
- Lee, D.; Lee, S. Design of a coaxially fed circularly polarized rectangular microstrip antenna using a genetic algorithm. Microw. Opt. Technol. 2000, 26, 288–291. [Google Scholar] [CrossRef]
- Gunel, T. An optimization approach to the synthesis of rectangular microstrip antenna elements with thick substrates for the specified far-field radiation pattern. AEU-Int. J. Electron. Commun. 2000, 54, 303–306. [Google Scholar]
- Raychowdhury, A.; Gupta, B.; Bhattacharjee, R. Bandwidth improvement of microstrip antennas through a genet-ic-algorithm-based design of a feed network. Microw. Opt. Technol. Lett. 2000, 27, 273–275. [Google Scholar] [CrossRef]
- Choo, H.; Hutani, A.; Trintinalia, L.C.; Ling, H. Shape optimization of broadband microstrip antennas using genetic algorithm. Electron. Lett. 2000, 36, 2057–2058. [Google Scholar] [CrossRef]
- Muscat, A.F.; Parini, C. G Novel compact handset antenna. In Proceedings of the 2001 Eleventh International Conference on Antennas and Propagation, (IEE Conf. Publ. No. 480), Manchester, UK, 17–20 April 2001; pp. 336–339. [Google Scholar]
- Chen, C.H.; Chiu, C.C. Novel radiation pattern by genetic algorithms, in wireless communication. In Proceedings of the IEEE VTS 53rd Vehicular Technology Conference, Spring 2001 (Cat. No. 01CH37202), Rhodes, Greece, 6–9 May 2001; pp. 8–12. [Google Scholar]
- Choo, H.; Ling, H. Design of multiband microstrip antennas using a genetic algorithm. IEEE Microw. Wirel. Compon. Lett. 2002, 12, 345–347. [Google Scholar] [CrossRef]
- Altshuler, E.E.; Linden, D.S. Wire-antenna designs using genetic algorithms. IEEE Antennas Propag. Mag. 1997, 39, 33–43. [Google Scholar] [CrossRef]
- Delabie, C.; Villegas, M.; Picon, O. Creation of new shapes for resonant microstrip structures by means of genetic algorithms. Electron. Lett. 1997, 33, 1509–1510. [Google Scholar] [CrossRef]
- Zuffada, C.; Cwik, T.; Ditchman, C. Synthesis of novel all-dielectric grating filters using genetic algorithms. IEEE Trans. Antennas Propag. 1998, 46, 657–663. [Google Scholar] [CrossRef]
- Villegas, F.J.; Cwik, T.Y.; Rahmat-Samii; Manteghi, M. Parallel genetic-algorithm optimization of a dual-band patch antenna for wireless communications. In Proceedings of the IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No. 02CH37313), San Antonio, TX, USA, 16–21 June 2002; Volume 1, pp. 334–337. [Google Scholar]
- Johnson, J.M.; Rahmat-Samii, Y. A Novel Integration of Genetic Algorithms and Method of Moments (GA/MoM) for Antenna Design. In Proceedings of the IEEE Antennas and Propagation Society International Symposium 1997, Digest, Montreal, QC, Canada, 13–18 July 1997; pp. 1664–1667. [Google Scholar]
- Atalan, L.; Aksun, M.I.; Leblebicioglu, K.; Birand, M.T. Use of computationally efficient method of moments in the op-timization of printed antennas. IEEE Trans. Antennas Propag. 1999, 47, 725–732. [Google Scholar] [CrossRef] [Green Version]
- Kerkhoff, A.; Rogers, R.; Ling, H. The use of the genetic algorithm approach in the design of ultra-wideband antennas. In Proceedings of the RAWCON 2001, IEEE Radio and Wireless Conference (Cat. No. 01EX514), Waltham, MA, USA, 19–22 August 2001; pp. 93–96. [Google Scholar]
- Chakravarty, S.; Mittra, R.; Williams, N. On the application of the microgenetic algorithm to the design of broad-band microwave absorbers comprising frequency-selective surfaces embedded in multilayered dielectric media. IEEE Trans. Microw. Theory Tech. 2001, 49, 1050–1059. [Google Scholar] [CrossRef]
- Goldberg, D.E. Sizing populations for serial and parallel genetic algorithms. In Proceedings of the 3rd International Conference on Genetic Algorithms, The University of Alabama, TCGA, Akron, AL, USA, 4–7 June 1989; pp. 70–79. [Google Scholar]
- Krishnakumar, K. Micro-genetic algorithms for stationary and nonstationary function optimization. In Proceedings of the Intelligent Control and Adaptive Systems, Philadelphia, PA, USA, 1 February 1990; Volume 1196. [Google Scholar]
- Pissoort, D.; Rogier, H.; Olyslager, F.; De Zutter, D. Design of a planar broad-band antennas using a genetic algorithm and the MoM. In Proceedings of the IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No. 02CH37313), San Antonio, TX, USA, 16–21 June 2002; pp. 334–337. [Google Scholar]
- Cormos, D.; Loison, R.; Gillard, R. Fast optimization and sensitivity analysis of nonintuitive planar structures. IEEE Trans. Microw. Theory Tech. 2005, 53, 2019–2025. [Google Scholar] [CrossRef]
- Cormos, D.; Loison, R.; Gillard, R. Design of patch antennas using a 2-D multistructure method of moments (MSMoM). In Proceedings of the 34th European Microwave Conference, Amsterdam, The Netherlands, 12–14 October 2004; pp. 969–972. [Google Scholar]
- Cormos, D.; Loison, R.; Gillard, R. A fast optimization of patch antennas using the new 2-D multistructure method of moments (MSMoM). Nice International Days on the JINA Antennas, Nice, France, November 2004; pp. 356–357. Available online: https://www.researchgate.net/publication/260320223_A_fast_optimization_of_patch_antennas_using_the_new_2D_multistructure_method_of_moments_MSMoM (accessed on 15 December 2022).
- Arnaud-Cormos, D.; Loison, R.; Gillard, R. Fast multistructure method of moments combined with a genetic algorithm (MSMoM/GA) for efcient optimization of printed antennas. IEEE Antennas Wirel. Propag. Lett. 2007, 6, 172–174. [Google Scholar] [CrossRef]
- Jafar-Zanjani, S.; Inampudi, S.; Mosallaei, H. Adaptive genetic algorithm for optical metasurfaces design. Sci. Rep. 2018, 8, 11040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zucchi, M.; Giordanengo, G.; Righero, M. First demonstration of machine-designed ultra-flat, low-cost directive antenna. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Thal, H.L., Jr. New radiation Q limits for spherical wire antennas. IEEE Trans. Antennas Propag. 2006, 54, 2757–2763. [Google Scholar] [CrossRef]
- Best, S.R. The radiation properties of electrically small folded spherical helix antennas. IEEE Trans. Antennas Propag. 2004, 52, 953–960. [Google Scholar] [CrossRef]
- Karmakar, N.C. Shorting strap tunable stacked patch PIFA. IEEE Trans. Antennas Propag. 2004, 52, 2877–2884. [Google Scholar] [CrossRef]
- Tang, M.; Wu, Z.; Ziolkowski, R.W. Design of Electrically Small, Huygens Dipole Antenna with Quad-Polarization Di-versity. In Proceedings of the 2018 11th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT), Hangzhou, China, 5–7 September 2018; pp. 1–3. [Google Scholar]
- Pringle, L.N.; Harms, P.H.; Blalock, S.P.; Kiesel, G.N.; Kuster, E.J.; Friederich, P.G.; Prado, R.J.; Morris, J.M.; Smith, G.S. A reconfigurable aperture antenna based on switched links between electrically small metallic patches. IEEE Trans. Antennas Propag. 2004, 52, 1434–1445. [Google Scholar] [CrossRef]
- Anagnostou, D.E.; Zheng, G.; Chryssomallis, M.T.; Lyke, J.C.; Ponchak, G.E.; Papapolymerou, J.; Christodoulou, C.G. Design, fabrication, and measurements of an RF-MEMS-based self-similar reconfigurable antenna. IEEE Trans. Antennas Propag. 2006, 54, 422–432. [Google Scholar] [CrossRef]
- Shrivastava, M.; Agrawal, R.; Tapashetti, P. Design and Development of Reconfigurable Antenna Using MEMSM. In Proceedings of the 2018 International Conference on Advanced Computation and Telecommunication (ICACAT), Bhopal, India, 28–29 December 2018; pp. 1–5. [Google Scholar]
- Langer, J.C.; Zou, J.; Liu, C.; Bernhard, J.T. Micromachined reconfigurable out-of-plane microstrip patch antenna using plastic deformation magnetic actuation. IEEE Microw. Wirel. Compon. Lett. 2003, 13, 120–122. [Google Scholar] [CrossRef]
- Gianvittorio, J.P.; Samii, Y.R. Reconfigurable patch antennas for steerable reflectarray applications. IEEE Trans. Antennas Propag. 2006, 54, 1388–1392. [Google Scholar] [CrossRef]
- Fathy, A.E.; Rosen, A.; Owen, H.S.; McGinty, F.; McGee, D.J.; Taylor, G.C.; Amantea, R.; Swain, P.K.; Perlow, S.M.; Elsherbiny, M. Silicon-based reconfigurable antennas—Concepts, analysis, implementation, and feasibility. IEEE Trans. Microw. Theory Tech. 2003, 51, 1650–1661. [Google Scholar] [CrossRef]
- Grau, A.; Romeu, J.; Blanch, S.; Jofre, J.; Jafarkhani, H.; De Flaviis, F. Performance enhancement of the Alamouti diversity scheme using polarization-reconfigurable antennas in different fading environments. In Proceedings of the 2006 IEEE Antennas and Propagation Society International Symposium, Albuquerque, NM, USA, 9–14 July 2006; pp. 133–136. [Google Scholar]
- Araque Quijano, J.L.; Vecchi, G. Optimization of an Innovative Type of Compact Frequency-Reconfigurable Antenna. IEEE Trans. Antennas Propag. 2009, 57, 9–18. [Google Scholar] [CrossRef]
- Haupt, R.L. Thinned arrays using genetic algorithms. IEEE Trans. Antennas Propag. 1994, 42, 993–999. [Google Scholar] [CrossRef]
- Tennant, A.; Dawoud, M.M.; Anderson, A.P. Array pattern nulling by element position perturbations using a genetic algorithm. Electron. Lett. 1994, 30, 174–176. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Ares, F.; Moreno, E.; Fransceschetti, G. Genetic algorithm procedure for linear array failure correction. Electron. Lett. 2000, 36, 196–198. [Google Scholar] [CrossRef]
- Ozgun, O.; Mutlu, S.; Askun, M.I.; Alatan, L. Design of dual-frequency probe-fed microstrip antennas with genetic optimization algorithm. IEEE Trans. Antennas Propag. 2003, 51, 1947–1954. [Google Scholar] [CrossRef]
- Choo, H.; Ling, H. Design of broadband and dual-band microstrip antennas on a high-dielectric substrate using a genetic algorithm. IEE Proc. Microw. Antennas Propag. 2003, 150, 137–142. [Google Scholar] [CrossRef]
- Villegas, F.J.; Cwik, T.; Samii, Y.R.; Manteghi, M. A parallel electromagnetic genetic-algorithm optimization (EGO) application for patch antenna design. IEEE Trans. Antennas Propag. 2004, 52, 2424–2435. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, B.Z.; Yang, X.S.; Wang, G. Reconfigurable microstrip antenna design based on genetic algorithm. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Digest, Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No. 03CH37450), Columbus, OH, USA, 22–27 June 2003; pp. 407–410. [Google Scholar]
- Song, S.; Murch, R.D. An efficient approach for optimizing frequency reconfigurable pixel antennas using genetic algorithms. IEEE Trans. Antennas Propag. 2014, 62, 609–620. [Google Scholar] [CrossRef]
- Santos, P.N.; Dmitriev, V.; Costa, K.Q. Optimization of Modified Yagi-Uda Nanoantenna Arrays Using Adaptive Fuzzy GAPSO. Int. J. Antennas Propag. 2021, 2021, 8874385. [Google Scholar] [CrossRef]
- Sulakshana, C.; Pokharel, J. A CPW fed H-shaped reconfigurable patch antenna. In Proceedings of the Indian Antenna Week (IAW), Kolkata, India, 18–22 December 2011; pp. 1–4. [Google Scholar]
- Abuelhaija, A.; Solbach, K. Six-beam reconfigurable wire antenna. In Proceedings of the 7th German Microwave Conference, Ilmenau, Germany, 12–14 March 2012; pp. 1–4. [Google Scholar]
- Lopes, M.; Aik, M.N.; Dessai, A. Design and simulation of frequency reconfigurable microstrip patch antenna for C band and X band applications. In Proceedings of the International Conference on Computing, Communication, Pune, India, 17–18 August 2017, Control and Automation (IC-CUBEA); pp. 1–6.
- Simon, J.; Troncoso, J.F.; Alvarez-Flores, J.L.; Equigua, L.S.; Cardenas-Juarez, M.; Arce, A.; Briones, E.; Sosa-Pedroza, J. A Second-Iteration Square Koch Fractal Slot Antenna for UHF Downlink Telemetry Applications in CubeSat Small Satellites. Int. J. Antennas Propag. 2020, 2020, 9672959. [Google Scholar] [CrossRef]
- Baccarelli, P.; Burghignoli, P.; Comite, D.; Di Ruscio, D.; Galli, A.; Lampariello, P.; Jackson, D.R. Annular reconfigurable metasurface for omnidirectional dual-pol leaky-wave antennas. In Proceedings of the 7th Euro-pean Conference on Antennas and Propagation (EuCAP), Gothenburg, Sweden, 8–12 April 2013; pp. 1834–1835. [Google Scholar]
- Liu, L.; Deng, L.; Li, S.; Zhang, C.; Wang, L.; Qu, M. Beam reconfigurable antenna based on liquid crystal metasurface. In Proceedings of the IEEE 4th International Conference on Computer and Communications (ICCC), Chengdu, China, 7–10 December 2018; pp. 1037–1041. [Google Scholar]
- Althuwayb, A.A. On-Chip Antenna Design Using the Concepts of Metamaterial and SIW Principles Applicable to Terahertz Integrated Circuits Operating over 0.6–0.622 THz. Int. J. Antennas Propag. 2020, 2020, 6653095. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Awl, H.N.; Muhammadsharif, F.F.; Karaaslan, M.; Mahmud, R.H.; Hasan, S.O.; Işık, Ö.; Luo, H.; Huang, S. A Low-Profile Antenna Based on Single-Layer Metasurface for Ku-Band Applications. Int. J. Antennas Propag. 2020, 2020, 8813951. [Google Scholar] [CrossRef]
- Wu, H.; Shijun, J.J.Z.; Jiang, C.; Dai, H. Design and Analysis of a Five-Band Polarization-Insensitive Metamaterial Absorber. Int. J. Antennas Propag. 2020, 2020, 8827517. [Google Scholar] [CrossRef]
- Bespalov, A.N. Research and Development of High Efficiency Antenna Complexes for MIMO Systems. Ph.D. Thesis, Publisher, Samara, Russia, 2021; p. 150. (In Russian). [Google Scholar]
- Elobied, A.A.; Yang, X.; Xie, N.; Gao, S. Dual-Band 2 × 2 MIMO Antenna with Compact Size and High Isolation Based on Half-Mode SIW. Int. J. Antennas Propag. 2020, 2020, 2965767. [Google Scholar] [CrossRef]
- Huang, H. A Balun Bandpass Filter to Facilitate the Design of Dual-Polarized Dipole Antenna. Int. J. Antennas Propag. 2020, 2020, 6209081. [Google Scholar] [CrossRef]
- Wu, C.; Chen, I.; Sun, J.; Peng, C.; Li, K.; Huang, C. A Four-Layer Odd Function Symmetrical Dual-Polarization Equilateral Right Triangle Slot Printed Broadband Directional Antenna for Wireless Lab Measurement Applications. Int. J. Antennas Propag. 2021, 2021, 6617389. [Google Scholar] [CrossRef]
- Wu, A.; Sun, Y.; Zhang, P.; Du, T. A Series of Frequency Shift Antennas Based on Shape Blending. Int. J. Antennas Propag. 2021, 2021, 5557505. [Google Scholar] [CrossRef]
- Jirasakulporn, P.; Chomtong, P.; Bandudej, K.; Akkaraekthalin, P. A Compact Triple Band EBG Using Interdigital Coplanar Waveguide Structure for Antenna Gain Enhancement. Int. J. Antennas Propag. 2020, 2020, 2856807. [Google Scholar] [CrossRef]
- Lak, A.; Adelpour, Z.; Oraizi, H.; Parhizgar, N. Three Configurations of Compact Planar Multistub Microstrip Antennas for mmW Mobile Applications. Int. J. Antennas Propag. 2021, 2021, 8848218. [Google Scholar] [CrossRef]
- Yu, Z.; Li, Y.; Lin, Z.; Ran, X. Design of Window Grille Shape-Based Multiband Antenna for Mobile Terminals. Int. J. Antennas Propag. 2021, 2021, 6684959. [Google Scholar] [CrossRef]
- Federico, G.; Caratelli, D.; Theis, G.; Smolders, A.B. A Review of Antenna Array Technologies for Point-to-Point and Point-to-Multipoint Wireless Communications at Millimeter-Wave Frequencies. Int. J. Antennas Propag. 2021, 2021, 5559765. [Google Scholar] [CrossRef]
- Lai, F.; Chang, L.; Chen, Y. Miniature Dual-Band Substrate Integrated Waveguide Slotted Antenna Array for Millimeter-Wave 5G Applications. Int. J. Antennas Propag. 2020, 2020, 6478272. [Google Scholar] [CrossRef]
- Verma, A.; Raghava, N.S. Millimeter wave reconfigurable vivaldi antenna using power divider for 5G applications. In Proceedings of the 2nd IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 22–24 October 2018; pp. 1126–1131. [Google Scholar]
- Astuti, D.W.; Asvial, M.; Zulkifli, F.Y.; Rahardjo, E.T. Bandwidth Enhancement on Half-Mode Substrate Integrated Waveguide Antenna Using Cavity-Backed Triangular Slot. Int. J. Antennas Propag. 2020, 2020, 1212894. [Google Scholar] [CrossRef]
- Alkhalifeh, K.; Rmili, H.; Hakim, B.; Sobahi, N.; Turki, Y.A. Design of Microwave Antenna Array for Imaging of Multiphase Flows in Polypropylene Pipes. Int. J. Antennas Propag. 2021, 2021, 6636885. [Google Scholar] [CrossRef]
- Lou, Q.; Tan, L.; Poo, Y.; Wu, R. Ferrite-loaded SIW antenna—A new type of reconfigurable antenna. In Proceedings of the 2015 International Workshop on Antenna Technology (iWAT), Seoul, Republic of Korea, 4–6 March 2015; pp. 262–264. [Google Scholar]
- Bozorgi, M.; Rafaei-Booket, M. Metallic array on a biased ferrite substrate as a reconfigurable reflectarray antenna. In Proceedings of the 2018 9th International Symposium on Telecommunications (IST), Tehran, Iran, 17–19 December 2018; pp. 80–85. [Google Scholar]
- Wolfe, S.; Begashaw, S.; Liu, Y.; Dandekar, K.R. Adaptive link optimization for 802. In 11 UAV uplink using a reconfigurable antenna. In Proceedings of the MILCOM 2018—2018 IEEE Military Communications Conference (MILCOM), Los Angeles, CA, USA, 29–31 October 2018; pp. 1–6. [Google Scholar]
- JSC Information Satellite Systems Named after Academician M.F. Reshetnyov. Available online: https://www.roscosmos.online/37.en.html (accessed on 15 December 2022).
- Unified Product and Component Portal for the Rocket and Space Industry Glavkosmos Website. Available online: https://trade.glavkosmos.com/ru (accessed on 15 December 2022).
- Federal Research Center for Information and Computational Technologies. Available online: http://www.ict.nsc.ru/ru/node/3161 (accessed on 15 December 2022).
- JSC Information Satellite Systems Named after Academician M.F. Reshetnyov. Available online: https://www.tass.ru/kosmos (accessed on 15 December 2022).
- Pavlenko, A.P. Analytical and Numerical Methods of Strength Analysis and Design of Automobile Structures; Kazan Federal University publ.: Kazan, Russia, 2015; p. 129. (In Russian) [Google Scholar]
- Tulyathan, P.; Newman, E.H. The circumferential variation of the axial component of current in closely spaced thin-wire antennas. IEEE Trans. Antennas Propag. 1979, 27, 46–50. [Google Scholar] [CrossRef]
- Andreasen, M.G.; Tanner, R.L. A wire-grid lens antenna of wide application part II: Wave-propagating properties of a pair of wire grids with squre, hexagonal or triangular mesh. IRE Trans. Antennas Propag. 1962, 10, 416–429. [Google Scholar] [CrossRef]
- Gabrieland, V.F.; Andreasen, N.G. Investigation of Methods of Scanning the Beam of Large Antennas; Stanford Research Institute: Menlo park, CA, USA, 1961; p. 336. ISBN 978-125-866-634-7. [Google Scholar]
- Sharp, E.D. Electromagnetic theory of wire-grid lens HF antennas. In Proceedings of the Antennas and Propagation Society International Symposium, Long Island, NY, USA, 11 June 1964; pp. 7–12. [Google Scholar]
- Jones, E.M.T. Measured angle-diversity performance of the wire-grid lens antenna. IEEE Trans. Antennas Propag. 1967, 15, 484–486. [Google Scholar] [CrossRef]
- Sharp, E.D. Electromagnetic theory of wire-grid lens HF antenna. IEEE Trans. Antennas Propag. 1965, 13, 703–709. [Google Scholar] [CrossRef]
- Jones, E.M.T. Measured performance of the wire-grid lens HF antenna (Luneburg lens). In Proceedings of the Antennas and Propagation Society International Symposium, Palo Alto, CA, USA, 23–25 May 1966; pp. 131–137. [Google Scholar]
- Jones, E.M.T.; Tanner, R.L.; Sharp, E.D.; Andreasen, M.G.; Harris, C.B. Performance of the wire-grid lens HF antenna. IEEE Trans. Antennas Propag. 1967, 15, 744–749. [Google Scholar] [CrossRef]
- Wait, J.R.; Hill, D.A. Electromagnetic scattering by two perpendicular wire grids over a conducting half-space. Radio Sci. 1976, 11, 725–730. [Google Scholar] [CrossRef]
- Pradeep, K.A.; Bailey, M.C. An analysis technique for microstrip antennas. IEEE Trans. Antennas Propag. 1977, 25, 756–759. [Google Scholar]
- Kedzia, J.C.; Jecko, B. Frequency and time domain analysis of microstrip antennas. In Proceedings of the 15th European Microwave Conference, Paris, France, 9–13 September 1985; pp. 1045–1051. [Google Scholar]
- Rahmat-Samii, Y.; Lee, S.-W. Vector diffraction analysis of reflector antennas with mesh surfaces. IEEE Trans. Antennas Propag. 1985, 33, 76–90. [Google Scholar] [CrossRef]
- Ando, M.; Takei, K. Reflection and transmission coefficients of a thin strip grating for antenna application. IEEE Trans. Antennas Propag. 1987, 35, 367–371. [Google Scholar] [CrossRef]
- Rasinger, J.; Scholtz, A.L.; Pichler, W.; Bonek, E. A new enhanced-bandwidth internal antenna for portable communication systems. In Proceedings of the 40th IEEE Conference on Vehicular Technology, Orlando, FL, USA, 6–9 May 1990; pp. 7–12. [Google Scholar]
- Wait, J.R. The impedance of a wire grid parallel to a dielectric interface. IRE Trans. Microw. Theory Tech. 1957, 5, 99–102. [Google Scholar] [CrossRef]
- Baum, C.E. New Methods of the Nonstationary (Broadband) Analysis and Synthesis of Antennas and Scatterers. TIIER 1976, 64, 53–74. (In Russian) [Google Scholar]
- Gazizov, T.T. Synthesis of Optimal Wire Antennas; TUSUR pibl.: Tomsk, Russia, 2013. [Google Scholar]
- Richmond, J.H. A wire-grid model for scattering by conducting bodies. IEEE Trans. Antennas Propag. 1966, 14, 782–786. [Google Scholar] [CrossRef]
- Blore, I.E.; Musal, H. The radar cross section of metal hemispheres, spherical segments, and partially capped spheres. IEEE Trans. Antennas Propag. 1965, 13, 478–479. [Google Scholar] [CrossRef]
- Wait, J.R. Effective impedance of a wire grid parallel to the earth’s surface. IEEE Trans. Antennas Propag. 1962, 10, 538–542. [Google Scholar] [CrossRef]
- Ferguson, R.; Balestri, R.J. Solution of large wire grid moments problems. In Proceedings of the IEEE 1976 International Symposium on Electromagnetic Compatibility, Washington, DC, USA, 13–15 July 1976; pp. 290–294. [Google Scholar]
- Lin, Y.T.; Richmond, J.H. EM Modeling of aircraft at low frequencies. IEEE Trans. Antennas Propag. 1975, 23, 53–56. [Google Scholar] [CrossRef]
- Christodoulou, C.G.; Kauffman, J.F. On the electromagnetic scattering from infinite rectangular grids with finite conductivity. IEEE Trans. Antennas Propag. 1986, 34, 144–154. [Google Scholar] [CrossRef]
- Ludwig, A.C. Wire grid modeling of surfaces. IEEE Trans. Antennas Propag. 1987, 35, 1045–1048. [Google Scholar] [CrossRef]
- Owen, J. Wire grid modelling of helicopter HF aerials. In Proceedings of the 1980 Antennas and Propagation Society International Symposium, Quebec, QC, Canada, 2–6 June 1980; pp. 722–725. [Google Scholar]
- Ellhiadis, P.; Breakall, J.K. An investigation of near fields for shipboard antennas using the numerical electromagnetics code (NEC). In Proceedings of the Digest on Antennas and Propagation Society International Symposium, San Jose, CA, USA, 26–30 June 1989; pp. 236–239. [Google Scholar]
- Wang, J.J.H. Numerical analysis of three-dimensional arbitrarily-shaped conducting scatterers by trilateral surface cell modeling. Radio Sci. 1978, 13, 947–952. [Google Scholar] [CrossRef]
- Coffey, E.L.; Thomas, D.E. Wire grid modeling with interactive graphics. In Proceedings of the 1985 Antennas and Propagation Society International Symposium, Vancouver, BC, Canada, 17–21 June 1985; pp. 269–271. [Google Scholar]
- Wang, J.J.H.; Ryan, C.E. Application of wire-grid modelling to the design of low-profile aircraft antenna. In Proceedings of the 1977 Antennas and Propagation Society International Symposium, Stanford, CA, USA, 20–22 June 1977; pp. 222–225. [Google Scholar]
- Kim, I.S.; Hoefer, W.J.R. A local mesh refinement algorithm for the time domain-finite difference method using Maxwell’s curl equations. IEEE Trans. Microw. Theory Tech. 1990, 38, 6812–6815. [Google Scholar] [CrossRef]
- Mayhan, J.T. Characteristic modes and wire grid modeling. IEEE Trans. Antennas Propag. 1990, 38, 457–469. [Google Scholar] [CrossRef]
- Rao, S.; Wilton, D.; Glisson, A. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 1982, 30, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Kashyap, S. Wire grid and surface patch modelling for EMP interaction. In Proceedings of the International Symposium on Antennas and Propagation Society, Merging Technologies for the 90’s, Dallas, TX, USA, 1990, 7–11 May; pp. 1388–1391.
- Cristina, S.; Orlandi, A. EMC effects of the lightning protection system: Shielding properties of the roof-grid. In Proceedings of the IEEE 1991 International Symposium on Electromagnetic Compatibility, Cherry Hill, NJ, USA, 12 July–16 August 1991; pp. 78–83. [Google Scholar]
- Nagy, L. Analysis of bodies of revolution antennas with circular ground plane. In Proceedings of the 1991 21st European Microwave Conference, Stuttgart, Germany, 9–12 September 1991; pp. 769–773. [Google Scholar]
- Trueman, C.W.; Kubina, S.J. Fields of complex surfaces using wire grid modeling. IEEE Trans. Magn. 1991, 27, 4262–4267. [Google Scholar] [CrossRef]
- Yung, E.K.N.; Law, C.L. Scattering of EM waves by a wire grid of linear and non-linear wire segments. In Proceedings of the IEEE 1991 Digest Antennas and Propagation Society Symposium, London, ON, Canada, 24–28 June 1991; pp. 806–809. [Google Scholar]
- Tsunekawa, K.; Ando, A. Advanced wire grid method for solving the scattered field of a lossy dielectric object. In Proceedings of the IEEE 1992 Digest Antennas and Propagation Society International Symposium, Chicago, IL, USA, 18–25 June 1992; pp. 797–800. [Google Scholar]
- Daniele, V.; Gilli, M.; Zich, R.E. Analysis of planar wire-mesh shields, loaded by general anisotropic and/or chiral stratified structure. In Proceedings of the IEEE 1992 Digest Antennas and Propagation Society International Symposium, Chicago, IL, USA, 18–25 June 1992; pp. 2014–2017. [Google Scholar]
- Yang, X.H.; Shafai, L.; Sebak, A. A comparison study on wire-grid model and point matching technique with subdomain basis functions. In Proceedings of the 1992 Symposium on Antenna Technology and Applied Electromagnetics, Winnipeg, MB, Canada, 5–7 August 1992; pp. 656–661. [Google Scholar]
- Jirous Antennas Direction for Your Waves. Available online: https://en.jirous.com/antenna-5ghz-parabolic/jrc-24DD_MIMO (accessed on 15 December 2022).
- Alhaj Hasan, A.; Klyukin, D.V.; Kvasnikov, A.A.; Komnatnov, M.E.; Kuksenko, S.P. On Wire-Grid Representation for Modeling Symmetrical Antenna Elements. Symmetry 2022, 14, 1354. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, C.F. Characteristic Modes: Theory and Applications in Antenna Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
Frequency Range | Gain | VSWR5.1–5.9 GHz | Beamwidth−3 dB |
---|---|---|---|
4.9–6.4 GHz | 24.5 ± 1 dBi | ≤1.4 | 9.0° |
Parabola | Installation For Mast | Weight of Antenna |
---|---|---|
Ø 400 mm, Alluminum alloy | Ø 27–74 mm | 2.3 kg (5.1 lbs.) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhaj Hasan, A.; Nguyen, T.M.; Kuksenko, S.P.; Gazizov, T.R. Wire-Grid and Sparse MoM Antennas: Past Evolution, Present Implementation, and Future Possibilities. Symmetry 2023, 15, 378. https://doi.org/10.3390/sym15020378
Alhaj Hasan A, Nguyen TM, Kuksenko SP, Gazizov TR. Wire-Grid and Sparse MoM Antennas: Past Evolution, Present Implementation, and Future Possibilities. Symmetry. 2023; 15(2):378. https://doi.org/10.3390/sym15020378
Chicago/Turabian StyleAlhaj Hasan, Adnan, Tuan M. Nguyen, Sergei P. Kuksenko, and Talgat R. Gazizov. 2023. "Wire-Grid and Sparse MoM Antennas: Past Evolution, Present Implementation, and Future Possibilities" Symmetry 15, no. 2: 378. https://doi.org/10.3390/sym15020378
APA StyleAlhaj Hasan, A., Nguyen, T. M., Kuksenko, S. P., & Gazizov, T. R. (2023). Wire-Grid and Sparse MoM Antennas: Past Evolution, Present Implementation, and Future Possibilities. Symmetry, 15(2), 378. https://doi.org/10.3390/sym15020378