Functional Differential Equations with Several Delays: Oscillatory Behavior
Abstract
:1. Introduction
2. New Criteria for Oscillation
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Braun, M. Qualitative theory of differential equations. In Differential Equations and Their Applications, Texts in Applied Mathematics; Springer: New York, NY, USA, 1993; Volume 11. [Google Scholar]
- Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977. [Google Scholar]
- Winston, E. The global existence of solutions of delay differential equations. J. Differ. Equ. 1971, 10, 392–402. [Google Scholar] [CrossRef]
- Mohammedal, K.H.; Ahmad, N.A.; Fadhel, F.S. Existence and uniqueness of the solution of delay differential equations. AIP Conf. Proc. 2016, 1775, 030015. [Google Scholar]
- Agarwal, R.P.; Shieh, S.L.; Yeh, C.C. Oscillation criteria for second order retarded differential equations. Math. Comput. Model. 1997, 26, 1–11. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Dzurina, J.; Jadlovsk, I. New oscillation criteria for second-order half-linear advanced differential equations. Appl. Math. Comput. 2019, 347, 404–416. [Google Scholar] [CrossRef]
- Grace, S.R. Oscillation theorems for second order nonlinear differential equations with damping. Math. Nachr. 1989, 141, 117–127. [Google Scholar] [CrossRef]
- Grace, S.R.; Graef, J.R.; Tunc, E. Oscillatory behavior of second order damped neutral differential equations with distributed deviating arguments. Miskolc Math. Notes 2017, 18, 759–769. [Google Scholar] [CrossRef]
- Grace, S.R.; Dzurina, J.; Jadlovsk, I.; Li, T. An improved approach for studying oscillation of second-order neutral delay differential equations. J. Ineq. Appl. 2018, 2018, 193. [Google Scholar] [CrossRef] [PubMed]
- Bazighifan, O.; Al-Ghafri, K.S.; Al-Kandari, M.; Ghanim, F.; Mofarreh, F. Half-linear differential equations of fourth order: Oscillation criteria of solutions. Adv. Contin. Discret. Model. 2022, 2022, 24. [Google Scholar] [CrossRef]
- Almarri, B.; Ali, A.H.; Lopes, A.M.; Bazighifan, O. Nonlinear Differential Equations with Distributed Delay: Some New Oscillatory Solutions. Mathematics 2022, 10, 995. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V. Asymptotic behavior of higher-order quasilinear neutral differential equations. Abs. Appl. Anal. 2014, 2014, 395368. [Google Scholar] [CrossRef]
- Moaaz, O.; Muhib, A. New oscillation criteria for nonlinear delay differential equations of fourth-order. Appl. Math. Comput. 2020, 377, 125192. [Google Scholar] [CrossRef]
- Moaaz, O.; Dassios, I.; Jebreen, H.B.; Muhib, A. Criteria for the nonexistence of Kneser solutions of DDEs and their applications in oscillation theory. Appl. Sci. 2021, 11, 425. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T.; Saker, S. Oscillation of fourth-order delay differential equations. J. Math. Sci. 2014, 201, 296–308. [Google Scholar] [CrossRef]
- Baculikova, B.; Dzurina, J.; Graef, J.R. On the oscillation of higher-order delay differential equations. Math. Slovaca 2012, 187, 387–400. [Google Scholar] [CrossRef]
- Xing, G.; Li, T.; Zhang, C. Oscillation of higher-order quasi-linear neutral differential equations. Adv. Differ. Equ. 2011, 45. [Google Scholar] [CrossRef]
- Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. New results for oscillatory behavior of even-order half-linear delay differential equations. Appl. Math. Lett. 2013, 26, 179–183. [Google Scholar] [CrossRef]
- Bohner, M.; Jadlovska, I.; Grace, S.R. Oscillation criteria for second-order neutral delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2017, 2017, 1–12. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Difference and Differential Equations; Kluwer Academic: Dordrecht, The Netherlands, 2000. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almarri, B.; Muhib, A.; Cesarano, C.; Moaaz, O.; Anis, M. Functional Differential Equations with Several Delays: Oscillatory Behavior. Symmetry 2022, 14, 1570. https://doi.org/10.3390/sym14081570
Almarri B, Muhib A, Cesarano C, Moaaz O, Anis M. Functional Differential Equations with Several Delays: Oscillatory Behavior. Symmetry. 2022; 14(8):1570. https://doi.org/10.3390/sym14081570
Chicago/Turabian StyleAlmarri, Barakah, Ali Muhib, Clemente Cesarano, Osama Moaaz, and Mona Anis. 2022. "Functional Differential Equations with Several Delays: Oscillatory Behavior" Symmetry 14, no. 8: 1570. https://doi.org/10.3390/sym14081570
APA StyleAlmarri, B., Muhib, A., Cesarano, C., Moaaz, O., & Anis, M. (2022). Functional Differential Equations with Several Delays: Oscillatory Behavior. Symmetry, 14(8), 1570. https://doi.org/10.3390/sym14081570