Regularity Index of Uncertain Random Graph
Abstract
1. Introduction
2. Preliminaries
2.1. Uncertainty Theory
2.2. Chance Theory
2.3. Regular Graph
3. Regularity Index
3.1. Foundational Concepts
3.2. Main Results
Algorithm 1. Adjacency matrix-based algorithm | ||
Steps | Commands | Interpretation |
1 | Input matrix , | Input uncertain random adjacency matrix of |
2 | Set | |
3 | Input matrix | |
4 | For each , define | |
and | ||
5 | if | |
6 | ||
7 | else | |
8 | ||
9 | end | |
10 | Set matrix | Define matrix Y related to elements in |
11 | if | |
12 | Determine | |
13 | else | |
14 | ||
15 | end | |
16 | ||
17 | if | |
18 | else | |
19 | ||
20 | end | |
21 | ||
22 | Determine k-regularity index for each matrix | |
23 | ||
24 | If there exist other realization matrix | |
such that is k-regular, go to Step 3, otherwise | ||
25 | Stop, and calculate | Determine k-regularity index for |
4. Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, X.; Teng, J.; Wu, W.; Li, Y.; Sheng, Y. Research on airport scheduling of FGAP multi-objective programming model based on uncertainty theory. Symmetry 2021, 13, 1915. [Google Scholar] [CrossRef]
- Chen, L.; Nan, G.; Liu, Q.; Peng, J.; Ming, J. How do consumer fairness concerns affect an e-commerce platform’s choice of selling scheme? J. Theor. Appl. Electron. Commer. Res. 2022, 17, 1075–1106. [Google Scholar] [CrossRef]
- Akram, M.; Sattar, A. Competition graphs under complex Pythagorean fuzzy information. J. Appl. Math. Comput. 2020, 63, 543–583. [Google Scholar] [CrossRef]
- Akram, M.; Sarwar, M. Novel applications of m-polar fuzzy competition graphs in decision support system. Neural. Comput. Appl. 2018, 30, 3145–3165. [Google Scholar] [CrossRef]
- Cheng, L.; Rao, C.; Chen, L. Multidimensional knapsack problem based on uncertain measure. Sci. Iran. 2017, 24, 2527–2539. [Google Scholar] [CrossRef]
- Chen, L.; Nan, G.; Li, M.; Feng, B.; Liu, Q. Manufacturer’s online selling strategies under spillovers from online to offline sales. J. Oper. Res. Soc. 2022. [Google Scholar] [CrossRef]
- Akram, M.; Waseem, N. Novel applications of bipolar fuzzy graphs to decision making problems. J. Appl. Math. Comput. 2018, 56, 73–91. [Google Scholar] [CrossRef]
- Ni, Y. Sequential seeding to optimize influence diffusion in a social network. Appl. Soft. Comput. 2017, 56, 730–737. [Google Scholar] [CrossRef]
- Majid, M.; Habib, S.; Javed, A.; Rizwan, M.; Srivastava, G.; Gadekallu, T.; Lin, J. Applications of wireless sensor networks and internet of things frameworks in the industry revolution 4.0: A systematic literature review. Sensors 2022, 22, 2087. [Google Scholar] [CrossRef]
- Peng, J.; Chen, L.; Zhang, B. Transportation planning for sustainable supply chain network using big data technology. Inf. Sci. 2022, 609, 781–798. [Google Scholar] [CrossRef]
- Khalili, M.; Borzooei, R.A.; Deldar, M. Matching numbers in fuzzy graphs. J. Appl. Math. Comput. 2021, 67, 1–22. [Google Scholar] [CrossRef]
- Erdős, P.; Rényi, A. On random graphs. Publ. Math. Debr. 1959, 6, 290–297. [Google Scholar] [CrossRef]
- Gilbert, E. Random graphs. Ann. Math. Stat. 1959, 30, 1141–1144. [Google Scholar] [CrossRef]
- Bollobás, B. Random Graphs, 2nd ed.; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Luczak, T.; Witkowski, L.; Witkowski, M. Hamilton cycles in random lifts of graphs. Eur. J. Combin. 2015, 49, 105–116. [Google Scholar] [CrossRef]
- Liu, B. Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Liu, B. Uncertainty Theory, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Liu, B. Uncertain random graph and uncertain random network. J. Uncertain Syst. 2014, 8, 3–12. [Google Scholar]
- Majumder, S.; Kar, M.; Kar, S.; Pal, T. Uncertain programming models for multi-objective shortest path problem with uncertain parameters. Soft Comput. 2020, 24, 8975–8996. [Google Scholar] [CrossRef]
- Mukherjee, A.; Panigrahi, G.; Kar, S.; Maiti, M. Constrained covering solid travelling salesman problems in uncertain environment. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 125–141. [Google Scholar] [CrossRef]
- Gao, R.; Zhang, Z. Analysis of green supply chain considering green degree and sales effort with uncertain demand. J. Intell. Fuzzy Syst. 2020, 38, 4247–4264. [Google Scholar] [CrossRef]
- Yang, G.; Tang, W.; Zhao, R. An uncertain workforce planning problem with job satisfaction. Int. J. Mach. Learn. Cybern. 2017, 8, 1681–1693. [Google Scholar] [CrossRef]
- Yang, G.; Tang, W.; Zhao, R. An uncertain furniture production planning problem with cumulative service levels. Soft Comput. 2017, 21, 1041–1055. [Google Scholar] [CrossRef]
- Liu, B. Uncertainty Theory, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Peng, J.; Zhang, B.; Sugeng, K.A. Uncertain hypergraphs: A conceptual framework and some topological characteristics indexes. Symmetry 2022, 14, 330. [Google Scholar] [CrossRef]
- Gao, X.; Gao, Y. Connectedness index of uncertain graph. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2013, 21, 127–137. [Google Scholar] [CrossRef]
- Gao, X. Tree index of uncertain graphs. Soft Comput. 2016, 20, 1449–1458. [Google Scholar] [CrossRef]
- Gao, X.; Guo, C.; Yin, X.; Yu, X. The computation on α-connectedness index of uncertain graph. Cluster Comput. 2019, 22, 5691–5701. [Google Scholar] [CrossRef]
- Gao, Y.; Qin, Z. On computing the edge-connectivity of an uncertain graph. IEEE Trans. Fuzzy Syst. 2016, 24, 981–991. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, L.; Li, S.; Kar, S. On distribution function of the diameter in uncertain graph. Inf. Sci. 2015, 296, 61–74. [Google Scholar] [CrossRef]
- Rosyida, I.; Peng, J.; Chen, L.; Widodo, W.; Indrati, C.R.; Sugeng, K. An uncertain chromatic number of an uncertain graph based on α-cut coloring. Fuzzy Optim. Decis. Mak. 2018, 17, 103–123. [Google Scholar] [CrossRef]
- Wang, J.; Gao, X.; Zhou, X.; Guo, C.; Yin, X. Connectivity index of generalized uncertain graph. Comput. Intell. Neurosci. 2022, 2022, 4571530. [Google Scholar] [CrossRef]
- Yu, D.; Wang, D.; Luo, Q.; Zheng, Y.; Wang, G.; Cai, Z. Stable structural clustering in uncertain graphs. Inf. Sci. 2022, 586, 596–610. [Google Scholar] [CrossRef]
- Chen, L.; Gao, R.; Bian, Y.; Di, H. Elliptic entropy of uncertain random variables with application to portfolio selection. Soft Comput. 2021, 25, 1925–1939. [Google Scholar] [CrossRef]
- Liu, Y. Uncertain random variables: A mixture of uncertainty and randomness. Soft Comput. 2013, 17, 625–634. [Google Scholar] [CrossRef]
- Gao, R.; Sun, Y.; Ralescu, D.A. Order statistics of uncertain random variables with application to k-out-of-n system. Fuzzy Optim. Decis. Mak. 2017, 16, 159–181. [Google Scholar] [CrossRef]
- Nowak, P.; Hryniewicz, O. On some laws of large numbers for uncertain random variables. Symmetry 2021, 13, 2258. [Google Scholar] [CrossRef]
- Sheng, Y.; Gao, Y. Shortest path problem of uncertain random network. Comput. Ind. Eng. 2016, 99, 97–105. [Google Scholar] [CrossRef]
- Sheng, Y.; Qin, X.; Shi, G. Minimum spanning tree problem of uncertain random network. J. Intell. Manuf. 2017, 28, 565–574. [Google Scholar] [CrossRef]
- Liu, Y.; Ralescu, D.A. Risk index in uncertain random risk analysis. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2014, 22, 491–504. [Google Scholar] [CrossRef]
- Liu, Y.; Ralescu, D.A.; Xiao, C.; Lio, W. Tail value-at-risk in uncertain random environment. Soft Comput. 2020, 24, 2495–2502. [Google Scholar] [CrossRef]
- Shi, G.; Zhuang, R.; Sheng, Y. Sine entropy of uncertain random variables. Symmetry 2021, 13, 2023. [Google Scholar] [CrossRef]
- Wang, X.; Shi, G.; Sheng, Y. Delayed renewal process with uncertain random inter-arrival times. Symmetry 2021, 13, 1943. [Google Scholar] [CrossRef]
- Li, B.; Li, X.; Teo, K.L.; Zheng, P. A new uncertain random portfolio optimization model for complex systems with downside risks and diversification. Chaos Solitons Fractals 2022, 160, 112213. [Google Scholar] [CrossRef]
- Zhang, B.; Peng, J.; Li, S. Euler index of uncertain random graph: Concepts and properties. Int. J. Comput. Math. 2017, 94, 217–229. [Google Scholar] [CrossRef]
- Chen, L.; Peng, J.; Rao, C.; Rosyida, I. Cycle index of uncertain random graph. J. Intell. Fuzzy Syst. 2018, 34, 4249–4259. [Google Scholar] [CrossRef]
- Zhang, B.; Peng, J.; Li, S. Matching index and its algorithm of uncertain random graph. Appl. Comput. Math. 2018, 17, 22–35. [Google Scholar]
- Li, H.; Gao, X. On the vertex-connectivity of an uncertain random graph. IEEE Access 2020, 8, 85504–85514. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H. On the edge-connectivity of an uncertain random graph. IEEE Access 2020, 8, 59126–59134. [Google Scholar] [CrossRef]
- Sheng, Y.; Mei, X. Uncertain random shortest path problem. Soft Comput. 2020, 24, 2431–2440. [Google Scholar] [CrossRef]
- Li, H.; Gao, X. On the significance of edges for connectivity in uncertain random graphs. Soft Comput. 2021, 25, 8989–8997. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, K. On the shortest path problem of uncertain random digraphs. Soft Comput. 2022, 26, 9069–9081. [Google Scholar] [CrossRef]
- Liu, Y. Uncertain random programming with applications. Fuzzy Optim. Decis. Mak. 2013, 12, 153–169. [Google Scholar] [CrossRef]
- Bondy, J.; Murty, U. Graph Theory with Applications; Elsevier: New York, NY, USA, 1976. [Google Scholar]
- Shahzadi, S.; Akram, M. Edge regular intuitionistic fuzzy soft graphs. J. Intell. Fuzzy Syst. 2016, 31, 1881–1895. [Google Scholar] [CrossRef]
- Gao, X. Regularity index of uncertain graph. J. Intell. Fuzzy Syst. 2014, 27, 1671–16784. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Zeng, L.; Peng, J.; Ming, J.; Zhu, X. Regularity Index of Uncertain Random Graph. Symmetry 2023, 15, 137. https://doi.org/10.3390/sym15010137
Chen L, Zeng L, Peng J, Ming J, Zhu X. Regularity Index of Uncertain Random Graph. Symmetry. 2023; 15(1):137. https://doi.org/10.3390/sym15010137
Chicago/Turabian StyleChen, Lin, Li Zeng, Jin Peng, Junren Ming, and Xianghui Zhu. 2023. "Regularity Index of Uncertain Random Graph" Symmetry 15, no. 1: 137. https://doi.org/10.3390/sym15010137
APA StyleChen, L., Zeng, L., Peng, J., Ming, J., & Zhu, X. (2023). Regularity Index of Uncertain Random Graph. Symmetry, 15(1), 137. https://doi.org/10.3390/sym15010137