New Generalized Class of Convex Functions and Some Related Integral Inequalities
Abstract
:1. Introduction and Preliminaries
- 1.
- If and then we have Definition 1.
- 2.
- If and then we obtain Definition 2.
- 3.
- If and then we obtain Definition 3.
- 4.
- If and then we obtain Definition 4.
- 5.
- If and then we obtain Definition 5.
2. Algebraic Properties of the New Convex Function
- 1.
- is the –generalized convex with respect to ;
- 2.
- is the –generalized convex with respect to for any nonnegative real number c.
3. The Inequality for the New Convex Function
- If and for all and , we have Theorem 1.
- If , and for , and , we obtain ([23], Theorem 2.1).
- If , and for all and , we obtain ([22], Theorem 4).
4. Further Results
- If and for all and , we obtain
- If and for all and , we obtain
- If and for all , and , we obtain
- If and for all and , we have
- If and for all and , we obtain
- If and for all , and , we obtain
- If and for all and , we obtain
- If and for all and , we obtain
- If and for all , and , we obtain
- If and for all and , we obtain
- If and for all and , we obtain
- If and for all , and , we obtain
- If and for all and , we obtain
- If and for all and , we obtain
- If and for all , and , we obtain
- If and for all and , we obtain
- If and for all and , we obtain
- If and for all , and , we obtain
- If and for all and , we obtain
- If and for all and , we obtain
- If and for all , and , we obtain
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kashuri, A.; Meftah, B.; Mohammed, P.O.; Lupaş, A.A.; Abdalla, B.; Hamed, Y.S.; Abdeljawad, T. Fractional weighted Ostrowski-type inequalities and their applications. Symmetry 2021, 13, 968. [Google Scholar] [CrossRef]
- Kasamsetty, K.; Ketkar, M.; Sapatnekar, S.S. A new class of convex functions for delay modeling and its application to the transistor sizing problem [CMOS gates]. IEEE Trans.-Comput.-Aided Des. Integr. Circuits Syst. 2020, 19, 779–788. [Google Scholar] [CrossRef]
- Awan, M.U.; Noor, M.A.; Noor, K.I.; Khan, A.G. Some new classes of convex functions and inequalities. Miskolc Math. Notes 2018, 19, 77–94. [Google Scholar] [CrossRef]
- Hudzik, H.; Maligranda, L. Some remarks on s–convex functions. Aequationes Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- Eftekhari, N. Some remarks on (s,m)–convexity in the second sense. J. Math. Inequal. 2014, 8, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Kadakal, M.; İşcan, İ. Exponential type convexity and some related inequalities. J. Inequal. Appl. 2020, 1, 82. [Google Scholar] [CrossRef]
- Agarwal, P.; Choi, J. Fractional calculus operators and their image formulas. J. Korean Math. Soc. 2016, 53, 1183–1210. [Google Scholar] [CrossRef] [Green Version]
- Rekhviashvili, S.; Pskhu, A.; Agarwal, P.; Jain, S. Application of the fractional oscillator model to describe damped vibrations. Turk. J. Phys. 2019, 43, 236–242. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Fitzpatrik, S. The Hadamard’s inequality for s–convex functions in the second sense. Demonstr. Math. 1999, 32, 687–696. [Google Scholar]
- Han, J.; Mohammed, P.O.; Zeng, H. Generalized fractional integral inequalities of Hermite–Hadamard-type for a convex function. Open Math. 2020, 18, 794–806. [Google Scholar] [CrossRef]
- Rashid, S.; Noor, M.A.; Noor, K.I.; Akdemir, A.O. Some new generalizations for exponentially s–convex functions and inequalities via fractional operators. Int. J. Sci. Innov. Tech. 2014, 1, 1–12. [Google Scholar] [CrossRef] [Green Version]
- İşcan, İ. Hermite–Hadamard–Fejér type inequalities for convex functions via fractional integrals. Stud. Univ. Babeş-Bolyai Math. 2015, 60, 355–366. [Google Scholar]
- Abdeljawad, T.; Mohammed, P.O.; Kashuri, A. New modified conformable fractional integral inequalities of Hermite–Hadamard type with applications. J. Funct. Spaces 2020, 2020, 4352357. [Google Scholar] [CrossRef]
- Fernandez, A.; Mohammed, P.O. Hermite–Hadamard inequalities in fractional calculus defined using Mittag–Leffler kernels. Math. Meth. Appl. Sci. 2020, 44, 8414–8431. [Google Scholar] [CrossRef]
- Ujević, N. Sharp inequalities of Simpson type and Ostrowski type. Comput. Math. Appl. 2004, 48, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Wen, W.; Park, J. Ostrowski type fractional integral inequalities for MT–convex functions. Miskolc Math. Notes 2015, 16, 249–256. [Google Scholar] [CrossRef]
- Kaijser, S.; Nikolova, L.; Persson, L.E.; Wedestig, A. Hardy type inequalities via convexity. Math. Inequal. Appl. 2005, 8, 403–417. [Google Scholar] [CrossRef] [Green Version]
- Rashid, S.; Jarad, F.; Noor, M.A.; Noor, K.I.; Baleanu, D.; Liu, J.B. On Grüss inequalities within generalized k–fractional integrals. Adv. Differ. Equ. 2020, 2020, 203. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Sarikaya, M.Z.; Baleanu, D. On the generalized Hermite–Hadamard Inequalities via the tempered fractional integrals. Symmetry 2020, 12, 595. [Google Scholar] [CrossRef] [Green Version]
- Kalsoom, H.; Rashid, S.; Idrees, M.; Safdar, F.; Akram, S.; Baleanu, D.; Chu, Y.M. Post quantum integral inequalities of Hermite–Hadamard-type associated with co-ordinated higher-order generalized strongly pre-invex and quasi-pre-invex mappings. Symmetry 2020, 12, 443. [Google Scholar] [CrossRef] [Green Version]
- Bombardelli, M.; Varošanec, S. Properties of h–convex functions related to the Hermite–Hadamard–Fejér inequalities. Comput. Math. Appl. 2009, 58, 1869–1877. [Google Scholar] [CrossRef] [Green Version]
- Toply, T.; Kadakal, M.; İşcan, İ. On n–polynomial convexity and some related inequalities. AIMS Math. 2020, 5, 1304–1318. [Google Scholar] [CrossRef]
- Rashid, S.; İşcan, İ.; Baleanu, D.; Chu, Y.M. Generation of new fractional inequalities via n–polynomials s–type convexity with applications. Adv. Differ. Equ. 2020, 2020, 264. [Google Scholar] [CrossRef]
- Hadamard, J. Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Dragomir, S.S.; Agarwal, R.P.; Cerone, P. On Simpson’s inequality and applications. J. Inequal. Appl. 2000, 5, 533–579. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, M.Z.; Yildirim, H. On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Notes 2017, 17, 1049–1059. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M.; Dragomir, S.S.; Cerone, P. Ostrowski type inequalities for functions whose derivatives are s–convex in the second sense. Appl. Math. Lett. 2010, 23, 1071–1076. [Google Scholar] [CrossRef]
- Qaisar, S.; He, C.; Hussain, S. A generalizations of Simpson’s type inequality for differentiable functions using (α,m)–convex functions and applications. J. Inequal. Appl. 2013, 2013, 158. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kashuri, A.; Agarwal, R.P.; Mohammed, P.O.; Nonlaopon, K.; Abualnaja, K.M.; Hamed, Y.S. New Generalized Class of Convex Functions and Some Related Integral Inequalities. Symmetry 2022, 14, 722. https://doi.org/10.3390/sym14040722
Kashuri A, Agarwal RP, Mohammed PO, Nonlaopon K, Abualnaja KM, Hamed YS. New Generalized Class of Convex Functions and Some Related Integral Inequalities. Symmetry. 2022; 14(4):722. https://doi.org/10.3390/sym14040722
Chicago/Turabian StyleKashuri, Artion, Ravi P. Agarwal, Pshtiwan Othman Mohammed, Kamsing Nonlaopon, Khadijah M. Abualnaja, and Yasser S. Hamed. 2022. "New Generalized Class of Convex Functions and Some Related Integral Inequalities" Symmetry 14, no. 4: 722. https://doi.org/10.3390/sym14040722
APA StyleKashuri, A., Agarwal, R. P., Mohammed, P. O., Nonlaopon, K., Abualnaja, K. M., & Hamed, Y. S. (2022). New Generalized Class of Convex Functions and Some Related Integral Inequalities. Symmetry, 14(4), 722. https://doi.org/10.3390/sym14040722