A Highly Efficient Infinity-Shaped Large Angular- and Polarization-Independent Metamaterial Absorber
Abstract
:1. Introduction
2. Design and Modeling
3. Results and Discussion
3.1. Absorption Analysis
3.2. Analysis of Electric Field Intensity to Validate Broadband Absorption of Proposed Infinity-Shaped Solar Absorber
3.3. Parametric Optimization to Obtain Optimal Structure
3.4. Angle- and Polarization-Insensitiveness Investigation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kekecs, Z.; Nagy, T.; Varga, K. The effectiveness of suggestive techniques in reducing postoperative side effects: A meta-analysis of randomized controlled trials. Anesth. Analg. 2014, 119, 1407–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganose, A.M.; Matsumoto, S.; Buckeridge, J.; Scanlon, D.O. Defect Engineering of Earth-Abundant Solar Absorbers BiSI and BiSeI. Chem. Mater. 2018, 30, 3827–3835. [Google Scholar] [CrossRef] [PubMed]
- Denchak, M. Fossil Fuels: The Dirty Facts; NRDC, Natural Resources Defense Council: New York, NY, USA, 2018; pp. 1–26. [Google Scholar]
- Fócil, E.; Zavala, M. Funcionalidad para actividades de la vida diaria en adultos mayores rurales de Cárdenas, Tabasco, México Functionality for daily living activities in rural elderly from Cardenas. RFS Rev. Fac. Salud 2015, 6, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Chen, G.; Zhang, N.; Xu, Y.; Xu, X. Sustainable Biochar-Based Solar Absorbers for High-Performance Solar-Driven Steam Generation and Water Purification. ACS Sustain. Chem. Eng. 2019, 7, 19311–19320. [Google Scholar] [CrossRef]
- Krumme, J.-P.; Hack, R.A.A.; Raaijmakers, I.J.M.M.; Cazzaniga, A.; Crovetto, A.; Ettlinger, R.B.; Canulescu, S.; Hansen, O.; Pryds, N.; Schou, J.J.; et al. Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on. Thin Solid Films 2011, 3, 1–4. [Google Scholar]
- Sayre, L.; Camarillo Abad, E.; Pearce, P.; Chausse, P.; Coulon, P.M.; Shields, P.; Johnson, A.; Hirst, L.C. Ultra-thin GaAs solar cells with nanophotonic metal-dielectric diffraction gratings fabricated with displacement Talbot lithography. Prog. Photovoltaics Res. Appl. 2022, 30, 96–108. [Google Scholar] [CrossRef]
- Gong, J.; Liang, J.; Sumathy, K. Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renew. Sustain. Energy Rev. 2012, 16, 5848–5860. [Google Scholar] [CrossRef]
- Zhao, X.G.; Yang, D.; Sun, Y.; Li, T.; Zhang, L.; Yu, L.; Zunger, A. Cu-In Halide Perovskite Solar Absorbers. J. Am. Chem. Soc. 2017, 139, 6718–6725. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.K.; Surve, J.; Parmar, J.; Katkar, V.; Jadeja, R.; Taya, S.A.; Ahmed, K. Graphene-based metasurface solar absorber design for the visible and near-infrared region with behavior prediction using Polynomial Regression. Optik 2022, 262, 169298. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Prajapati, P.; Taya, S.A. Design of an ultra-wideband solar energy absorber with wide-angle and polarization independent characteristics. Opt. Mater. 2022, 131, 112683. [Google Scholar] [CrossRef]
- Ding, F.; Cui, Y.; Ge, X.; Jin, Y.; He, S. Ultra-broadband microwave metamaterial absorber. Appl. Phys. Lett. 2012, 100, 103506. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L. Perfect selective metamaterial solar absorbers. Opt. Express 2013, 21, A1078. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Garcia, F.; Gonzalez-Aguilar, J.; Tamayo-Pacheco, S.; Olalde, G.; Romero, M. Numerical analysis of radiation propagation in a multi-layer volumetric solar absorber composed of a stack of square grids. Sol. Energy 2015, 121, 94–102. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Özkan Alkurt, F.; Awl, H.N.; Altıntaş, O.; Muhammadsharif, F.F.; Appasani, B.; Bakır, M.; Karaaslan, M.; Taouzari, M.; Dong, J. A Symmetrical Terahertz Triple-Band Metamaterial Absorber Using a Four-Capacitance Loaded Complementary Circular Split Ring Resonator and an Ultra-Thin ZnSe Substrate. Symmetry 2022, 14, 1477. [Google Scholar] [CrossRef]
- Banerjee, S.; Dutta, P.; Basu, S.; Mishra, S.K.; Appasani, B.; Nanda, S.; Abdulkarim, Y.I.; Muhammadsharif, F.F.; Dong, J.; Jha, A.V.; et al. A New Design of a Terahertz Metamaterial Absorber for Gas Sensing Applications. Symmetry 2022, 15, 24. [Google Scholar] [CrossRef]
- Lai, S.; Liu, G.; Guo, Y.; Liu, Y. Design of an Optically Transparent Microwave Absorber Based on Coding Metasurface. Symmetry 2022, 14, 2217. [Google Scholar] [CrossRef]
- Mittal, M.K.; Varun; Saini, R.P.; Singal, S.K. Effective efficiency of solar air heaters having different types of roughness elements on the absorber plate. Energy 2007, 32, 739–745. [Google Scholar] [CrossRef]
- Romanyuk, Y.E.; Fella, C.M.; Uhl, A.R.; Werner, M.; Tiwari, A.N.; Schnabel, T.; Ahlswede, E. Recent trends in direct solution coating of kesterite absorber layers in solar cells. Sol. Energy Mater. Sol. Cells 2013, 119, 181–189. [Google Scholar] [CrossRef]
- Ahmad, F.; Lakhtakia, A.; Monk, P.B. Double-absorber thin-film solar cell with 34% efficiency. Appl. Phys. Lett. 2020, 117, 033901. [Google Scholar] [CrossRef]
- Li, S.Y.; Hägglund, C.; Ren, Y.; Scragg, J.J.S.; Larsen, J.K.; Frisk, C.; Rudisch, K.; Englund, S.; Platzer-Björkman, C. Optical properties of reactively sputtered Cu2ZnSnS4 solar absorbers determined by spectroscopic ellipsometry and spectrophotometry. Sol. Energy Mater. Sol. Cells 2016, 149, 170–178. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, P.; Yang, H.; Yi, Z.; Luo, Y.; Liu, L.; Song, Q.; Pan, M.; Zhang, J.; Cai, P. High efficiency Titanium oxides and nitrides ultra-broadband solar energy absorber and thermal emitter from 200 nm to 2600 nm. Opt. Laser Technol. 2022, 150, 108002. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, J.; Bakr, O.M.; Mohammed, O.F. Metal Halide Perovskites for X-ray Imaging Scintillators and Detectors. ACS Energy Lett. 2021, 6, 739–768. [Google Scholar] [CrossRef]
- Fan, P.; Wu, H.; Zhong, M.; Zhang, H.; Bai, B.; Jin, G. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion. Nanoscale 2016, 8, 14617–14624. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Chen, Y.; Tian, Y.; Liang, J.; Yang, W. Ultra-broadband metamaterial perfect solar absorber with polarization-independent and large incident angle-insensitive. Opt. Laser Technol. 2022, 156, 108591. [Google Scholar] [CrossRef]
- Jiang, J.; Xu, Y.; Li, Y.; Ren, L.; Chen, F.; Cheng, S.; Yang, W.; Ma, C.; Wang, Z.; Zhou, X. Ultra-broadband, near-perfect and thin-film scale solar absorber based on semiconductor-metal nanocone. Optik 2021, 246, 167855. [Google Scholar] [CrossRef]
- Sani, E.; Meucci, M.; Mercatelli, L.; Balbo, A.; Musa, C.; Licheri, R.; Orrù, R.; Cao, G. Titanium diboride ceramics for solar thermal absorbers. Sol. Energy Mater. Sol. Cells 2017, 169, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Ignatiev, A.; O’Neill, P.; Zajac, G. The surface microstructure optical properties relationship in solar absorbers: Black chrome. Sol. Energy Mater. 1979, 1, 69–79. [Google Scholar] [CrossRef]
- Rufangura, P.; Sabah, C. Design and characterization of a dual-band perfect metamaterial absorber for solar cell applications. J. Alloys Compd. 2016, 671, 43–50. [Google Scholar] [CrossRef]
- NREL. Reference Air Mass 1.5 Spectra. Grid Mod. 2019, 4. [Google Scholar]
- Azad, A.K.; Kort-Kamp, W.J.M.; Sykora, M.; Weisse-Bernstein, N.R.; Luk, T.S.; Taylor, A.J.; Dalvit, D.A.R.; Chen, H.T. Metasurface Broadband Solar Absorber. Sci. Rep. 2016, 6, 20347. [Google Scholar] [CrossRef]
- Mazzio, K.A.; Luscombe, C.K. The future of organic photovoltaics. Chem. Soc. Rev. 2015, 44, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, G.; Huang, Z.; Liu, X.; Fu, G. Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface. Sol. Energy Mater. Sol. Cells 2018, 179, 346–352. [Google Scholar] [CrossRef]
- Jia, X.; Yin, S.; Tang, Z. A Simple Metamaterial for High-Performance Spectrum-Selective Absorption in the Visible Region. Symmetry 2022, 14, 2402. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, G.; Liu, X.; Wang, Y.; Fu, G. Titanium resonators based ultra-broadband perfect light absorber. Opt. Mater. 2018, 83, 118–123. [Google Scholar] [CrossRef]
- Yu, P.; Yang, H.; Chen, X.; Yi, Z.; Yao, W.; Chen, J.; Yi, Y.; Wu, P. Ultra-wideband solar absorber based on refractory titanium metal. Renew. Energy 2020, 158, 227–235. [Google Scholar] [CrossRef]
- Gao, H.; Peng, W.; Chu, S.; Cui, W.; Liu, Z.; Yu, L.; Jing, Z. Refractory ultra-broadband perfect absorber from visible to near-infrared. Nanomaterials 2018, 8, 1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soydan, M.C.; Ghobadi, A.; Yildirim, D.U.; Erturk, V.B.; Ozbay, E. All Ceramic-Based Metal-Free Ultra-broadband Perfect Absorber. Plasmonics 2019, 14, 1801–1815. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Li, Z.-Y. Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials. Photonics Res. 2016, 4, 146. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Chen, X.; Yi, Z.; Tang, Y.; Yang, H.; Zhou, Z.; Duan, T.; Cheng, S.; Zhang, J.; Yi, Y. A numerical research of wideband solar absorber based on refractory metal from visible to near infrared. Opt. Mater. 2019, 97, 109400. [Google Scholar] [CrossRef]
Ref | Overall Mean Absorption | Bandwidth (Absorption > 90%) | Bandwidth (Absorption > 95%) | Angle-Insensitive | Polarization-Insensitive |
---|---|---|---|---|---|
Ref. [33] | More than 90% | 1110 | - | 0° to 40° | Yes |
Ref. [35] | More than 90% | 1007 | - | 0° to 45° | - |
Ref. [36] | 93.17% | 1759 | - | 0° to 45° | Yes |
Ref. [37] | 93.26 | 1650 | - | 0° to 70° | Yes |
Ref. [38] | More than 90% | 1310 | - | 0° to 60° | Yes |
Ref. [39] | More than 90% | 1000 | - | - | Yes |
Ref. [40] | More than 90% | 1264 | - | 0° to 45° | - |
Proposed Study | 93.93% | 2800 nm | 1110 nm | 0° to 50° | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsharari, M.; Han, B.B.; Patel, S.K.; Surve, J.; Aliqab, K.; Armghan, A. A Highly Efficient Infinity-Shaped Large Angular- and Polarization-Independent Metamaterial Absorber. Symmetry 2023, 15, 352. https://doi.org/10.3390/sym15020352
Alsharari M, Han BB, Patel SK, Surve J, Aliqab K, Armghan A. A Highly Efficient Infinity-Shaped Large Angular- and Polarization-Independent Metamaterial Absorber. Symmetry. 2023; 15(2):352. https://doi.org/10.3390/sym15020352
Chicago/Turabian StyleAlsharari, Meshari, Bo Bo Han, Shobhit K. Patel, Jaymit Surve, Khaled Aliqab, and Ammar Armghan. 2023. "A Highly Efficient Infinity-Shaped Large Angular- and Polarization-Independent Metamaterial Absorber" Symmetry 15, no. 2: 352. https://doi.org/10.3390/sym15020352
APA StyleAlsharari, M., Han, B. B., Patel, S. K., Surve, J., Aliqab, K., & Armghan, A. (2023). A Highly Efficient Infinity-Shaped Large Angular- and Polarization-Independent Metamaterial Absorber. Symmetry, 15(2), 352. https://doi.org/10.3390/sym15020352