Spatiotemporal Identification of Cell Divisions Using Symmetry Properties in Time-Lapse Phase Contrast Microscopy
Abstract
:1. Introduction
1.1. Background on Phase Contrast Imaging for Cell Division
1.2. Literature Review
1.3. Overview of the Proposed Method and Contributions
2. Data and Methods
2.1. Data
2.2. Restoration of Intensity Uniformity along Time
2.3. Restoration of Intensity Uniformity in Space
2.4. Extended Circle Hough Transform of a Phase Contrast Sequence
2.5. Registration for Translation Transformations
2.6. Extraction of Cell Centroids
2.7. Inter-Frame Associations between Pixels
2.8. Extraction of Cell Trajectories and Detection of Cell Divisions
3. Experiments
3.1. Validation Measures for Cell Division Detection
3.2. Experimental Performance of the Image Sequences
4. Discussion and Future Work
4.1. Summary
4.2. Discussion
4.3. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
True Positive | |
False Positive | |
True Negative | |
False Negative |
References
- Hadjidemetriou, S.; Gabrielli, B.; Pike, T.; Stevens, F.; Mele, K.; Vallotton, P. Detection and tracking of cell divisions in phase contrast video microscopy. In Proceedings of the Third International Workshop on Microscopic Image Analysis with Applications in Biology (MIAAB)-in Conjunction with MICCAI, New York, NY, USA, 6 September 2008. [Google Scholar]
- Yin, Z.; Kanade, T.; Chen, M. Understanding the phase contrast optics to restore artifact-free microscopy images for segmentation. Med. Image Anal. 2012, 16, 1047–1062. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Yin, Z.; Kanade, T.; Huh, S. Phase contrast image restoration via dictionary representation of diffraction patterns. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Nice, France, 1–5 October 2012; Volume 7512, pp. 615–622. [Google Scholar]
- Huh, S.; Su, H.; Chen, M.; Kanade, T. Efficient phase contrast microscopy restoration applied for muscle myotube detection. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Nagoya, Japan, 22–26 September 2013; Volume 8149, pp. 420–427. [Google Scholar]
- Su, H.; Yin, Z.; Huh, S.; Kanade, T. Cell segmentation via spectral analysis on phase retardation features. In Proceedings of the IEEE 10th International Symposium on Biomedical Imaging (ISBI), San Francisco, CA, USA, 7–11 April 2013; pp. 1477–1483. [Google Scholar]
- Liu, A.; Lu, Y.; Chen, M.; Su, Y. Mitosis detection in phase contrast microscopy image sequences of stem cell populations: A critical review. IEEE Trans. Big Data 2017, 3, 443–457. [Google Scholar] [CrossRef]
- Su, Y.T.; Lu, Y.; Liu, J.; Chen, M.; Liu, A.A. Spatio-temporal mitosis detection in time-lapse phase-contrast microscopy image sequences: A benchmark. IEEE Trans. Med. Imaging 2021, 40, 1319–1328. [Google Scholar] [CrossRef] [PubMed]
- Debeir, O.; Ham, P.; Kiss, R.; Decaestecker, C. Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes. IEEE Trans. Med. Imaging 2005, 24, 697–711. [Google Scholar] [CrossRef]
- Altman, M.; Wang, S.; Whitlock, J.; Roeske, J. Cell detection in phase-contrast images used for alpha-particle track-etch dosimetry: A semi-automated approach. Phys. Med. Biol. 2005, 50, 305–318. [Google Scholar] [CrossRef]
- Kofahi, O.; Radke, R.; Roysam, B.; Banker, G. Automated semantic analysis of changes in image sequences of neurons in culture. IEEE Trans. Biomed. Eng. 2006, 53, 1109–1123. [Google Scholar] [CrossRef]
- Tscherepanow, M.; Zollner, F.; Kummert, F. Automatic segmentation of unstained living cells in bright-field microscope images. In Proceedings of the Industrial Conference on Data Mining-Workshops, Leipzig, Germany, 14–15 July 2006; pp. 86–95. [Google Scholar]
- Colin, F.; Cisneros, M.; Cervantes, J.; Martinez, J.; Debeir, O. Detection of biological cells in phase-contrast microscopy images. In Proceedings of the Fifth IEEE Mexican International Conference on Artificial Intelligence, Washington, DC, USA, 13–17 November 2006. [Google Scholar]
- Li, K.; Miller, E.; Weiss, L.; Campbell, P.; Kanade, T. Online tracking of migrating and proliferating cells imaged with phase-contrast microscopy. In Proceedings of the Conference on Computer Vision and Pattern Recognition Workshop (CVPRW’06), New York, NY, USA, 17–22 June 2006. [Google Scholar]
- Oliva, A.; Torralba, A. modeling the shape of the scene: A holistic representation of the spatial envelope. Int. J. Comput. Vis. 2001, 42, 145–175. [Google Scholar] [CrossRef]
- Liu, A.; Li, K.; Kanade, T. Mitosis sequence detection using hidden conditional random fields. In Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI), Rotterdam, The Netherlands, 14–17 April 2010. [Google Scholar]
- Nie, W.; Cheng, H.; Su, Y. Modeling temporal information of mitotic for mitotic event detection. IEEE Trans. Big Data 2017, 3, 458–469. [Google Scholar] [CrossRef]
- Jayalakshmi, N. Cell lineage construction of neural progenitor cells. Int. J. Comput. Appl. 2014, 90, 40–47. [Google Scholar] [CrossRef]
- Gilad, T.; Bray, M.; Carpenter, A.; Raviv, T. Symmetry-based mitosis detection in time-lapse microscopy. In Proceedings of the IEEE 12th International Symposium on Biomedical Imaging (ISBI), Bridge, NY, USA, 16–19 April 2015; pp. 164–167. [Google Scholar]
- Miroslaw, L.; Chorazyczewski, A.; Buchholz, F.; Kittler, R. Correlation-based method for automatic mitotic cell detection in phase contrast microscopy. Comput. Recognit. Systems. Adv. Soft Comput. 2005, 30, 627–634. [Google Scholar]
- Liu, A.; Li, K.; Kanade, T. Spatiotemporal mitosis event detection in time-lapse phase contrast microscopy image sequences. In Proceedings of the IEEE International Conference on Multimedia and Expo, Singapore, 19–23 July 2010; pp. 161–166. [Google Scholar]
- Liu, A.; Hao, T.; Gao, Z.; Su, Y.; Yang, Z. Nonnegative mixed-norm convex optimization for mitotic cell detection in phase contrast microscopy. Comput. Math. Methods Med. 2013, 2013, 176272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kofahi, O.; Radke, R.; Goderie, S.; Shen, Q.; Temple, S.; Roysam, B. Automated cell lineage construction: A rapid method to analyze clonal development established with murine neural progenitor cells. Cell Cycle 2006, 5, 327–335. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Wang, X.; Metaxas, D.; Mathew, R.; White, E. Cell segmentation for division rate estimation in computerized video time-lapse microscopy. In Proceedings of the Microscopy Image Analysis with Applications in Biology (MIAAB)–in Conjunction with MICCAI, San Jose, CA, USA, 20 January 2007; Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-spie/6431/643109/Cell-segmentation-for-division-rate-estimation-in-computerized-video-time/10.1117/12.717590.short (accessed on 13 July 2022).
- Wang, X.; He, W.; Metaxas, D.; Mathew, R.; White, E. Cell segmentation and tracking using texture adaptive snakes. In Proceedings of the IEEE International Symposium of Biomedical Imaging (ISBI), Washington, DC, USA, 12–15 April 2007. [Google Scholar]
- Yang, F.; MacKey, M.; Ianzini, F.; Gallardo, G.; Sonka, M. Cell segmentation, tracking, and mitosis detection using temporal context. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Palm Springs, CA, USA, 26–29 October 2005; pp. 302–309. [Google Scholar]
- Li, K.; Chen, M.; Kanade, T. Cell population tracking and lineage construction with spatiotemporal context. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Brisbane, Australia, 29 October–2 November 2007; pp. 295–302. [Google Scholar]
- Li, K.; Kanade, T. Cell population tracking and lineage construction using multiple-model dynamics filters and spatiotemporal optimization. In Proceedings of the International Workshop on Microscopic Image Analysis with Applications in Biology (MIAAB)-in Conjunction with MICCAI, Piscataway, NY, USA, 21 September 2007; Available online: https://www.ri.cmu.edu/publications/cell-population-tracking-and-lineage-construction-using-multiple-model-dynamics-filters-and-spatiotemporal-optimization/ (accessed on 13 July 2022).
- Li, K.; Miller, E.; Chen, M.; Kanade, T.; Weiss, L.; Campbell, P. Computer vision tracking of stemness. In Proceedings of the IEEE International Symposium of Biomedical Imaging (ISBI), Paris, France, 14–17 May 2008; pp. 847–850. [Google Scholar]
- Padfield, D.; Rittscher, J.; Roysam, B. Spatio-temporal cell segmentation and tracking for automated screening. In Proceedings of the IEEE International Symposium of Biomedical Imaging (ISBI), Paris, France, 14–17 May 2008; pp. 376–379. [Google Scholar]
- Becker, T.; Rapoport, D.H.; Mamlouk, A.M. From time lapse-data to genealogic trees: Using different contrast mechanisms to improve cell tracking. In Proceedings of the 9th IEEE International Symposium on Biomedical Imaging (ISBI), Barcelona, Spain, 2–5 May 2012; pp. 386–389. [Google Scholar]
- Grah, J.; Harrington, J.; Koh, S.; Pike, J.; Schreiner, A.; Burger, M.; Schoenlieb, C.; Reichelt, S. Mathematical imaging methods for mitosis analysis in live-cell phase contrast microscopy. Methods 2017, 115, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Miller, E.; Chen, M.; Kanade, T.; Weiss, L.; Campbell, P. Cell population tracking and lineage construction with spatiotemporal context. Med. Image Anal. 2008, 12, 546–566. [Google Scholar] [CrossRef]
- Bise, R.; Yin, Z.; Kanade, T. Reliable cell tracking by global data association. In Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI), Chicago, IL, USA, 30 March–2 April 2011. [Google Scholar]
- A. Massoudi, D.S.; Sowmya, A. Cell tracking and mitosis detection using splitting flow networks in phase-contrast imaging. In Proceedings of the 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), San Diego, CA, USA, 28 August–1 September 2012; pp. 5310–5313. [Google Scholar]
- Zhou, X.; Li, F.; Yan, J.; Wong, S.T.C. A novel cell segmentation method and cell phase identification using Markov model. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, G.M.; Yang, F.; Ianzini, F.; Mackey, M.; Sonka, M. Mitotic cell recognition with hidden Markov models. In Medical Imaging 2004: Visualization, Image-Guided Procedures, and Display; Galloway, R.L., Jr., Ed.; International Society for Optics and Photonics, SPIE: San Diego, CA, USA, 2004; Volume 5367, pp. 661–668. [Google Scholar] [CrossRef]
- Liang, L.; Zhou, X.; Li, F.; Wong, S.; Huckins, J.; King, R. Mitosis cell identification with conditional random fields. In Proceedings of the IEEE/NIH Life Science Systems and Applications Workshop, Bethesda, MD, USA, 8–9 November 2007; pp. 9–12. [Google Scholar]
- Liu, A.; Li, K.; Hao, T. A hierarchical framework for mitosis detection in time-lapse phase contrast microscopy image sequences of stem cell populations. In Medical Imaging; InTech: Vienna, Austria, 2011; pp. 355–374. [Google Scholar]
- Huh, S.; Ker, D.F.E.; Bise, R.; Chen, M.; Kanade, T. Automated mitosis detection of stem cell populations in phase-contrast microscopy images. IEEE Trans. Med. Imaging 2011, 30, 586–596. [Google Scholar]
- Liu, A.; Tang, J.; Nie, W.; Su, Y. Multi-grained random fields for mitosis identification in time-lapse phase contrast microscopy image sequences. IEEE Trans. Med. Imaging 2017, 36, 1699–1710. [Google Scholar] [CrossRef]
- Liu, A.; Li, K.; Kanade, T. A semi-Markov model for mitosis segmentation in time-lapse phase contrast microscopy image sequences of stem cell populations. IEEE Trans. Med. Imaging 2012, 31, 359–369. [Google Scholar]
- Sherin, L.; Farwa, S.; Sohail, A.; Li, Z.; Bég, O. Cancer drug therapy and stochastic modeling of “nano-motors”. Int. J. Nanomed. 2018, 13, 6429–6440. [Google Scholar] [CrossRef]
- Ben-Haim, T.; Riklin-Raviv, T. Graph neural network for cell tracking in microscopy videos. arXiv 2022, arXiv:2202.04731. [Google Scholar]
- Shkolyar, A.; Gefen, A.; Benayahu, D.; Greenspan, H. Automatic detection of cell divisions (mitosis) in live-imaging microscopy images using convolutional neural networks. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 743–746. [Google Scholar]
- Nie, W.; Li, W.; Liu, A.; Hao, T.; Su, Y. 3D convolutional networks-based mitotic event detection in time-lapse phase contrast microscopy image sequences of stem cell populations. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Las Vegas, NV, USA, 1–26 July 2016; pp. 1359–1366. [Google Scholar]
- Zhou, Y.; Mao, H.; Yi, Z. Cell mitosis detection using deep neural networks. Knowl. Based Syst. 2017, 137, 19–28. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Verma, E.; Singh, V.; Safwan, M. Mitosis detection in phase contrast microscopy image sequences using spatial segmentation and spatio-temporal localization refinement. In Proceedings of the IEEE 18th International Symposium on Biomedical Imaging (ISBI), Nice, France, 13–16 April 2021; pp. 1112–1116. [Google Scholar] [CrossRef]
- Mao, Y.; Yin, Z. A hierarchical convolutional neural network for mitosis detection in phase-contrast microscopy images. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Athens, Greece, 17–21 October 2016; Volume 9901. [Google Scholar]
- Mao, Y.; Yin, Z. Two-stream bidirectional long short-term memory for mitosis event detection and stage localization in phase-contrast microscopy images. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Quebec City, QC, Canada, 10–14 September 2017; Volume 10434, pp. 56–64. [Google Scholar]
- Mao, Y.; Han, L.; Yin, Z. Cell mitosis event analysis in phase contrast microscopy images using deep learning. Med. Image Anal. 2019, 57, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Lu, Y.; Chen, M.; Liu, A. Spatiotemporal joint mitosis detection using CNN-LSTM network in time-lapse phase contrast microscopy images. IEEE Access 2017, 5, 18033–18041. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, A.A.; Chen, M.; Nie, W.Z.; Su, Y.T. Sequential saliency guided deep neural network for joint mitosis identification and localization in time-lapse phase contrast microscopy images. IEEE J. Biomed. Health Inform. 2020, 24, 1367–1378. [Google Scholar] [CrossRef]
- Milletari, F.; Navab, N.; Ahmadi, S.A. V-Net: Fully convolutional neural networks for volumetric medical image segmentation. arXiv 2016, arXiv:1606.04797. [Google Scholar]
- Nishimura, K.; Bise, R. Spatial-temporal mitosis detection in phase-contrast microscopy via likelihood map estimation by 3DCNN. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 1811–1815. [Google Scholar] [CrossRef]
- Hayashida, J.; Nishimura, K.; Bise, R. Consistent cell tracking in multi-frames with spatio-temporal context by object-level warping loss. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 4–8 January 2022; pp. 1759–1768. [Google Scholar] [CrossRef]
- Su, Y.T.; Lu, Y.; Chen, M.; Liu, A.A. Deep reinforcement learning-based progressive sequence saliency discovery network for mitosis detection in time-lapse phase-contrast microscopy images. IEEE/ACM Trans. Comput. Biol. Bioinform. 2022, 19, 854–865. [Google Scholar] [CrossRef] [PubMed]
- Hough, P. Method and Means for Recognizing Complex Patterns. U.S. Patent No. 3,069,654, 18 December 1962. [Google Scholar]
- Rosenfeld, A. Picture Processing by Computer. ACM Comput. Surv. 1969, 1, 147–176. [Google Scholar] [CrossRef]
- Kimme, C.; Ballard, D.; Sklansky, J. Finding circles by an array of accumulators. Commun. ACM 1975, 18, 120–122. [Google Scholar] [CrossRef]
- Sled, J.; Zijdenbos, A.; Evans, A. A nonparametric method for automatic correction of intensity nonuniformity in MRI Data. IEEE Trans. Med. Imaging 1998, 17, 87–97. [Google Scholar] [CrossRef]
- Likar, B.; Maintz, J.; Viergever, M.; Pernus, F. Retrospective shading correction based on entropy minimization. J. Microsc. 1999, 197, 285–295. [Google Scholar] [CrossRef]
- Hadjidemetriou, S.; Studholme, C.; Mueller, S.; Weiner, M.; Schuff, N. Restoration of MRI data for intensity non-uniformities using local high order intensity statistics. Med. Image Anal. 2009, 13, 36–48. [Google Scholar] [CrossRef] [Green Version]
- Tustison, N.; Avants, B.B.; Cook, P.A.; Zheng, Y.; Egan, A.; Yushkevich, P.A.; Gee, J.C. N4ITK: Improved N3 bias correction. IEEE Trans. Med. Imaging 2010, 29, 1310–1320. [Google Scholar] [CrossRef] [PubMed]
- Marsden, J.; Tromba, A. Vector Calculus, 6th ed.; W.H. Freeman: New York, NY, USA, 2011. [Google Scholar]
- Gonzalez, R.; Woods, R. Digital Image Processing; Prentice Hall: Hoboken, NJ, USA, 1993. [Google Scholar]
- Borovik, A.; Katz, M.G. Who gave you the Cauchy–Weierstrass tale? The dual history of rigorous calculus. Found. Sci. 2011, 17, 245–276. [Google Scholar] [CrossRef]
- Ker, D.; Eom, S.; Sanami, S.; Bise, R.; Pascale, C.; Yin, Z.; Huh, S.; Osuna-Highley, E.; Junkers, S.N.; Helfrich, C.J.; et al. Phase contrast time-lapse microscopy datasets with automated and manual cell tracking annotations. Sci. Data 2018, 5, 1–12. [Google Scholar] [CrossRef]
- Barr, A.H. Superquadrics and angle-preserving transformations. IEEE Comput. Graph. Appl. 1981, 1, 11–23. [Google Scholar] [CrossRef]
- Bershteyn, M.; Nowakowski, T.; Pollen, A.; Lullo, E.; Nene, A.; Wynshaw-Boris, A.; Kriegstein, A. Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell 2017, 20, 435–449.e4. [Google Scholar] [CrossRef] [Green Version]
Property\Seq. | Sequcences 1 | Sequcences 2 | Sequcences 3 |
---|---|---|---|
Cell type | HeLa | Kyoto | Fibronectin null fibroblast |
Inhibitor synchronized | No | No | RO3306 10 mM |
Number of movies | 5 | 4 | 5 |
Inter-frame time | 3 min | 3 min | 5 min |
Average number of frames | 54 | 90 | 60 |
Average of total time | 2 h 42 min | 4 h 30 min | 5 h |
Magnification microscope | First three movies: Lens (200×) Last two movies: Lens (100×) | Lens (100×) | Lens (100×) |
Image size (pixels) |
Seq.\Meas. | ≡ ≡ | |||||
---|---|---|---|---|---|---|
Sequences 1 | ||||||
Sequence 1 | 8 | 0 | 2 | 1 | 0.8 | 0.89 |
Sequence 2 | 8 | 0 | 0 | 1 | 1 | 1 |
Sequence 3 | 9 | 0 | 2 | 1 | 0.82 | 0.9 |
Sequence 4 | 7 | 0 | 2 | 1 | 0.78 | 0.88 |
Sequence 5 | 18 | 0 | 2 | 1 | 0.9 | 0.95 |
Sequences 2 | ||||||
Sequence 1 | 7 | 0 | 0 | 1 | 1 | 1 |
Sequence 2 | 7 | 0 | 1 | 1 | 0.86 | 0.93 |
Sequence 3 | 15 | 0 | 0 | 1 | 1 | 1 |
Sequence 4 | 12 | 0 | 1 | 1 | 0.92 | 0.96 |
Sequences 3 | ||||||
Sequence 1 | 19 | 0 | 1 | 1 | 0.95 | 0.97 |
Sequence 2 | 23 | 0 | 1 | 1 | 0.96 | 0.98 |
Sequence 3 | 17 | 0 | 5 | 1 | 0.77 | 0.87 |
Sequence 4 | 11 | 0 | 3 | 1 | 0.79 | 0.88 |
Sequence 5 | 18 | 3 | 3 | 0.86 | 0.86 | 0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadjidemetriou, S.; Hadjisavva, R.; Christodoulou, A.; Papageorgiou, I.; Panayiotou, I.; Skourides, P. Spatiotemporal Identification of Cell Divisions Using Symmetry Properties in Time-Lapse Phase Contrast Microscopy. Symmetry 2022, 14, 1802. https://doi.org/10.3390/sym14091802
Hadjidemetriou S, Hadjisavva R, Christodoulou A, Papageorgiou I, Panayiotou I, Skourides P. Spatiotemporal Identification of Cell Divisions Using Symmetry Properties in Time-Lapse Phase Contrast Microscopy. Symmetry. 2022; 14(9):1802. https://doi.org/10.3390/sym14091802
Chicago/Turabian StyleHadjidemetriou, Stathis, Rania Hadjisavva, Andri Christodoulou, Ismini Papageorgiou, Ioanna Panayiotou, and Paris Skourides. 2022. "Spatiotemporal Identification of Cell Divisions Using Symmetry Properties in Time-Lapse Phase Contrast Microscopy" Symmetry 14, no. 9: 1802. https://doi.org/10.3390/sym14091802
APA StyleHadjidemetriou, S., Hadjisavva, R., Christodoulou, A., Papageorgiou, I., Panayiotou, I., & Skourides, P. (2022). Spatiotemporal Identification of Cell Divisions Using Symmetry Properties in Time-Lapse Phase Contrast Microscopy. Symmetry, 14(9), 1802. https://doi.org/10.3390/sym14091802