# A Symmetric Novel 8T3R Non-Volatile SRAM Cell for Embedded Applications

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

_{m}) performs the role of the memristance (M) of the memristors, i.e., x

_{m}≡ M [13]. The state of the memristor is defined by the following equation

_{m}− (v(t))

- Symmetric NVSRAM has shown improvements in standby power consumption and static noise margin when compared with standard 6T SRAM (S6T) cell;
- Using a memristor ensures that the circuit is inherently non-volatile.

## 2. NVSRAM Cell Design

#### 2.1. Existing NVSRAM Cells

#### 2.1.1. 8T2R

#### 2.1.2. 7T1R

#### 2.1.3. 7T2R

## 3. Proposed Symmetric 8T3R NVSRAM Cell

#### 3.1. Structure

#### 3.2. Normal SRAM Operation

#### 3.3. RESET Operation

#### 3.4. STORE Operation

#### 3.5. POWER DOWN Operation

#### 3.6. RESTORE Operation

#### 3.7. Evaluation of Non-Volatility

## 4. Simulation Results and Discussion

#### Performance Parameters of Proposed Symmetric 8T3R NVSRAM

^{−14}m

^{2}v

^{−1}S

^{−1}, respectively. The length “D” of the semiconductor film is taken as 10 nm. The linear charge control memristor can be modeled as two resistors in series according to the following formula:

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Meena, J.S.; Sze, S.M.; Chand, U.; Tseng, T.Y. Overview of emerging nonvolatile memory technologies. Nanoscale Res. Lett.
**2014**, 9, 526. [Google Scholar] [CrossRef] [PubMed][Green Version] - Zidan, M.A.; Fahmy, H.A.H.; Hussain, M.M.; Salama, K.N. Memristor-based memory: The sneak paths problem and solutions. Microelectron. J.
**2013**, 44, 176–183. [Google Scholar] [CrossRef][Green Version] - Biolek, D.; Ventra, M.D.I.; Pershin, Y.V. Reliable SPICE Simulations of Memristors, Memcapacitors and Meminductors Reliable Modeling of Memelements with SPICE. Radioengineering
**2013**, 22, 945. [Google Scholar] - Buscarino, A.; Fortuna, L.; Frasca, M.; Gambuzza, V.L. A chaotic circuit based on Hewlett-Packard memristor A chaotic circuit based on Hewlett-Packard memristor. Chaos
**2012**, 22, 023136. [Google Scholar] [CrossRef] [PubMed] - Cai, H.; Wang, Y.; Naviner, L.A.D.B.; Zhao, W. Robust Ultra-Low Power Non-Volatile Logic-in-Memory Circuits in FD-SOI Technology. IEEE Trans. Circuits Syst. I Regul. Pap.
**2017**, 64, 847–857. [Google Scholar] [CrossRef] - Chen, P.; Member, S.; Yu, S. Compact Modeling of RRAM Devices and Its Applications in 1T1R and 1S1R Array Design. IEEE Trans. Electron Devices
**2015**, 62, 4022–4028. [Google Scholar] [CrossRef] - Chiu, P.-F.; Chang, M.-F.; Wu, C.-W.; Chuang, C.-H.; Sheu, S.-S.; Chen, Y.-S.; Tsai, M.-J. Low store energy, low VDD min, 8T2R nonvolatile latch and SRAM with vertical-stacked resistive memory (memristor) devices for low power mobile applications. IEEE J. Solid-State Circuits
**2012**, 47, 1483–1496. [Google Scholar] [CrossRef] - Chua, L.O. Memristor—The missing circuit element. EEE Trans. Circuit Theory
**1971**, 18, 507–519. [Google Scholar] [CrossRef] - Garc, F.; Member, S.; Marisa, L. On the Design and Analysis of Reliable RRAM-CMOS Hybrid Circuits. IEEE Trans. Nanotechnol.
**2017**, 16, 514–522. [Google Scholar] - Halawani, Y.; Mohammad, B.; Homouz, D.; Al-Qutayri, M.; Saleh, H. Modeling and Optimization of Memristor and STT-RAM-Based Memory for Low-Power Applications. IEEE Trans. Very Large Scale Integr. Syst.
**2016**, 24, 1003–1014. [Google Scholar] [CrossRef] - Hu, J.; Stecklein, G.; Anugrah, Y.; Crowell, P.A.; Koester, S.J. Using Programmable Graphene Channels as Weights in Spin-Diffusive Neuromorphic Computing. IEEE J. Explor. Solid-State Comput. Devices Circuits
**2018**, 9231, 26–34. [Google Scholar] [CrossRef] - Jiang, Z.; Yu, S.; Wu, Y.; Engel, J.H.; Guan, X.; Wong, H.-S.P. Verilog-A Compact Model for Oxide-based Resistive Random Access Memory (RRAM). In Proceedings of the 2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Yokohama, Japan, 9–11 September 2014; pp. 41–44. [Google Scholar]
- Pal, S.; Bose, S.; Islam, A. Design of memristor based low power and highly reliable ReRAM cell. Microsyst. Technol.
**2019**. [Google Scholar] [CrossRef] - Lehtonen, E.; Poikonen, J.H.; Laiho, M. Applications and limitations of memristive implication logic. In Proceedings of the 2012 IEEE International Symposium on Circuits and Systems (ISCAS), Seoul, Korea, 20–23 May 2012. [Google Scholar]
- Lu, W.; Lieber, C.M. Nanoelectronics from the bottom up. Nat. Mater.
**2007**, 6, 841–850. [Google Scholar] [CrossRef] [PubMed] - Mountain, D.J.; Member, S.; Mclean, M.M. Memristor Crossbar Tiles in a Flexible, General Purpose Neural Processor. IEEE J. Emerg. Sel. Top. Circuits Syst.
**2017**, 8, 137–145. [Google Scholar] [CrossRef] - Ni, L.; Liu, Z.; Yu, H.A.O.; Joshi, R.V. An Energy-Efficient Digital ReRAM-Crossbar-Based CNN with Bitwise Parallelism. IEEE J. Explor. Solid-State Comput. Devices Circuits
**2017**, 3, 37–46. [Google Scholar] [CrossRef] - Pal, S.; Gupta, V.; Islam, A. Variation resilient low-power memristor-based synchronous flip-flops: Design and analysis. Microsyst. Technol.
**2021**, 27, 525–538. [Google Scholar] [CrossRef] - Predictive Technology Model (PTM). 2012. Available online: https://ptm.asu.edu/ (accessed on 10 August 2019).
- Prasad, S.R.; Madhavi, B.K.; Kishore, K.L. Data-Retention Sleep Transistor CNTFET SRAM Cell Design at 32 nm Technology for Low-Leakage. In Proceedings of the 2nd International Conference on Advances in Information Technology and Mobile Communication—AIM 2012, Bangalore, India, 27–28 April 2012; pp. 362–368. [Google Scholar]
- Sakib, M.N.; Hassan, R.; Biswas, S.N.; Das, S.R. Memristor-Based High-Speed Memory Cell with Stable Successive Read Operation. IEEE Trans. Comput. Des. Integr. Circuits Syst.
**2018**, 37, 1037–1049. [Google Scholar] [CrossRef] - Shin, S.; Kim, K.; Member, A.; Kang, S.-M. Memristor Applications for Programmable Analog ICs. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
**2011**, 10, 266–274. [Google Scholar] - Singh, J.; Raj, B. Design and Investigation of 7T2M-NVSRAM With Enhanced Stability and Temperature Impact on Store/Restore Energy. IEEE Trans. Very Large Scale Integr. Syst.
**2009**, 27, 1322–1328. [Google Scholar] [CrossRef] - Kanno, Y.; Mizuno, H.; Yasu, Y.; Hirose, K.; Shimazaki, Y.; Hoshi, T.; Miyairi, Y.; Ishii, T.; Yamada, T.; Irita, T.; et al. Hierarchical Power Distribution with Power Tree in Dozens of Power Domains for 90-nm Low-Power. IEEE J. Solid-State Circuits
**2007**, 42, 74–83. [Google Scholar] [CrossRef] - Strachan, J.P.; Torrezan, A.C.; Miao, F.; Pickett, M.D.; Yang, J.J.; Yi, W.; Medeiros-Ribeiro, G.; Williams, S. State Dynamics and Modeling of Tantalum Oxide Memristors. IEEE Trans. Electron Devices
**2013**, 60, 2194–2202. [Google Scholar] [CrossRef] - Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature
**2008**, 453, 80–84. [Google Scholar] [CrossRef] [PubMed] - Sun, J.; Shen, Y.; Yin, Q.; Xu, C. Compound synchronization of four memristor chaotic oscillator systems and secure communication Compound synchronization of four memristor chaotic oscillator systems and secure communication. Chaos Interdiscip. J. Nonlinear Sci.
**2013**, 23, 013140. [Google Scholar] [CrossRef] [PubMed] - Swami, S.; Mohanram, K. Reliable Nonvolatile Memories: Techniques and Measures. IEEE Des. Test
**2017**, 34, 31–41. [Google Scholar] [CrossRef] - Janniekode, U.M.; Somineni, R.P.; Naidu, C.D. Design and Performance Analysis of 6T SRAM Cell in Different Technologies and Nodes. Int. J. Perform. Eng.
**2021**, 17, 167–177. [Google Scholar] - Yamamoto, S.; Shuto, Y.; Sugahara, S. Nonvolatile SRAM (NV-SRAM) using functional MOSFET merged with resistive switching devices. In Proceedings of the 2009IEEE Custom Integrated Circuits Conference, San Jose, CA, USA, 13–16 September 2009; pp. 531–534. [Google Scholar]
- Yang, J.J.; Strukov, D.B.; Stewart, D.R. Memristive devices for computing. Nat. Nanotechnol.
**2013**, 8, 13–24. [Google Scholar] [CrossRef] [PubMed] - Wei, W.; Namba, K.; Han, J.; Lombardi, F. Design of a Nonvolatile 7T1R SRAM Cell for Instant-on Operation. IEEE Trans. Nanotechnol.
**2014**, 13, 905–916. [Google Scholar] [CrossRef] - Palanisamy, S.; Thangaraju, B.; Khalaf, O.I.; Alotaibi, Y.; Alghamdi, S. Design and Synthesis of Multi-Mode Bandpass Filter for Wireless Applications. Electronics
**2021**, 10, 2853. [Google Scholar] [CrossRef] - Rout, R.; Parida, P.; Alotaibi, Y.; Alghamdi, S.; Khalaf, O.I. Skin Lesion Extraction Using Multiscale Morphological Local Variance Reconstruction Based Watershed Transform and Fast Fuzzy C-Means Clustering. Symmetry
**2021**, 13, 2085. [Google Scholar] [CrossRef] - García, N.O.; Velásquez, M.F.D.; Romero, C.A.T.; Monedero, J.H.O.; Khalaf, O.I. Remote Academic Platforms in Times of a Pandemic. Int. J. Emerg. Technol. Learn.
**2021**, 16, 121–131. [Google Scholar] [CrossRef] - Khalaf, O.I.; Romero, C.A.T.; Pazhani, A.A.J.; Vinuja, G. VLSI Implementation of a High-Performance Nonlinear Image Scaling Algorithm. J. Healthc. Eng.
**2021**, 2021, 6297856. [Google Scholar] [CrossRef] [PubMed] - Khalaf, O.I.; Abdulsahib, G.M. An Improved Efficient Bandwidth Allocation using TCP Connection for Switched Network. J. Appl. Sci. Eng.
**2021**, 24, 735–741. [Google Scholar] [CrossRef] - Chen, Y.Y.; Govoreanu, B.; Goux, L.; Degraeve, R.; Fantini, A.; Kar, G.S.; Wouters, D.J.; Groeseneken, G.; Kittl, J.; Jurczak, M.; et al. Balancing SET/RESET Pulse for Endurance in 1T1R Bipolar RRAM. IEEE Trans. Electron Devices
**2012**, 59, 3243. [Google Scholar] [CrossRef] - Grossi, A.; Vianello, E.; Sabry, M.M.; Barlas, M.; Grenouillet, L.; Coignus, J.; Beigne, E.; Wu, T.; Le, B.Q.; Wootters, M.K.; et al. Resistive RAM endurance: Array-level correction techniques targeting deep learning applications. IEEE Trans. Electron Devices
**2019**, 66, 1281–1288. [Google Scholar] [CrossRef]

**Figure 1.**(

**a**) Structure for NVM with 6T SRAM cell as core. (

**b**) Flow chart for operational flow of NVSRAM cell.

Parameter | WL (V) | VDD (V) | CTRL1 (V) | CTRL2 (V) |
---|---|---|---|---|

RESET | 0 | 1 | 0 | 1 |

STORE | 1 | 1 | 1 | 1 |

POWER DOWN | 0 | 0 | 0 | 0 |

RESTORE | 1 | 1 | 1 | 1 |

Parameter | 16 nm | 20 nm | 22 nm | 32 nm |
---|---|---|---|---|

VDD | 0.9 V | 0.9 V | 0.95 V | 1 V |

CTRL1, CTRL2, CTRL3 | 0.9 V | 0.9 V | 0.95 V | 1 V |

RSET (LRS) | 100 Ω | |||

RRESET (HRS) | 16 KΩ | |||

Temperature | 25 °C |

Parameters | 16 nm | 20 nm | 22 nm | 32 nm |
---|---|---|---|---|

Write Delay (ps) | 33.87 | 53.89 | 57.81 | 66.84 |

Read Delay (ps) | 145.7 | 155.3 | 172 | 92.41 |

Static Power (nW) | 2.78 | 2.78 | 0.34 | 5.17 |

Dynamic Power | 14.16 | 17.52 | 9.54 | 18.06 |

RSNM (mv) | 170 | 148 | 166 | 220 |

WSNM (mv) | 554 | 536 | 560 | 636 |

Parameters | 6T | 7T1R | 7T2R | 8T2R | Proposed NVSRAM |
---|---|---|---|---|---|

Write Delay (ps) | 50.53 | 52.2 | 52.19 | 53.16 | 53.14 |

Read Delay (ps) | 61.52 | 62.63 | 86.52 | 87.98 | 89.8 |

Static Power (nW) | 57.62 | 51.65 | 51.55 | 52.64 | 52.08 |

Dynamic Power (nW) | 111 | 77.18 | 93.08 | 80.48 | 78.34 |

Total Power Dissipation (nW) | 168.62 | 128.83 | 144.63 | 133.12 | 130.42 |

RSNM (mV) | 139 | 119 | 153 | 140 | 162 |

WSNM (mV) | 462 | 491 | 539 | 501 | 539 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Janniekode, U.M.; Somineni, R.P.; Khalaf, O.I.; Itani, M.M.; Chinna Babu, J.; Abdulsahib, G.M. A Symmetric Novel 8T3R Non-Volatile SRAM Cell for Embedded Applications. *Symmetry* **2022**, *14*, 768.
https://doi.org/10.3390/sym14040768

**AMA Style**

Janniekode UM, Somineni RP, Khalaf OI, Itani MM, Chinna Babu J, Abdulsahib GM. A Symmetric Novel 8T3R Non-Volatile SRAM Cell for Embedded Applications. *Symmetry*. 2022; 14(4):768.
https://doi.org/10.3390/sym14040768

**Chicago/Turabian Style**

Janniekode, Uma Maheshwar, Rajendra Prasad Somineni, Osamah Ibrahim Khalaf, Malakeh Muhyiddeen Itani, J. Chinna Babu, and Ghaida Muttashar Abdulsahib. 2022. "A Symmetric Novel 8T3R Non-Volatile SRAM Cell for Embedded Applications" *Symmetry* 14, no. 4: 768.
https://doi.org/10.3390/sym14040768