A Note on Parabolic Maximal Operators along Surfaces of Revolution via Extrapolation
Abstract
:1. Introduction
2. Preparation
3. Proof of the Main Result
4. Further Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fabes, E.; Riviére, N. Singular integrals with mixed homogeneity. Stud. Math. 1966, 27, 19–38. [Google Scholar] [CrossRef]
- Chen, L.; Lin, H. A maximal operator related to a class of singular integral. Ill. J. Math. 1990, 34, 120–126. [Google Scholar] [CrossRef]
- Al-Salman, A. On maximal functions with rough kernels in L(logL)1/2(Sn−1). Collect. Math. 2005, 56, 47–56. [Google Scholar]
- Al-Qassem, H. On the boundedness of maximal operators and singular operators with kernels in L(logL)α(Sn−1). J. Ineq. Appl. 2006, 96732. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; He, Q. Weighted boundedness of a rough maximal operator. Acta Math. Sci. 2000, 3, 417–422. [Google Scholar] [CrossRef]
- Le, H. Maximal operators and singular integral operators along submanifolds. J. Math. Anal. Appl. 2004, 296, 44–64. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Fan, D.; Wang, M. Some maximal operators related to families of singular integral operators. Acta Math. Sci. 2004, 20, 441–452. [Google Scholar] [CrossRef] [Green Version]
- Todorčević, V. Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics, 1st ed.; Springer: Cham, Switzerland, 2019; pp. 1–163. [Google Scholar]
- Debnath, P.; Konwar, N.; Radenović, S. Metric Fixed Point Theory, Applications in Science, Engineering and Behavioural Sciences, 1st ed.; Springer: Singapore, 2021; pp. 2364–6756. [Google Scholar]
- Al-Salman, A. A unifying approach for certain class of maximal functions. J. Ineq. Appl. 2006, 56272. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Al-Mohammed, O. Boundedness of a class of rough maximal functions. J. Ineq. Appl. 2018, 305. [Google Scholar] [CrossRef]
- Ali, M.; Katatbeh, Q. Lp bounds for rough parabolic maximal operators. Heliyon 2020, 6, e05153. [Google Scholar] [CrossRef]
- Fan, D.; Pan, Y.; Yang, D. A weighted norm inequality for rough singular integrals. Tohoku Math. J. 1999, 51, 141–161. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, Y. Lp Bounds for the parabolic Marcinkiewicz integral with rough kernels. J. Korean Math. Soc. 2007, 44, 733–745. [Google Scholar] [CrossRef] [Green Version]
- Ricci, F.; Stein, E. Multiparameter singular integrals and maximal functions. Ann. Inst. Fourier. 1992, 42, 637–670. [Google Scholar] [CrossRef] [Green Version]
- Al-Qassem, H.; Al-Salman, A. Rough Marcinkiewicz integrals related to surfaces of revolution. Asian J. Math. 2008, 7, 219–230. [Google Scholar] [CrossRef]
- Al-Salman, A.; Pan, Y. Singular integrals with rough kernels in L(logL)(n−1). J. Lond. Math. Soc. 2002, 66, 153174. [Google Scholar] [CrossRef]
- Al-Salman, A. A note on parabolic Marcinkiewicz integrals along surfaces. Proc. A Razmadze Math. Inst. 2010, 154, 21–36. [Google Scholar]
- Al-Qassem, H.; Pan, Y. Singular integrals along surfaces of revolution with rough kernels. SUT J. Math. 2003, 39, 55–70. [Google Scholar]
- Al-Bataineh, H.; Ali, M. Boundedness of maximal functions with mixed homogeneity. Int. J. Pure Appl. Math. 2018, 119, 705–716. [Google Scholar]
- Shakkah, G.; Al-Salman, A. A class of parabolic maximal functions. Comm. Math. Ann. 2018, 19, 1–31. [Google Scholar]
- Nagel, A.; Rivière, N.; Wainger, S. On Hilbert transforms along curves, II. Am. J. Math. 1976, 98, 395–403. [Google Scholar] [CrossRef]
- Fefferman, R. A note on singular integrals. Proc. Am. Math. Soc. 1979, 74, 266–270. [Google Scholar] [CrossRef]
- Kim, W.; Wainger, S.; Wright, J.; Ziesler, S. Singular integrals and maximal functions associated to surfaces of revolution. Bull. Lond. Math. Soc. 1996, 28, 29–296. [Google Scholar] [CrossRef]
- Al-Qassem, H.; Ali, M. Lp boundedness for singular integral operators with L(log+L)2 Kernels on Product Spaces. Kyungpook Math. J. 2008, 46, 377–387. [Google Scholar]
- Ali, M. Lp Estimates for Marcinkiewicz Integral Operators and Extrapolation. J. Ineq. Appl. 2014, 269. [Google Scholar] [CrossRef] [Green Version]
- Darweesh, A.; Ali, M. Generalized Parabolic Marcinkiewicz Integral Operators Related to Surfaces of Revolution. Mathematics 2019, 7, 1200. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Al-Refai, O. Boundedness of Generalized Parametric Marcinkiewicz Integrals Associated to Surfaces. Mathematics 2019, 7, 886. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Al-Senjlawi, A. Boundedness of Marcinkiewicz integrals on product spaces and extrapolation. Inter. J. Pure Appl. Math. 2014, 97, 49–66. [Google Scholar] [CrossRef] [Green Version]
- Al-Qassem, H.; Cheng, L.; Pan, Y. On generalized Littlewood-Paley functions. Collect. Math. 2018, 69, 297–314. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.; Al-Qassem, H. A Note on Parabolic Maximal Operators along Surfaces of Revolution via Extrapolation. Symmetry 2022, 14, 1147. https://doi.org/10.3390/sym14061147
Ali M, Al-Qassem H. A Note on Parabolic Maximal Operators along Surfaces of Revolution via Extrapolation. Symmetry. 2022; 14(6):1147. https://doi.org/10.3390/sym14061147
Chicago/Turabian StyleAli, Mohammed, and Hussain Al-Qassem. 2022. "A Note on Parabolic Maximal Operators along Surfaces of Revolution via Extrapolation" Symmetry 14, no. 6: 1147. https://doi.org/10.3390/sym14061147
APA StyleAli, M., & Al-Qassem, H. (2022). A Note on Parabolic Maximal Operators along Surfaces of Revolution via Extrapolation. Symmetry, 14(6), 1147. https://doi.org/10.3390/sym14061147