Toeplitz Determinants for a Certain Family of Analytic Functions Endowed with Borel Distribution
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akgül, A.; Venkateswarlu, B.; Reddy, P.T.; Rani, N. On uniformly starlike functions with negative coefficients given by polylogarithms. Palestine J. Math. 2022, 11, 228–236. [Google Scholar]
- Altınkaya, Ş.; Yalçin, S. Poisson distribution series for certain subclasses of starlike functions with negative coefficients. Ann. Oradea Univ. Math. Fascicola 2017, 24, 5–8. [Google Scholar]
- El-Deeb, S.M.; Bulboaca, T.; Dziok, J. Pascal distribution series connected with certain subclasses of univalent functions. Kyungpook Math. J. 2019, 59, 301–314. [Google Scholar]
- Nazeer, W.; Mehmood, Q.; Kang, S.M.; Haq, A.U. An application of Binomial distribution series on certain analytic functions. J. Comput. Anal. Appl. 2019, 26, 11–17. [Google Scholar]
- Porwal, S.; Kumar, M. A unified study on starlike and convex functions associated with Poisson distribution series. Afr. Mat. 2016, 27, 10–21. [Google Scholar] [CrossRef]
- Wanas, A.K.; Al-Ziadi, N.A. Applications of Beta negative binomial distribution series on holomorphic functions. Earthline J. Math. Sci. 2021, 6, 271–292. [Google Scholar] [CrossRef]
- Çaglar, M.; Cotîrlă, L.I.; Buyankara, M. Fekete–Szegö inequalities for a new sub-class of bi-univalent functions associated with Gegenbauer polynomials. Symmetry 2022, 14, 1572. [Google Scholar] [CrossRef]
- Wanas, A.K.; Khuttar, J.A. Applications of Borel distribution series on analytic functions. Earthline J. Math. Sci. 2020, 4, 71–82. [Google Scholar] [CrossRef]
- Ye, K.; Lim, L.H. Every matrix is a product of Toeplitz matrices. Found. Comput. Math. 2016, 16, 577–598. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.K.; Halim, S.A. Toeplitz matrices whose elements are the coefficients of starlike and close-to-convex functions. Bull. Malays. Math. Sci. Soc. 2017, 40, 1781–1790. [Google Scholar] [CrossRef]
- Cotîrlǎ, L.I.; Wanas, A.K. Symmetric Toeplitz matrices for a new family of prestarlike functions. Symmetry 2022, 14, 1413. [Google Scholar] [CrossRef]
- Radhika, V.; Sivasubramanian, S.; Murugusundaramoorthy, G.; Jahangiri, J.M. Toeplitz ma-trices whose elements are the coefficients of functions with bounded boundary rotation. J. Complex Anal. 2016, 2016, 4960704. [Google Scholar]
- Radhika, V.; Sivasubramanian, S.; Murugusundaramoorthy, G.; Jahangiri, J.M. Toeplitz ma-trices whose elements are coefficients of Bazilevič functions. Open Math. 2018, 16, 1161–1169. [Google Scholar] [CrossRef]
- Sakar, F.M.; Naeem, M.; Shahid, K.; Hussain, S. Hankel determinant for class of analytic functions involving q-derivative operator. J. Adv. Math. Stud. 2021, 14, 265–278. [Google Scholar]
- Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz determi-nants for a subclass of q-starlike functions associated with a general conic domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Khan, S.; Hussain, S.; Khan, N. Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α. AIMS Math. 2021, 6, 5421–5439. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Tang, H. Fourth Toeplitz determinants for starlike functions defined by using the sine function. J. Funct. Spaces 2021, 2021, 4103772. [Google Scholar] [CrossRef]
- Allu, V.; Lecko, A.; Thomas, D.K. Hankel, Toeplitz and Hermitian-Toeplitz Determinants for Certain Close-to-convex Functions. Mediterr. J. Math. 2022, 19, 22. [Google Scholar] [CrossRef]
- Wahid, N.H.A.A.; Mohamad, D.; Kamarozzaman, N.M.; Shahminan, A.A. Toeplitz Deter-minants for the Class of Functions with Bounded Turning. Eur. J. Pure Appl. Math. 2022, 15, 1937–1947. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Malik, S.N.; Raza, M.; Ali, M. Fourth-Order Hankel Determinants and Toeplitz Determinants for Convex Functions Connected with Sine Functions. J. Math. 2022, 2022, 2871511. [Google Scholar] [CrossRef]
- Kamali, M.; Riskulova, A. On bounds of Toeplitz determinants for a subclass of analytic functions. Bull. Math. Anal. Appl. 2022, 14, 36–48. [Google Scholar]
- Pommerenke, C. Univalent Functions; Vandenhoeck and Rupercht: Göttingen, Germany, 1975. [Google Scholar]
- Grenander, U.; Szegö, G. Toeplitz Forms and Their Applications; California Monographs in Mathematical Sciences; University of California Press: Berkeley, CA, USA, 1958. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wanas, A.K.; Sakar, F.M.; Oros, G.I.; Cotîrlă, L.-I. Toeplitz Determinants for a Certain Family of Analytic Functions Endowed with Borel Distribution. Symmetry 2023, 15, 262. https://doi.org/10.3390/sym15020262
Wanas AK, Sakar FM, Oros GI, Cotîrlă L-I. Toeplitz Determinants for a Certain Family of Analytic Functions Endowed with Borel Distribution. Symmetry. 2023; 15(2):262. https://doi.org/10.3390/sym15020262
Chicago/Turabian StyleWanas, Abbas Kareem, Fethiye Müge Sakar, Georgia Irina Oros, and Luminiţa-Ioana Cotîrlă. 2023. "Toeplitz Determinants for a Certain Family of Analytic Functions Endowed with Borel Distribution" Symmetry 15, no. 2: 262. https://doi.org/10.3390/sym15020262
APA StyleWanas, A. K., Sakar, F. M., Oros, G. I., & Cotîrlă, L.-I. (2023). Toeplitz Determinants for a Certain Family of Analytic Functions Endowed with Borel Distribution. Symmetry, 15(2), 262. https://doi.org/10.3390/sym15020262