Properties of q-Starlike Functions Associated with the q-Cosine Function
Abstract
:1. Introduction and Motivation
- If we pickthen we obtain the classwhich is the class of starlike functions whose image under an open unit is eight-shaped and was introduced and studied by Cho et al. [22].
- For the choicewe obtain the classwhose image is bounded by a nephroid-shaped region and was introduced and investigated by Wani and Swaminathan [23].
- If we put withthen the functions class leads to the classwhich is described as the functions of starlike functions, bounded by lemniscate of Bernoulli in right half plan, and was developed by Sokól and Stankiewicz [7].
- Moreover, if we takewe obtain the classwhich is a cardioid shape starlike functions class and is studied by Sharma et al. [24].
- Moreover, if we takewe obtain the well-known class of starlike functions of order
2. Main Results
3. Partial Sums
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, F.H. On q-functions and certain difference operator. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Aral, A.; Gupta, V. On q-Baskakov type operators. Demostr. Math. 2009, 42, 109–122. [Google Scholar]
- Aral, A.; Gupta, V. On the Durrmeyer type modification of the q-Baskakov type operators. Nonlinear Anal. Theory Methods Appl. 2010, 72, 1171–1181. [Google Scholar] [CrossRef]
- Aral, A.; Gupta, V. Generalized q-Baskakov type operators. Math. Slovaca 2011, 61, 619–634. [Google Scholar] [CrossRef]
- Anastassiu, G.A.; Gal, S.G. Geometric and approximation properties of some singular integrals in the unit disc. J. Comput. Anal. Appl. 2006, 8, 249–261. [Google Scholar]
- Sokól, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzeszowskiej Mat. 1996, 19, 101–105. [Google Scholar]
- Ahmad, B.; Mashwani, W.K.; Araci, S.; Mustafa, S.; Khan, M.G.; Khan, B. A subclass of meromorphic Janowski-type multivalent q-starlike functions involving a q-differential operator. Adv. Continous Discret. Model. 2022, 2, 2022. [Google Scholar] [CrossRef]
- Ahmad, B.; Khan, M.G.; Aouf, M.K.; Salleh, Z.; Tang, H. Applications of a new difference operator in the Janowski-type meromorphic convex functions. J. Funct. Spaces 2021, 2021, 9967640. [Google Scholar] [CrossRef]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series; Cambridge University Press: Cambridge, UK, 2004; Volume 96. [Google Scholar]
- Ashish, V.; Sarasvati, Y. Recursion formulas for Srivastava’s general triple q-hypergeometric series. Afr. Mat. 2020, 31, 869–885. [Google Scholar]
- Ullah, K.; Zainab, S.; Arif, M.; Darus, M.; Shutaywi, M. Radius problems for starlike functions associated with the tan hyperbolic function. J. Funct. Spaces 2021, 2021, 9967640. [Google Scholar] [CrossRef]
- Alotaibi, A.; Arif, M.; Alghamdi, M.A.; Hussain, S. Starlikness associated with cosine hyperbolic function. Mathematics 2020, 8, 1118. [Google Scholar] [CrossRef]
- Khan, B.; Liu, Z.-G.; Srivastava, H.M.; Khan, N.; Darus, M.; Tahir, M. A study of some families of multivalent q-starlike functions involving higher-order q-derivatives. Mathematics 2020, 8, 1470. [Google Scholar] [CrossRef]
- Hu, Q.; Srivastava, H.M.; Ahmad, B.; Khan, N.; Khan, M.G.; Mashwani, W.K.; Khan, B. A subclass of multivalent Janowski type q-starlike functions and its consequences. Symmetry 2021, 13, 1275. [Google Scholar] [CrossRef]
- Rehman, M.S.U.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, N.; Darus, M.; Khan, B. Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Math. 2021, 6, 1110–1125. [Google Scholar] [CrossRef]
- Khan, B.; Liu, Z.-G.; Shaba, T.G.; Araci, S.; Khan, N.; Khan, M.G. Applications of q-Derivative Operator to the Subclass of Bi-Univalent Functions Involving q-Chebyshev Polynomials. J. Math. 2022, 2022, 8162182. [Google Scholar] [CrossRef]
- Shi, L.; Ahmad, B.; Khan, N.; Khan, M.G.; Araci, S.; Mashwani, W.K.; Khan, B. Coefficient Estimates for a Subclass of Meromorphic Multivalent q-Close-to-Convex Functions. Symmetry 2021, 13, 1840. [Google Scholar] [CrossRef]
- Ahmad, Q.Z.; Khan, N.; Raza, M.; Tahir, M.; Khan, B. Certain q-difference operators and their applications to the subclass of meromorphic q-starlike functions. Filomat 2019, 33, 3385–3397. [Google Scholar] [CrossRef]
- Diao, H.; Liu, H.; Wang, L. On generalized Holmgren’s principle to the Lamé operator with applications to inverse elastic problems. Calc. Var. Partial. Differ. Equ. 2020, 59, 179. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; Int. Press: Cambridge, UK, 1992; pp. 157–169. [Google Scholar]
- Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Wani, L.A.; Swaminathan, A. Starlike and convex functions associated with a Nephroid domain. Bull. Malays. Math. Sci. Soc. 2021, 44, 79–104. [Google Scholar] [CrossRef]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with cardioid. Afrika Math. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokól, J. On Coefficient estimates for a certain class of starlike functions. Hacet. J. Math. Statist. 2015, 44, 1427–1433. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, S.; Kumar, V.; Ravichandran, V.; Srivastava, H.M. Starlike functions related to the Bell numbers. Symmetry 2019, 11, 219. [Google Scholar] [CrossRef] [Green Version]
- Dziok, J.; Raina, R.K.; Sokól, J. On certain subclasses of starlike functions related to a shell-like curve connected with Fibonacci numbers. Math. Comput. Model. 2013, 57, 1203–1211. [Google Scholar] [CrossRef]
- Kanas, S.; Răducanu, D. Some classes of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Ismail, M.E.-H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Bano, K.; Raza, M. Starlike functions associated with cosine functions. Bull. Iran. Math. Soc. 2021, 47, 1513–1532. [Google Scholar] [CrossRef]
- Noor, K.I.; Malik, S.N. On coefficient inequalities of functions associated with conic domains. Comput. Math. Appl. 2011, 62, 2209–2217. [Google Scholar] [CrossRef] [Green Version]
- Silverman, H. Partial sums of starlike and convex functions. J. Math. Anal. Appl. 1997, 209, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.G.; Ahmad, B.; Khan, N.; Mashwani, W.K.; Arjika, S.; Khan, B.; Chinram, R. Applications of Mittag-Leffler type Poisson distribution to a subclass of analytic functions involving conic-type regions. J. Funct. Spaces 2021, 2021, 9. [Google Scholar]
- Khan, M.G.; Darus, M.; Ahmad, B.; Murugusundaramoorty, G.; Khan, R.; Khan, N. Meromorphic starlike functions with respect to symmetric points. Int. J. Anal. Appl. 2020, 18, 1037–1047. [Google Scholar]
- Khan, M.G.; Ahmad, B.; Salleh, Z.; Lukman, I. On subclasses of harmonic mappings involving Frasin operator. Afr. Mat. 2021, 32, 1159–1171. [Google Scholar] [CrossRef]
- Zada, M.B.; Sarwar, M.; Tunc, C. Fixed point theorems in b-metric spaces and their applications to non-linear fractional differential and integral equations. J. Fixed Point Theory Appl. 2018, 20, 25. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.F. Properties of q-Starlike Functions Associated with the q-Cosine Function. Symmetry 2022, 14, 1117. https://doi.org/10.3390/sym14061117
Khan MF. Properties of q-Starlike Functions Associated with the q-Cosine Function. Symmetry. 2022; 14(6):1117. https://doi.org/10.3390/sym14061117
Chicago/Turabian StyleKhan, Mohammad Faisal. 2022. "Properties of q-Starlike Functions Associated with the q-Cosine Function" Symmetry 14, no. 6: 1117. https://doi.org/10.3390/sym14061117
APA StyleKhan, M. F. (2022). Properties of q-Starlike Functions Associated with the q-Cosine Function. Symmetry, 14(6), 1117. https://doi.org/10.3390/sym14061117

