Multi-Modal Rigid Image Registration and Segmentation Using Multi-Stage Forward Path Regenerative Genetic Algorithm
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Multi-Modal Image Registration
3.2. Mutual Information
3.3. Optimization Techniques
3.3.1. Nesterov’s Accelerated Gradient
3.3.2. Simulated Annealing
3.3.3. LBFGS (Limited-Memory BFGS)
3.3.4. Single-Stage Genetic Algorithm
3.4. Proposed Optimization Technique for Multi-Modal Image Registration
3.4.1. Multi-Stage Forward Path Regenerative Genetic Algorithm
3.4.2. Image Registration Error and Segmentation Accuracy
Absolute Percentage Registration Error in Each Dimension
Algorithm 1: SSGA (Single-Stage Genetic Algorithm) for Multi-Modal Rigid Image Registration. |
Result: Rigid image transformations |
Reference Image of modality |
Template Image of modality |
Minimum constraint of search space |
Maximum constraint of search space |
Population Size |
Number of decimal places |
Function SSGA(, , , , ): |
Initial random population of individuals containing three parameters of translation and θ rotation of is generated. Individuals are rounded to decimal places. |
while No. of generations < Maximum no. of generations do |
If then
|
else |
return fittest_individuals |
end |
end |
End Function |
Overall Registration Error
Dice Similarity
Algorithm 2: Multi-Stage Forward Path Regenerative Genetic Algorithm (MFRGA) for Multi-Modal Rigid Image Registration |
Result: Registered image with rigid image transformations |
Reference Image of modality |
Template Image of modality |
Minimum constraint of search space |
Maximum constraint of search space |
Population Size |
Number of decimal places |
First stage parameters |
Other stages parameters, |
where |
Stage number |
whiledo |
If then |
1. Call SSGA 2. Store the output of SSGA function 3. return 4. Apply image transformations to get registered template image |
end |
end if then |
Call SSGA |
1. Store the output of SSGA function 2. return 3. Apply image transformations to get registered template image |
else if then |
1. Call SSGA 2. Store the output of SSGA function 3. return 4. Apply image transformations to get registered template image |
else if then |
1. Call SSGA 2. Store the output of SingleStageGA function 3. return 4. Apply image transformations to get registered template image |
else |
return fittest_individuals |
end |
end |
4. Results
4.1. Template and Reference Images with Same Levels of Noise and INU
4.2. Segmentation Accuracy via Image Registration
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haskins, G.; Kruger, U.; Yan, P. Deep learning in medical image registration: A survey. Mach. Vis. Appl. 2020, 31, 8. [Google Scholar] [CrossRef] [Green Version]
- Ganzetti, M.; Liu, Q.; Mantini, D. A spatial registration toolbox for structural MR imaging of the aging brain. Neuroinformatics 2018, 16, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Pushpa, B.R.; Amal, P.S.; Kamal, N.P. Detection and stagewise classification of Alzheimer disease using deep learning methods. Int. J. Recent Technol. Eng. (IJRTE) 2019, 7, 206–212. [Google Scholar]
- Shen, M.; Deng, Y.; Zhu, L.; Du, X.; Guizani, N. Privacy-preserving image retrieval for medical IoT systems: A blockchain-based approach. IEEE Netw. 2019, 33, 27–33. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Hassan, M.A. The image registration techniques for medical imaging (MRI-CT). Am. J. Biomed. Eng. 2016, 6, 53–58. [Google Scholar]
- Sotiras, A.; Davatzikos, C.; Paragios, N. Deformable medical image registration: A survey. IEEE Trans. Med. Imaging 2013, 32, 1153–1190. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.G. A survey of image registration techniques. ACM Comput. Surv. (CSUR) 1992, 24, 325–376. [Google Scholar] [CrossRef]
- Razlighi, Q.R.; Kehtarnavaz, N.; Yousefi, S. Evaluating similarity measures for brain image registration. J. Vis. Commun. Image Represent. 2013, 24, 977–987. [Google Scholar] [CrossRef] [Green Version]
- Petkovska, S.; Kraleva, S. Necessity of medical imaging registration for brain tumor radiotherapy. In Proceedings of the Third Conference on Medical Physics and Biomedical Engineering, Skopje, North Macedonia, 18–19 October 2013. [Google Scholar]
- Maintz, J.A.; Viergever, M.A. A survey of medical image registration. Med. Image Anal. 1998, 2, 1–36. [Google Scholar] [CrossRef]
- Begum, N.; Badshah, N.; Ibrahim, M.; Ashfaq, M.; Minallah, N.; Atta, H. On two algorithms for multi-modality image registration based on gaussian curvature and application to medical images. IEEE Access 2021, 9, 10586–10603. [Google Scholar] [CrossRef]
- Zhu, W.; Myronenko, A.; Xu, Z.; Li, W.; Roth, H.; Huang, Y.; Milletari, F.; Xu, D. Neurreg: Neural registration and its application to image segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Snowmass, CO, USA, 1–5 March 2020; pp. 3617–3626. [Google Scholar]
- Qiu, L.; Ren, H. U-RSNet: An unsupervised probabilistic model for joint registration and segmentation. Neurocomputing 2021, 450, 264–274. [Google Scholar] [CrossRef]
- Ponzio, F.; Macii, E.; Ficarra, E.; Di Cataldo, S. A multi-modal brain image registration framework for US-guided neuronavigation systems. In Integrating MR and US for minimally invasive neuroimaging. In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017), Porto, Portugal, 21–23 February 2017; SciTePress: Vienna, Austria; Volume 2, pp. 114–121. [Google Scholar]
- Moualhi, W.; Ezzeddine, Z. Tumor growth model for atlas based registration of pathological brain MR images. In Proceedings of the Seventh International Conference on Machine Vision (ICMV 2014), Milan, Italy, 14 February 2015; SPIE: Washington, DC, USA; Volume 9445, pp. 317–322. [Google Scholar]
- Lei, T.; Jia, X.; Zhang, Y.; Liu, S.; Meng, H.; Nandi, A.K. Superpixel-based fast fuzzy C-means clustering for color image segmentation. IEEE Trans. Fuzzy Syst. 2018, 27, 1753–1766. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Ren, F.; Pedrycz, W. Fuzzy C-means clustering through SSIM and patch for image segmentation. Appl. Soft Comput. 2020, 87, 105928. [Google Scholar] [CrossRef]
- Saxena, S.; Kumari, N.; Pattnaik, S. Brain tumour segmentation in FLAIR MRI using sliding window texture feature extraction followed by fuzzy C-Means clustering. Int. J. Healthc. Inf. Syst. Inform. (IJHISI) 2021, 16, 1–20. [Google Scholar] [CrossRef]
- Li, Q.; Gao, Z.; Wang, Q.; Xia, J.; Zhang, H.; Zhang, H.; Liu, H.; Li, S. Glioma segmentation with a unified algorithm in multimodal MRI images. IEEE Access 2018, 6, 9543–9553. [Google Scholar] [CrossRef]
- Mascarenhas, L.R.; Ribeiro, A.D.; Ramos, R.P. Automatic segmentation of brain tumors in magnetic resonance imaging. Einstein (São Paulo) 2020, 18. [Google Scholar] [CrossRef] [Green Version]
- Uss, M.L.; Vozel, B.; Abramov, S.K.; Chehdi, K. Selection of a similarity measure combination for a wide range of multimodal image registration cases. IEEE Trans. Geosci. Remote Sens. 2020, 59, 60–75. [Google Scholar] [CrossRef]
- Haskins, G.; Kruecker, J.; Kruger, U.; Xu, S.; Pinto, P.A.; Wood, B.J.; Yan, P. Learning deep similarity metric for 3D MR–TRUS image registration. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Holia, M.S.; Thakar, V.K. Mutual information based image registration for MRI and CT SCAN brain images. In Proceedings of the 2012 International Conference on Audio, Language and Image Processing, Shanghai, China, 16 July 2012; IEEE: Piscataway, NJ, USA; pp. 78–83. [Google Scholar]
- Wu, G.; Kim, M.; Wang, Q.; Shen, D. Hierarchical Attribute-Guided Symmetric Diffeomorphic Registration for MR Brain Images. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 2012; pp. 90–97. [Google Scholar]
- Fan, J.; Cao, X.; Yap, P.T.; Shen, D. BIRNet: Brain image registration using dual-supervised fully convolutional networks. Med. Image Anal. 2019, 54, 193–206. [Google Scholar] [CrossRef]
- Woods, R.P.; Cherry, S.R.; Mazziotta, J.C. Rapid automated algorithm for aligning and reslicing PET images. J. Comput. Assist. Tomogr. 1992, 16, 620–633. [Google Scholar] [CrossRef]
- Woods, R.P.; Mazziotta, J.C.; Cherry, S.R. MRI-PET registration with automated algorithm. J. Comput. Assist. Tomogr. 1993, 17, 536–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, D.L.; Hawkes, D.J.; Harrison, N.A.; Ruff, C.F.A.; Ruff, C.F.. A Strategy for Automated Multimodality Image Registration Incorporating Anatomical Knowledge and Imager Characteristics. In Biennial International Conference on Information Processing in Medical Imaging; Springer: Berlin/Heidelberg, Germany, 1993; pp. 182–196. [Google Scholar]
- Woo, J.; Stone, M.; Prince, J.L. Multimodal registration via mutual information incorporating geometric and spatial context. IEEE Trans. Image Process. 2014, 24, 757–769. [Google Scholar] [CrossRef] [Green Version]
- Ashfaq, M.; Minallah, N.; Rehman, A.U.; Belhaouari, S.B. Multistage forward path regenerative genetic algorithm for brain magnetic resonant imaging registration. Big Data 2021, 10, 65–80. [Google Scholar] [CrossRef] [PubMed]
- BrainWeb: Simulated Brain Database. Available online: http://www.bic.mni.mcgill.ca/brainweb/ (accessed on 22 October 2021).
- Egnal, G.; Daniilidis, K. Image Registration Using Mutual Information; Technical Reports; University of Pennsylvania, Department of Computer and Information Science (CIS): Philadelphia, PA, USA, 2000; Volume 117. [Google Scholar]
- Viola, P.; Wells, W.M., III. Alignment by maximization of mutual information. Int. J. Comput. Vision 1997, 24, 137–154. [Google Scholar] [CrossRef]
- Kosiński, W.; Michalak, P.; Gut, P. Robust image registration based on mutual information measure. Sci. Res. 2012, 3, 19558. [Google Scholar] [CrossRef] [Green Version]
- Maes, F.; Collignon, A.; Vandermeulen, D.; Marchal, G.; Suetens, P. Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 1997, 16, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Nesterov, Y. A method of solving a convex programming problem with convergence rate O(1/k2). Sov. Math. Dokl. 1983, 27, 2. [Google Scholar]
- Nesterov Accelerated Gradient. Available online: https://paperswithcode.com/method/nesterov-accelerated-gradient (accessed on 1 September 2021).
- Ruder, S. An Overview of Gradient Descent Optimization Algorithms. Available online: https://ruder.io/optimizing-gradient-descent/ (accessed on 20 March 2020).
- Chandra, A.L. Learning Parameters, Part 2: Momentum-Based & Nesterov Accelerated Gradient Descent. Available online: https://towardsdatascience.com/learning-parameters-part-2-a190bef2d12 (accessed on 7 September 2021).
- Sieniutycz, S.; Jeowski, J. 1-Brief Review of Static Optimization Methods. In Energy Optimization in Process Systems and Fuel Cells; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–43. [Google Scholar] [CrossRef]
- What Is Simulated Annealing? Available online: https://www.mathworks.com/help/gads/what-is-simulated-annealing.html (accessed on 7 September 2021).
- Almarashi, M.; Deabes, W.; Amin, H.H.; Hedar, A.R. Simulated annealing with exploratory sensing for global optimization. Algorithms 2020, 13, 230. [Google Scholar] [CrossRef]
INU | Noise | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Final | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X1′ | X2′ | X3′ | X1″ | X2″ | X3″ | X1‴ | X2‴ | X3‴ | X | Y | θ | ||
0% | 0% | 5.382 | 7.376 | 3.151 | −0.363 | −0.390 | 0.242 | −0.003 | 0.003 | −0.240 | −0.001 | 0.001 | −0.051 | 5.015 | 6.989 | 3.102 |
0% | 1% | 4.964 | 6.799 | 2.502 | 0.147 | 0.191 | −0.001 | −0.003 | 0.034 | 0.225 | −0.117 | −0.035 | −0.001 | 4.991 | 6.989 | 2.724 |
20% | 1% | 4.696 | 7.171 | 2.251 | 0.269 | −0.117 | 0.490 | −0.002 | 0.061 | 0.003 | 0.000 | −0.048 | 0.098 | 4.963 | 7.067 | 2.842 |
40% | 1% | 4.854 | 6.787 | 3.414 | 0.226 | 0.212 | 0.198 | 0.000 | 0.014 | 0.087 | 0.003 | −0.008 | −0.045 | 5.083 | 7.005 | 3.655 |
0% | 3% | 5.331 | 6.954 | 2.937 | −0.322 | 0.066 | 0.179 | −0.001 | −0.026 | −0.169 | 0.000 | −0.010 | −0.004 | 5.009 | 6.985 | 2.942 |
20% | 3% | 5.284 | 6.541 | 3.351 | −0.279 | 0.477 | 0.018 | 0.001 | 0.002 | 0.211 | 0.000 | −0.001 | 0.016 | 5.006 | 7.018 | 3.596 |
40% | 3% | 4.831 | 6.688 | 3.234 | 0.214 | 0.272 | −0.094 | −0.001 | 0.023 | 0.041 | −0.012 | 0.004 | −0.058 | 5.031 | 6.987 | 3.123 |
0% | 5% | 4.137 | 7.813 | 5.170 | 0.462 | −0.474 | −0.457 | 0.249 | −0.249 | 0.212 | 0.125 | −0.125 | 0.032 | 4.973 | 6.965 | 4.958 |
20% | 5% | 4.580 | 7.262 | 3.101 | 0.387 | −0.156 | −0.200 | 0.246 | −0.251 | −0.033 | 0.120 | −0.124 | 0.084 | 5.333 | 6.731 | 2.953 |
40% | 5% | 4.753 | 7.409 | 3.090 | 0.217 | −0.365 | −0.034 | 0.000 | −0.001 | −0.255 | 0.002 | −0.002 | 0.033 | 4.972 | 7.041 | 2.835 |
0% | 7% | 5.242 | 6.875 | 1.650 | −0.258 | 0.299 | 0.491 | −0.072 | −0.127 | −0.010 | 0.034 | 0.063 | 0.018 | 4.946 | 7.110 | 2.149 |
20% | 7% | 5.442 | 7.047 | 3.030 | −0.358 | −0.081 | −0.008 | −0.033 | −0.012 | 0.229 | −0.005 | −0.003 | 0.111 | 5.046 | 6.951 | 3.362 |
40% | 7% | 5.244 | 6.822 | 3.113 | −0.240 | 0.244 | 0.155 | −0.004 | −0.033 | −0.080 | −0.001 | −0.004 | 0.067 | 4.998 | 7.028 | 3.255 |
0% | 9% | 5.116 | 7.006 | 2.519 | −0.028 | −0.098 | 0.089 | −0.103 | 0.129 | 0.219 | 0.040 | −0.069 | 0.059 | 5.024 | 6.968 | 2.887 |
20% | 9% | 5.315 | 7.288 | 3.025 | −0.252 | −0.283 | 0.016 | −0.014 | 0.000 | −0.226 | 0.000 | −0.001 | 0.089 | 5.049 | 7.004 | 2.903 |
40% | 9% | 5.436 | 6.740 | 2.834 | −0.370 | 0.193 | −0.207 | −0.013 | 0.024 | −0.203 | −0.005 | 0.003 | 0.062 | 5.048 | 6.961 | 2.486 |
Template T1 and Reference T2 Images | Registration Error Using Single-Stage GA | Registration Error Using MFRGA | Overall Registration Error Using Single-Stage GA | Overall Registration Error Using MFRGA | |||||
---|---|---|---|---|---|---|---|---|---|
INU | Noise | INU | Noise | ||||||
0% | 0% | 7.640 | 5.371 | 5.033 | 0% | 0% | 7.640 | 5.371 | 5.033 |
0% | 1% | 0.713 | 2.875 | 16.617 | 0% | 1% | 0.713 | 2.875 | 16.617 |
20% | 1% | 6.090 | 2.436 | 24.963 | 20% | 1% | 6.090 | 2.436 | 24.963 |
40% | 1% | 2.922 | 3.042 | 13.786 | 40% | 1% | 2.922 | 3.042 | 13.786 |
0% | 3% | 6.620 | 0.651 | 2.104 | 0% | 3% | 6.620 | 0.651 | 2.104 |
20% | 3% | 5.689 | 6.553 | 11.712 | 20% | 3% | 5.689 | 6.553 | 11.712 |
40% | 3% | 3.386 | 4.460 | 7.793 | 40% | 3% | 3.386 | 4.460 | 7.793 |
0% | 5% | 17.268 | 11.616 | 72.341 | 0% | 5% | 17.268 | 11.616 | 72.341 |
20% | 5% | 8.390 | 3.739 | 3.380 | 20% | 5% | 8.390 | 3.739 | 3.380 |
40% | 5% | 4.945 | 5.840 | 2.997 | 40% | 5% | 4.945 | 5.840 | 2.997 |
0% | 7% | 4.844 | 1.781 | 44.988 | 0% | 7% | 4.844 | 1.781 | 44.988 |
20% | 7% | 8.838 | 0.664 | 0.997 | 20% | 7% | 8.838 | 0.664 | 0.997 |
40% | 7% | 4.883 | 2.548 | 3.765 | 40% | 7% | 4.883 | 2.548 | 3.765 |
0% | 9% | 2.317 | 0.093 | 16.035 | 0% | 9% | 2.317 | 0.093 | 16.035 |
20% | 9% | 6.295 | 4.107 | 0.824 | 20% | 9% | 6.295 | 4.107 | 0.824 |
40% | 9% | 8.715 | 3.712 | 5.531 | 40% | 9% | 8.715 | 3.712 | 5.531 |
Reference T2 Image | Registration Error Using Single-Stage GA | Registration Error Using MFRGA | Overall Registration Error Using Single-Stage GA | Overall Registration Error Using MFRGA | |||||
---|---|---|---|---|---|---|---|---|---|
INU | Noise | INU | Noise | ||||||
0% | 1% | 9.839 | 3.441 | 12.793 | 0% | 1% | 9.839 | 3.441 | 12.793 |
20% | 1% | 4.128 | 2.261 | 8.854 | 20% | 1% | 4.128 | 2.261 | 8.854 |
40% | 1% | 27.382 | 2.373 | 7.534 | 40% | 1% | 27.382 | 2.373 | 7.534 |
0% | 3% | 6.738 | 0.394 | 8.362 | 0% | 3% | 6.738 | 0.394 | 8.362 |
20% | 3% | 3.109 | 1.943 | 1.200 | 20% | 3% | 3.109 | 1.943 | 1.200 |
40% | 3% | 6.090 | 2.603 | 13.394 | 40% | 3% | 6.090 | 2.603 | 13.394 |
0% | 5% | 1.974 | 19.216 | 1.103 | 0% | 5% | 1.974 | 19.216 | 1.103 |
20% | 5% | 6.325 | 6.807 | 7.099 | 20% | 5% | 6.325 | 6.807 | 7.099 |
40% | 5% | 0.177 | 6.422 | 15.544 | 40% | 5% | 0.177 | 6.422 | 15.544 |
0% | 7% | 6.563 | 1.592 | 3.771 | 0% | 7% | 6.563 | 1.592 | 3.771 |
20% | 7% | 6.020 | 6.207 | 10.970 | 20% | 7% | 6.020 | 6.207 | 10.970 |
40% | 7% | 5.289 | 6.224 | 9.783 | 40% | 7% | 5.289 | 6.224 | 9.783 |
0% | 9% | 5.618 | 0.883 | 11.319 | 0% | 9% | 5.618 | 0.883 | 11.319 |
20% | 9% | 1.193 | 3.101 | 11.380 | 20% | 9% | 1.193 | 3.101 | 11.380 |
40% | 9% | 4.195 | 6.234 | 5.428 | 40% | 9% | 4.195 | 6.234 | 5.428 |
Reference T2 Image | Stage 1 | Stage 2 | Stage 3 | Stage 4 | Final | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
INU | Noise | X1 | X2 | X3 | X1′ | X2′ | X3′ | X1″ | X2″ | X3″ | X1‴ | X2‴ | X3‴ | X | Y | θ |
0% | 1% | 5.492 | 6.759 | 3.384 | −0.456 | 0.330 | −0.082 | −0.004 | −0.056 | 0.124 | −0.003 | −0.005 | −0.001 | 5.029 | 7.027 | 3.424 |
20% | 1% | 5.206 | 7.158 | 3.266 | −0.155 | −0.220 | 0.032 | −0.023 | 0.077 | −0.124 | −0.004 | 0.000 | −0.011 | 5.025 | 7.015 | 3.162 |
40% | 1% | 6.369 | 7.166 | 2.774 | −0.491 | −0.188 | −0.021 | −0.247 | 0.023 | 0.196 | −0.124 | 0.001 | 0.089 | 5.507 | 7.002 | 3.039 |
0% | 3% | 5.337 | 6.972 | 3.251 | −0.268 | 0.061 | 0.246 | −0.045 | −0.080 | −0.249 | 0.001 | 0.105 | −0.018 | 5.025 | 7.058 | 3.230 |
20% | 3% | 5.155 | 6.864 | 2.964 | −0.079 | 0.111 | 0.021 | −0.055 | 0.000 | 0.234 | −0.001 | −0.001 | 0.015 | 5.020 | 6.974 | 3.234 |
40% | 3% | 4.695 | 6.818 | 3.402 | 0.267 | 0.233 | −0.056 | 0.040 | −0.047 | 0.130 | 0.003 | 0.001 | −0.065 | 5.005 | 7.004 | 3.411 |
0% | 5% | 5.099 | 5.655 | 2.967 | −0.194 | 0.497 | −0.254 | 0.081 | 0.247 | 0.243 | −0.033 | 0.123 | −0.034 | 4.952 | 6.522 | 2.922 |
20% | 5% | 4.684 | 7.477 | 2.787 | 0.299 | −0.537 | 0.333 | 0.002 | 0.009 | −0.023 | 0.000 | 0.004 | −0.096 | 4.985 | 6.953 | 3.001 |
40% | 5% | 4.991 | 6.550 | 2.534 | 0.090 | 0.408 | 0.254 | −0.100 | 0.033 | −0.138 | 0.045 | 0.000 | −0.111 | 5.027 | 6.991 | 2.539 |
0% | 7% | 4.672 | 7.111 | 2.887 | 0.266 | −0.129 | 0.128 | 0.047 | 0.000 | 0.002 | 0.002 | −0.002 | −0.038 | 4.987 | 6.981 | 2.980 |
20% | 7% | 5.301 | 7.434 | 3.329 | −0.345 | −0.389 | −0.002 | 0.045 | 0.004 | 0.050 | 0.013 | −0.003 | 0.065 | 5.014 | 7.046 | 3.443 |
40% | 7% | 4.736 | 7.436 | 3.293 | 0.263 | −0.405 | 0.040 | 0.004 | 0.007 | −0.207 | 0.000 | −0.001 | −0.079 | 5.003 | 7.037 | 3.047 |
0% | 9% | 4.719 | 7.062 | 2.660 | 0.299 | −0.143 | 0.350 | 0.001 | 0.091 | 0.038 | 0.002 | −0.019 | −0.052 | 5.022 | 6.991 | 2.996 |
20% | 9% | 5.060 | 6.783 | 3.341 | 0.050 | 0.227 | 0.034 | 0.004 | −0.012 | 0.019 | 0.001 | 0.008 | −0.110 | 5.114 | 7.005 | 3.284 |
40% | 9% | 5.210 | 6.564 | 2.837 | −0.236 | 0.359 | −0.194 | −0.002 | 0.021 | 0.083 | 0.008 | 0.000 | 0.083 | 4.980 | 6.942 | 2.809 |
DSC | WM | DSC | GM | DSC | CSF | DSC | WM | DSC | GM | DSC | CSF | DSC | WM | DSC | GM | DSC | CSF | DSC | WM | DSC | GM | DSC | CSF | DSC | WM | DSC | GM | DSC | CSF | Noise | INU |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.91 | 0.77 | 0.69 | 0.91 | 0.78 | 0.69 | 0.88 | 0.8 | 0.71 | 0.917 | 0.804 | 0.709 | 0.68 | 0.491 | 0.397 | 1% | 0% | |||||||||||||||
0.92 | 0.8 | 0.7 | 0.91 | 0.79 | 0.7 | 0.88 | 0.8 | 0.71 | 0.913 | 0.792 | 0.698 | 0.693 | 0.509 | 0.395 | 1% | 20% | |||||||||||||||
0.92 | 0.81 | 0.71 | 0.87 | 0.67 | 0.57 | 0.88 | 0.8 | 0.71 | 0.884 | 0.714 | 0.633 | 0.694 | 0.51 | 0.392 | 1% | 40% | |||||||||||||||
0.91 | 0.79 | 0.7 | 0.91 | 0.79 | 0.7 | 0.64 | 0.41 | 0.25 | 0.919 | 0.807 | 0.713 | 0.692 | 0.509 | 0.394 | 3% | 0% | |||||||||||||||
0.91 | 0.79 | 0.7 | 0.92 | 0.81 | 0.71 | 0.88 | 0.8 | 0.71 | 0.907 | 0.773 | 0.682 | 0.693 | 0.509 | 0.394 | 3% | 20% | |||||||||||||||
0.91 | 0.78 | 0.69 | 0.91 | 0.77 | 0.68 | 0.88 | 0.8 | 0.71 | 0.917 | 0.802 | 0.709 | 0.694 | 0.511 | 0.393 | 3% | 40% | |||||||||||||||
0.92 | 0.8 | 0.71 | 0.87 | 0.69 | 0.61 | 0.64 | 0.41 | 0.25 | 0.919 | 0.807 | 0.713 | 0.687 | 0.504 | 0.391 | 5% | 0% | |||||||||||||||
0.92 | 0.81 | 0.71 | 0.91 | 0.79 | 0.7 | 0.88 | 0.81 | 0.71 | 0.909 | 0.785 | 0.692 | 0.687 | 0.504 | 0.39 | 5% | 20% | |||||||||||||||
0.91 | 0.77 | 0.67 | 0.9 | 0.77 | 0.69 | 0.64 | 0.41 | 0.25 | 0.919 | 0.806 | 0.71 | 0.688 | 0.508 | 0.397 | 5% | 40% | |||||||||||||||
0.92 | 0.81 | 0.71 | 0.92 | 0.8 | 0.7 | 0.64 | 0.41 | 0.25 | 0.919 | 0.807 | 0.712 | 0.686 | 0.501 | 0.39 | 7% | 0% | |||||||||||||||
0.91 | 0.77 | 0.69 | 0.91 | 0.78 | 0.69 | 0.64 | 0.41 | 0.25 | 0.914 | 0.792 | 0.697 | 0.687 | 0.503 | 0.393 | 7% | 20% | |||||||||||||||
0.92 | 0.8 | 0.71 | 0.91 | 0.78 | 0.69 | 0.64 | 0.41 | 0.25 | 0.914 | 0.797 | 0.707 | 0.687 | 0.504 | 0.392 | 7% | 40% | |||||||||||||||
0.92 | 0.81 | 0.71 | 0.91 | 0.78 | 0.69 | 0.64 | 0.41 | 0.25 | 0.915 | 0.798 | 0.706 | 0.681 | 0.491 | 0.393 | 9% | 0% | |||||||||||||||
0.91 | 0.79 | 0.7 | 0.91 | 0.78 | 0.7 | 0.64 | 0.41 | 0.25 | 0.895 | 0.757 | 0.684 | 0.68 | 0.491 | 0.394 | 9% | 20% | |||||||||||||||
0.91 | 0.8 | 0.7 | 0.92 | 0.8 | 0.7 | 0.88 | 0.8 | 0.71 | 0.919 | 0.807 | 0.711 | 0.681 | 0.491 | 0.391 | 9% | 40% |
Result | Model | Mean ± Standard Deviation | Min | Max |
---|---|---|---|---|
Overall Registration Error | GA * | 1.008 ± 0.820 | 0.440 | 3.847 |
Proposed (MFRGA) * | 0.492 ± 0.487 | 0.083 | 2.020 | |
GA ** | 0.898 ± 0.369 | 0.327 | 1.761 | |
Proposed (MFRGA) ** | 0.317 ± 0.195 | 0.035 | 0.604 | |
Segmentation Accuracy (Dice CSF) | Nesterov ** | 0.393 ± 0.002 | 0.390 | 0.397 |
SA ** | 0.698 ± 0.021 | 0.633 | 0.713 | |
LBFGS ** | 0.461 ± 0.239 | 0.245 | 0.710 | |
GA ** | 0.681 ± 0.038 | 0.572 | 0.712 | |
MFRGA ** | 0.701 ± 0.012 | 0.674 | 0.713 | |
Segmentation Accuracy (Dice GM) | Nesterov ** | 0.502 ± 0.008 | 0.491 | 0.511 |
SA ** | 0.790 ± 0.025 | 0.714 | 0.807 | |
LBFGS ** | 0.592 ± 0.205 | 0.406 | 0.805 | |
GA ** | 0.772 ± 0.039 | 0.672 | 0.805 | |
MFRGA ** | 0.792 ± 0.013 | 0.773 | 0.807 | |
Segmentation Accuracy (Dice WM) | Nesterov ** | 0.687 ± 0.005 | 0.680 | 0.694 |
SA ** | 0.912 ± 0.010 | 0.884 | 0.919 | |
LBFGS ** | 0.753 ± 0.126 | 0.639 | 0.884 | |
GA ** | 0.905 ± 0.016 | 0.868 | 0.918 | |
MFRGA ** | 0.913 ± 0.005 | 0.905 | 0.919 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashfaq, M.; Minallah, N.; Frnda, J.; Behan, L. Multi-Modal Rigid Image Registration and Segmentation Using Multi-Stage Forward Path Regenerative Genetic Algorithm. Symmetry 2022, 14, 1506. https://doi.org/10.3390/sym14081506
Ashfaq M, Minallah N, Frnda J, Behan L. Multi-Modal Rigid Image Registration and Segmentation Using Multi-Stage Forward Path Regenerative Genetic Algorithm. Symmetry. 2022; 14(8):1506. https://doi.org/10.3390/sym14081506
Chicago/Turabian StyleAshfaq, Muniba, Nasru Minallah, Jaroslav Frnda, and Ladislav Behan. 2022. "Multi-Modal Rigid Image Registration and Segmentation Using Multi-Stage Forward Path Regenerative Genetic Algorithm" Symmetry 14, no. 8: 1506. https://doi.org/10.3390/sym14081506
APA StyleAshfaq, M., Minallah, N., Frnda, J., & Behan, L. (2022). Multi-Modal Rigid Image Registration and Segmentation Using Multi-Stage Forward Path Regenerative Genetic Algorithm. Symmetry, 14(8), 1506. https://doi.org/10.3390/sym14081506