Convergence Analysis of a Symmetrical and Positivity-Preserving Finite Difference Scheme for 1D Poisson–Nernst–Planck System
Abstract
:1. Introduction
2. A Review of the Numerical Method in 1D
3. An Unconditional Optimal Error Analysis
4. Positivity-Preserving Condition
5. Numerical Results
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Roubick, T. Imcompressible ionized non-newtonian fluid mixture. SIAM J. Math. Anal. 2007, 39, 863–890. [Google Scholar] [CrossRef] [Green Version]
- Eisenberg, B.; Liu, W.S. PNP Systems for Ion Channels with Permanent Charges. SIAM J. Math. Anal. 2007, 38, 1932–1966. [Google Scholar] [CrossRef] [Green Version]
- Jerome, J.W. Analysis of Charge Transport: A Mathematical Study of Semiconductor Devices; Springer: Berlin, Germany, 1996. [Google Scholar]
- Biler, P.; Hebisch, W.; Nadzieja, T. The Debye System: Existence and Large Time Behaviour of Solutions. Nonlinear Anal. Pergamon 1994, 23, 1189–1209. [Google Scholar] [CrossRef]
- Gajewski, H.; Gröger, K. On the Basic Equations for Carrier Transport in Semiconductors. J. Math. Appl. Anal. 1986, 113, 12–35. [Google Scholar] [CrossRef] [Green Version]
- Prohl, A.; Schmuck, M. Convergent discretizations for the Nernst-Planck-Poisson system. Numer. Math. 2009, 111, 591–630. [Google Scholar] [CrossRef]
- Flavell, A.; Machen, M.; Eisenberg, B.; Kabre, J.; Liu, C.; Li, X.F. A Conservative Finite Difference Scheme for PNP Equations. J. Comput. Eletron. 2014, 13, 235–249. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.L.; Wang, Z.M. A free energy satisfying finite difference method for PNP equations. J. Comput. Phys. 2014, 268, 362–376. [Google Scholar] [CrossRef] [Green Version]
- He, D.D.; Pan, K.J. An energy preserving finite difference scheme for the PNP system. Appl. Math. Comput. 2016, 287–288, 214–223. [Google Scholar]
- Heywood, J.; Rannacher, R. Finite element approximation of the nonstationary Navier–Stokes problem IV: Error analysis for second-order time discretization. SIAM J. Numer. Anal. 1990, 27, 353–384. [Google Scholar] [CrossRef]
- Samarskii, A. The Theory of Difference Schemes; CRC Press: Boca Racton, FL, USA, 2001. [Google Scholar]
- Zhou, Y.L. Applications of Discrete Functional Analysis to the Finite Difference Method; International Academic Publishers: Beijing, China, 1990. [Google Scholar]
- Horn, R.; Johnson, C. Matrix Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
h | Order | Order | Order | |||
---|---|---|---|---|---|---|
2.24 × 10 | - | 6.35 × 10 | - | 1.99 × 10 | - | |
5.69 × 10 | 1.99 | 1.58 × 10 | 2.00 | 5.80 × 10 | 1.78 | |
1.45 × 10 | 1.97 | 3.96 × 10 | 2.00 | 1.59 × 10 | 1.87 | |
3.88 × 10 | 1.90 | 9.90 × 10 | 2.00 | 4.48 × 10 | 1.82 |
Order | Order | Order | ||||
---|---|---|---|---|---|---|
8.46 × 10 | - | 5.56 × 10 | - | 1.14 × 10 | - | |
4.25 × 10 | 0.99 | 2.79 × 10 | 0.99 | 7.07 × 10 | 0.69 | |
2.13 × 10 | 1.00 | 1.40 × 10 | 0.99 | 4.05 × 10 | 0.80 | |
1.06 × 10 | 1.00 | 7.04 × 10 | 0.99 | 2.22 × 10 | 0.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, W.; Liu, B.; Guo, Q. Convergence Analysis of a Symmetrical and Positivity-Preserving Finite Difference Scheme for 1D Poisson–Nernst–Planck System. Symmetry 2022, 14, 1589. https://doi.org/10.3390/sym14081589
Ling W, Liu B, Guo Q. Convergence Analysis of a Symmetrical and Positivity-Preserving Finite Difference Scheme for 1D Poisson–Nernst–Planck System. Symmetry. 2022; 14(8):1589. https://doi.org/10.3390/sym14081589
Chicago/Turabian StyleLing, Weiwei, Benchao Liu, and Qian Guo. 2022. "Convergence Analysis of a Symmetrical and Positivity-Preserving Finite Difference Scheme for 1D Poisson–Nernst–Planck System" Symmetry 14, no. 8: 1589. https://doi.org/10.3390/sym14081589
APA StyleLing, W., Liu, B., & Guo, Q. (2022). Convergence Analysis of a Symmetrical and Positivity-Preserving Finite Difference Scheme for 1D Poisson–Nernst–Planck System. Symmetry, 14(8), 1589. https://doi.org/10.3390/sym14081589