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Abstract: There is a strong correlation between convexity and symmetry concepts. In this study, we
investigated the new generic class of functions called the (1, m)-generalized convex and studied its
basic algebraic properties. The Hermite-Hadamard inequality for the (n, m)-generalized convex
function, for the products of two functions and of this type, were proven. Moreover, this class of
functions was applied to several known identities; midpoint-type inequalities of Ostrowski and
Simpson were derived. Our results are extensions of many previous contributions related to integral
inequalities via different convexities.

Keywords: Hermite-Hadamard inequality; Ostrowski inequality; Simpson inequality; (11, m)-generalized
convexity
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1. Introduction and Preliminaries

The twenty-first century began with the introduction and establishment of new tools
used to solve linear and nonlinear differential and difference equations. In terms of the
convexity theory, one important development involves defining a new class of convex
functions, which is then tested on the well-known inequalities. “As it is known, inequalities
aim to develop different mathematical methods. Nowadays, we need to seek accurate
inequalities for proving the existence and uniqueness of the mathematical methods. In
recent years, especially over the past two decades, several authors have been engaged in
the study of inequalities, including various function classes (symmetric or asymmetric)”,
see [1]. Moreover, the modern convexity theory has motivated researchers to propose a
new generalized class of convex functions and to investigate their special models, which
could effectively be used in different fields, in particular, agriculture, medicine, reliability
engineering, demography, actuarial study, survival analysis, and others. Kasamsetty et al.
in [2] defined a new class of convex functions used to delay modeling and established
an application to the transistor sizing problem. Awan et al. in [3] obtained new classes
of convex functions and inequalities. Hudzik and Maligranda in [4] investigated the
class of s-convex functions. Eftekhari in [5] derived new results using (s, m)—convexity
in the second sense. Kadakal and Iscan in [6] established related inequalities via the
exponential type convexity. Agarwal and Choi in [7] used fractional operators and found
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their image formulas. Rekhviashvili et al. in [8] described damped vibrations via a fractional
oscillator model.

In much of the literature, we can see various Hermite-Hadamard (HH) inequality types,
in which one of the known classes of convex functions is utilized (e.g., [9-11]). Moreover,
some generalizations of the HH integral inequalities, such as HH-Fejér, AB HH, midpoint
HH, mid-end-point HH, conformable HH, and HH-Mercer integral inequalities are found
(e.g., [12-14]). In addition, different integral inequalities using those convexities are investi-
gated. Ujevi¢ in [15] obtained sharp inequalities for Simpson and Ostrowski types. Liu et al.
in [16], using the MT—convexity class derived Ostrowski fractional inequalities. Kaijser
etal. in [17] established Hardy-type inequalities via convexity. Rashid et al. in [18], using
generalized k—fractional integrals, found Griiss inequalities. For more recent published
papers on HH, see [19,20].

Let us review some fundamental and preliminary results on convexity and inequality.

Definition 1. Function ® : T C R — Riis called convex, if

O(ox1 + (1 - 0)x2) < 0®(x1) + (1 -0)O(x2), 1

holds for all x1, x2 € T (T is an interval with real numbers and R is the set of real numbers) and
0 € [0,1]. Moreover, ® is concave if (—®) is convex.

Definition 2 ([4]). Let s € (0,1] be a real number. A function © : T C R — Riis called s-convex
(in the second sense), if

Oex1+(1-0)x2) <°0(x1) + (1 - 0)°O(x2), ()

holds for all x1, x2 € T,and ¢ € [0,1].

Definition 3 ([21]). Let 7, J be intervals in R, (0,1) C J and let h : J — R be a nonnegative
function, and h # 0. A nonnegative function © : T — Riis called h-convex, if

O(ox1 + (1 —0)x2) < h(e)®(x1) +h(1 —0)O(x2), 3)

holds for all x1,x2 € T, 0 € (0,1).
Toply et al. [22] introduced the following class of convex functions:

Definition 4. Let n € N. A function ® : T — R s called n—polynomial convex, if
1y 2 1y 0
Ol +(1-or) <, ¥ [1-1-0%0tn) +3 ¥ [1-d"|eta), ®
n 61:1 n [1:1
holds for every x1,x2 € T,and ¢ € [0,1].

Recently, Rashid et al. [23] defined the following class of convex functions:

Definition 5 ([23]). Assume that s € [0,1] and n € N. A function ® : T — R is said to be
n—polynomial s—type convex, if

Ly - 60— ]ew) + 2 ¥ [1- 60t ©

=1 =1

Oox1 + (1 -0)x2) <

holds for every x1, x2 € T,and ¢ € [0,1].

The following double inequality, namely the HH inequality, is remarkable, and it played
an important role in the analysis.
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Theorem 1 (HH inequality [24]). Let © : T C R — R be a convex function on T for x1, X2 € T
and x1 < Xo, then

X1+ Xx2 1 X2 O(x1) +0O(x2)
®( > ) < o /X1 O(g)do < ——5—". (6)

The following well-known inequality is called the Ostrowski inequality:

Theorem 2 (Ostrowski inequality [16]). Let © : T C R — R a differentiable function in the
interval T and let x1, x2 € T with x1 < x2.If |©'(x)| < M forall x € [x1, x2], then

2
_xtxe
(x - 52)

(x2—x1)?

1 X2 1
o)~ 1 [ (o] < M~ 1) | + ?

Another type of inequality is obtained by Dragomir et al. [25], which is as follows:

Theorem 3 (Simpson inequality [25]). Assume that © : [x1, x2] — R is a four-time continuous
and differentiable function on (x1, x2) such that | @] = SUP e (x,,12) |0@ (x)| < oo with
X1 < Xz, then

X1,X2

o Ve®
< 5g50 (12 X110 |- ®)

1 X2
- / O(x)dx
X2 —X1Jx

For brevity, we denoteby D = {hy,ha, ..., hu, 81,82, - - -, §m} the convex set in the sequel.
Motivated by the above results, we introduce the following generic class of
convex functions:

2

Definition 6. Suppose that 1 < n < m, where n,m € N, and assume that hy,, &g, : [0,1] —
[0, +00) are continuous functions for all {1 = 1,2,...,nand {; = 1,2,...,m. A function
© : T — R, which is nonnegative, is said to be (n, m)—generalized convex with respect to D, if

O(ox1 +(1—0)x2) < (111 Z hél(9)>®(7€l) + (,411 i gez(e)>®()cz), ©)

=1 =1
holds for every x1, x2 € Tand ¢ € [0,1].

Remark 1. From Definition 6, we can observe that:

1. Ifn=m=1hy(0)=1—(1—0)" and g, (0) =1 — o, then we have Definition 1.
Ifn=m=1,hy(0) =0 and g;,(0) = (1 — 0)*, then we obtain Definition 2.
Ifn=m=1,hy(0) = h(e)and gy, (0) = h(1 — o), then we obtain Definition 3.
Ifn=mhy(0) =1—(1—0)" and g;,(0) = 1 — 02, then we obtain Definition 4.
Ifn=m, hy(0) =1—(s(1—0))" and g,,(0) = 1 — (s0)2, then we obtain Definition 5.
Interested readers can derive many other known and unknown classes for suitable choices of
the above functions hy, and gy, .

SRR

This article is divided into five sections: in Section 2, algebraic properties of the
(n, m)-generalized convex function are presented. In Section 3, a new version of the HH
inequality is presented; by using this definition, we will also derive the products of two
functions of this type. In Section 4, we obtain general results by using the well-known
identities of midpoint-type inequalities of Ostrowski and Simpson for our new defined
convex functions; we obtain special cases from these. Section 5 concludes the article.
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2. Algebraic Properties of the New Convex Function

This section deals with algebraic properties of our new definition.

Theorem 4. Suppose that 1 < n < m, where n,m € N, and assume that hy , g, : [0,1] —
[0, +00) are continuous functions forall 1 = 1,2,...,nand b, = 1,2,...,m,and ©, ©1, O3 :
T — R If©, ©1, and O, are three nonnegative (n, m)—generalized convex functions with respect
to D, then

1. ©1+ Oy is the (n, m)-generalized convex with respect to D;
2. O is the (n, m)—generalized convex with respect to D for any nonnegative real number c.

Proof. The proof is evident, so we omit it. [

Theorem 5. Suppose that 1 < n < m, where n,m € N, and assume that hy , g, : [0,1] —
[0, +00) are continuous functions forall 1 =1,2,...,nand {; =1,2,...,m. Let @1 : T — R be
a convex function and ®; : R — R is a non-decreasing and nonnegative (n, m)—generalized convex
function with respect to D. Then the function ®, 0 @1 : T — Riis an (n, m)-generalized convex
with respect to D.

Proof. For all x1, x2 € Tand ¢ € [0,1], we have

(@2001)(ex1 + (1 - 0)x2) = O2(O1(ex1 + (1 - 0)x2))

< O2(001(x1) + (1 -0)O1(x

( Zhgl )@)2@1;(1 ( dez ) (©1(x2))
)

IN

6=1 l=1

( > (0

=1

O; 0 04)( ( Zgzz > ©2001)(x2),

=1

which ends our proof. O

Theorem 6. Suppose that 1 < n < m, where n,m € N, and assume that hy,, &, : [0,1] —
[0, +00) are continuous functions for all {1 = 1,2,...,n and l, = 1,2,...,m. Let O :
[X1,x2] — R be a family of nonnegative (n, m)—generalized convex functions with respect to
D and O(x) = sup, Or(x). Then ® is an (n, m)-generalized convex function with respect to D
and U = {x € [x1,x2] : O(x) < +oo} is an interval.

Proof. Let x1, x2 € U and ¢ € [0,1], then

Oox1 +(1-0)x2) = sup Orlox1 + (1 -0)x2)

which ends our proof. [J

Theorem 7. Suppose that 1 < n < m, where n,m € N, and assume that hy,, gy, : [0,1] —
[0, +00) are continuous functions forall ¢y = 1,2,...,nand b, =1,2,...,m. If® : [x1,x2] = R
is a nonnegative (n, m)—generalized convex function with respect to D, then © is bounded on
[Xl/ X2]
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Proof. Let K = max{®(x1),0®(x2)} and x € [x1, x2]- Then, there exists ¢ € [0,1], such
that x = 0x1 + (1 — ) x2. Moreover, since /1, , g, are continuous functions on [0, 1] for all
1 =12,...,nand ¥, = 1,2,...,m, then we denote, respectively, L1 = max{hy, hy,..., hu}
and L, = max{g1,$2,...,9m}- Hence,

O(x) =O(ex1 +(1—0) < thl ) ( dez ) x2)

=1 =1

Z ey (@) + — i gez(e)]

n/= m =

2L1+— ZLZ]

m=

=K(Ly + Lp) = M.

Moreover , for all x € [x1,x2], there exists ¢ € {0, @} , such that x = )“2& + ¢ or

x =050 _ & Tetus suppose that x = X172 4 & without loss of generality. So, we have

X1+xe2\ _ 11x1+x2 11x1+xe
o(H1722) ~o(y |1k re] 42 )

< (1 E(3))ocas (5 Ean(3))o(u5% )

By making use of M as the upper bound, we can deduce

1

Ox) > —o(M X2 _p_y,
Ly 2

which ends our proof. O

3. The HH Inequality for the New Convex Function

In this section, we will establish some integral inequalities of the HH-type pertaining to
the (1, m)-generalized convex functions.

Theorem 8. Assume that 1 < n < m, where n,m € N, and assume that hy , gy, : [0,1] —

[0, +00) are continuous functions forall ¢y = 1,2,...,nand b, =1,2,...,m. If® : [x1,x2] = R
is a nonnegative (n, m)-generalized convex function with respect to D, then we have

1 >®<X1;X2>< 1 /XZ@(x)dx

Lo b (3) + A Ehose (3 X2 o
O(x1) +O(x2)
S(Z ZHflJr—ZGez, (10)
n Ao m =

where

1 1
:/ he (0)do, V41 =1,2,...,n and Gy, ::/ gn,(0)do, Vi =1,2,...,m
0 0
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Proof. Let wy, wy € [x1, x2]- Applying the (1, m)—generalized convexity with respect to D
of ® on [x1, x2], we have

o(252) <L pu e Lo o

6=1 =1

Let us denote, respectively, w; = ox2 + (1 — 0)x1 and wp = 0x1 + (1 — 0) x2. From inequal-
ity (11), we obtain

®<W> gii) ( ) (ox2+ (1—0)x1) +l ng2(1> (ox1+ (1 —0)x2)- (12)

Integrating on both sides (12), with respect to ¢ from 0 to 1, we obtain

@(W) < Zz_llh&( ))/01@(Qm+(1—e)xl)de
+ (;élgez(;)) /01(9(@7(1 + (1 —0)x2)de
(B B ()t e

which gives the proof of the left hand side of (10). For the right hand side of (10), we use the
definition of (1, m)—generalized convexity with respect to D of ®, where ¢ € [0, 1]. Hence,

®(ox1+(1-0) ( thl > < ngz ) X2),

=1 t=1

and

O(ox2 +(1-0) ( thl ) < dez ) x1)-

6=1 lh=1

Adding both of them, we have

O(ox1 + (1—0)x2) +O(ox2 + (1 — ( Z he, (0 ) ( Z 8u,(0 ) x2)

6H=1 =1

(o (5 Bnw)owr o

Integrating on both sides (13) with respect to ¢ from 0 to 1, we obtain

1
/0 O(ox1 +(1-0) de+/ (ox2 + (1 —@)x1)de

L[l (o]

1 m
/ ( Z e, (@ ) X2) + (m )y gzz(e)>®(7c1) de,
lh=1
which leads to
1 X2 O(x1) + >
O(x)dx < H, + = Gy |,
X2 — X1 /Xl ) < 2 /5121 n ezzl -
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which ends our proof. [

Remark 2. We have particular cases from Theorem 8:

* Ifhy(0) = oand gu,(0) = ¢ forall by = 1,2,...,nand {, = 1,2,...,m, we have
Theorem 1.

o Ifn=mhy(0) =1—(s(1—0))"and g, (0) =1—(so)2 fors € [0,1], 41 =1,2,...,n
and f, = 1,2,...,m, we obtain ([23], Theorem 2.1).

o Ifn=m hy(0) =1—(1—0)" and g,,(0) = 1— ¢ forall ¢, = 1,2,...,n and
by =1,2,...,m, weobtain ([22], Theorem 4).

Theorem 9. Let 1 < ny < myand 1 < ny < my where ny,ny, my,my € N. Assume that
hlgln,gg),h,((z),gla) : [0,1] — [0, +o0) are continuous functions for all 1 = 1,...,ny, o =
1,...,m,k=1,... . nmpandl =1,...,my. If®,¢ : [x1, x2] = Rare nonnegative (ny, my) and
(np, my)—generalized convex functions with respect to

DO =i nY, k) gV, g8, gl b and

D2 = {hgz), héz), ...k ,&2),g§ ),gé ),. . .,g,(ﬂzz) }, respectively, then we have

1 X2
Xz—Xl/ O)y(x)

_< y "ZZA@ )@ (nlfnz > ﬁBgl,z)@)(xl)zp(xZ)

mnz = k=

< i %: Ck/2>®()(2)4’(7(1)+< L % fl% >®(X2)1P(X2)/ (14)

M 31 =1

where
Apx /hzl o)do, Vi1 =12,...,m, Vk=12,...,m,
By, _/ W (g (0)do, Y0 =1,2...,m, VI=1,2,...,my,
Crp, = /h 0g(@)do, Yk=1,2,...,m, Yl =1,2,...,m,
and

RN COPSRNNC)
Dy, ::/0 s D05 (0o, Yo =1,2,...,m, YI=12,...,m.

Proof. Applying (11, m1) and (ny, my)-generalized convexity with respect to DM and D@
of ©, ¢ on [x1, X2/, respectively, we have

O(ex1 + (1 -e)x < ZZl hgl ) x1) + (n;ﬁ gg)(e)>®(7cz) (15)

and

plox+(1- ) < (12 ¥ h,(f)(e))w(xl) + (;2 fﬁg}”(e))ﬂm (16
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Multiplying inequalities (15) and (16) on both sides, we obtain

©(ox1 + (1 - o)x2)p(ex1 + (1 - 0)x2)
< L (Q)) (12 by hi”(e))caocl)w(xl)

(1
h
)

! <n11 L 82)@) (,ﬁz l_Zlgz(z)(e))@(xz)w(m). (17)

Integrating inequality (17) with respect to ¢ from 0 to 1 on both sides, we obtain

1 X2
P /X " O)p(x)dx

n n2 (2
< <n1n2£ / h 0)hy d9>@(7c1)1/’()(1)

=1k=1

[ 0l + (1~ Qx)ven + (1 - o)xa)de =

+< Ly /01hé?(e)gf”(e)de)@(xnwm)

LYy h<2><e>g§?<e>de>@(mwn

o mZ_mZ /1gé?(e)gz(z)(e)d())®(X2)¢(Xz)-

- (1 > 3 A, )@(zcl)w(xl ( y %le ) J(x2)

mmz /==

( 2 2 Ckéz> 2)P(x1) + ( % %sz ) 2)P(x2),
mm 3 =1

MMz ==
which ends our proof. O

4. Further Results

We denote by L[x1, x2] the set of all integrable functions on [x1, x2]. Let us recall the
following lemmas in order to establish our following results.

Lemma 1 (Midpoint identity [26]). Let © : T € R — R be a differentiable function on T and
X1, X2 € Twith x1 < x2. If©®" € L]x1, x2|, then

1 X2 X1+ X2
T(©: x1, x2) = / 0(0)d @)( )
(©;x1,x2) - (0)do 5

_ (x2—x1) (e 2-¢ Moo, 20
=) el (S + 20 00 Ydo - [ 0@ (e + 25 %0 )de (. 9

Lemma 2 (Ostrowski identity [27]). Let ® : T C R — R be a differentiable function on T and
X1, X2 € Twith x1 < x2.If O € L[x1, x2], then
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1 X2
T1(0;x, x1, x2) == O(x) — / O(0)de
X2 —X1Jx

(X_Xl / /
== AU @ (ox + (1 — d
e o C (ox+ (1 —0)x1)de —

(Xz —

- / 00’ (0x + (1 — 0)x2)do. (19)

Lemma 3 (Simpson identity [28]). Let © : T C R — R be a differentiable function on T and
X1, X2 € Twith x1 < x2. If® € L]x1, x2], then

1
®
Xz_xl/m (0)do

=<;cz—xl>{/f(e—é)®<e;<2+<1—e>xl o | (o —5>®'(QX2+(1—Q)X1)61Q}- @)

T2(0; x1, x2) := é[@)(Xl) +4®<)(142r)(2> +®(X2)}

Theorem 10. Suppose that 1 < n < m, where n,m € N, and assume that hy , gy, : [0,1] —
[0, +00) are continuous functions forall ¢ =1,2,...,nand b, =1,2,...,m,and © : [x1, x2| —
R be a differentiable function on (x1, x2) such that ©® € L]x1, x2]. If |©®’| is an (n, m)—generalized
convex function with respect to D on [x1, x2], then we have

7@ x| < L2 (16| +10' )

Zufl_‘_* Zvﬁz

[21

, (21)

where
1 1
. Q _ o 0 _
Uy, .—/0 thl<§>dg, Vi =12,...,n and V,, .—/0 Qggz(i)dg, Vil =1,2,...,m

Proof. By using Lemma 1 and the (1, m)-generalized convexity of |@’| with respect to D,
we have

|T(®;X1rX2)|<(M4X1){/01Q‘®(QX+( )‘dg-{—/ ‘ ( (220, )‘dg}
"2"“{ [( th1(§)>|®'xl+< zg@( )>|®’m>|
[( > a3 >|@/Xz>|+(1;gez( )>|®<xl>|]de}

(X2 >(\®'(X1)| + 10" (x2)] [ Z Uy, +* Z Vi,
=1 nm, =

do

7

which ends our proof. [J

Corollary 1. We have particular cases from Theorem 10:
* Ifhy(0) =cand g, (0) =1—oforallty =1,2,...,n,and lr = 1,2,...,m, we obtain

@m0 < L 10/ () +10/ ()]
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o Ifhy(0) = 0" and g,,(0) = (1—0)? forall &1 = 1,2,...,n,and b, = 1,2,...,m
we obtain

@m0 < [0/ ()] +10/ ()]

1 1 101/ 2 4, 1

- S Wl il b+l _ 1) _ = (oh+2 _4q )
e e L

 Ifhy(0) =0 and g¢,(0) = (1 —q)* forall by =1,...,n,lp, =1,...,m,and s € (0,1],
we obtain

(?@4;7“) [10'(x1)| + 19’ (x2)|]

% {25(51—1-2) +21S<s—!2—1 (ZSH _1) B s%—%(zHZ _1>>]'

Theorem 11. Suppose that 1 < n < m, where n,m € N, and assume that hy , gy, : [0,1] —
[0, +00) are continuous functions forall ¢1 =1,2,...,nand b, =1,2,...,m,and © : [x1, x2| —
R be a differentiable function on (x1,x2), such that © € L[x1,x2)- If |©'|7 is an (n m)—
generalized convex function with respect to D on [x1,x2], then for g > 1 and % + - =1,
we have

1T (©; x1,x2)| <

( Z Mél) 1©(x1)|7 + ( Z Nfz) 10" (x2)/7 ] q

6=1 lo=1

IT(O; x1,x2)| < (x2 ;X]) (qu)p{

+

( Z le> 10" (x2)|7 + < Z Nz2> 10" (x1)/" r} (22)

where
1 1
— g g = g =
My, .—/O hg1(2>dQ, Vi =12,...,n and Ny, : /Oggz(z)dg, Vb =1,2,...,m

Proof. By using Lemma 1, Holder’s inequality and the (1, m)-generalized convexity of

|©’|7 with respect to D, we have
— 1 2
T (©; x1,x2)| < W{/O Q‘® (Qx + ( )‘de+/ ( + 5 Q)xl)‘de}

SW(/;QMQ);
(g 25%) ) (o5 25
< e —x) (p.lu);
(G En@) s (s Es))owr)e]
(LG E @)oo (3 £ s) )]

ng) 3;}

40
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- (XZZM)(P}Fl)l{K eleh)l@/ " |‘7+< Zzle[2> ]

( ZM«)@ (m)|ﬂ+< ZN@)@ <xl>|m,

6=1 lr=1

=
=

which ends our proof. O

Corollary 2. We have particular cases from Theorem 11:
* Ifhy (o) =cand g, (0) =1—gforallt; =1,2,...,n,and l =1,2,...,m, we have

T@manl < L22X () {10/l +310 ) 1) + 316 ) + 10/ Gl

44 \p+1
o Ifhy(0) = 0" and g,,(0) = (1—0)? forall {1 = 1,2,...,n,and b, = 1,2,...,m
we obtain
1
(e—x1) (1 \7
; <
‘T<®/X11X2)| = 4 p+1

1 ¢ 1 7 i 2fz+1—1 ) g
(2 £ st oo (2 £ 22 o]

1 & 1 ) 1 & 26—\ i
(”glz_llzzl(ﬂl+1)>|® (x2)|? +< me>|@ (X1)|q] }

* Ifhy(0) = ¢ and go,(0) = (1 —q)* forall by =1,...,n,lp =1,...,m,and s € (0,1],

+

we obtain
1
(x2 —x1) < 1 )‘“
T(O; x1, <
MO < LG\

{0l + e -1 Gl + [~ 1l + 1)1}

Theorem 12. Suppose that 1 < n < m, where n,m € N, and assume that hy , &, : [0,1] —
[0, +00) are continuous functions forall ¢ = 1,2,...,nand b, = 1,2,...,m,and O : [x1, x2| —
R be a differentiable function on (x1,x2), such that © € L[x1,x2]. If |©'|7 is an (n,m)-
generalized convex function with respect to D on [x1, x2], then for g > 1, we have

|T(©; x1, x2)| < (X2;X1)(§> {

q

( 3 Um) 1O (x1)1" + < » sz> 10 (x2)I?

=1 t=1

+

(15w Yoo (2 w)our] ) e

where Uy, and V,, are defined as in Theorem 10.

Proof. By using Lemma 1, the well-known power mean inequality and the (7, m)-generalized
convexity of |@'|7 with respect to D, we have

T (@ x1,x2)| < W{/Ole‘(@ (gx +( )‘dQJr/ ‘ ( + 2 ;Q)Xl)‘dg}
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= (;(24—7(1)</01 Qde>l_}’
X{UOIQ‘@/(;)M + (ZZQ)Xz> 'Zze)é - (/ole @’(gzcz + (2;‘2);(1)
sy
(G B e (£ )]

(e Eno)enr(Enioenr) )
(XZ;Xl 5{[( £ £ ’

Z U(q) 10" (x1)|7 + ( Z V@) 10 (x2)|? q
( Z U&) 10" (x2)|7 + < Z V€2>|®/(X1)| ]q}
= o

which ends our proof. [

) ;}

=

+

Corollary 3. We have particular cases from Theorem 12:

* Ifhy (o) =cand g, (0) =1—gforallty =1,2,...,n,and lr = 1,2,...,m, we obtain
T(©; (X2 = 20) f116/ ()7 + 210 (2)17] 7 + [210/ ()17 + 1€ (2) 1]
[T(0; x1,x2)| < 8f [1©' (|7 +210" (x2) 1] 7 + [210" (x1)|7 + 10 (x2) ] 7 -

e Ifhy(o) = 0" and gy, (0) = (1—0)2 forall ¢y = 1,2,...,n,and l, = 1,2,...,m
we obtain

|T(©;x1,x2)| < (Xz—?fl)<1>1‘$
- { KZEM) )
" (’}1;_1 2172 (ézi P27 -1) - @%(2%2 - 1))) @(Xz)ﬂ g
(i o M) ol

1
l i i l+1 _L l42 , g q
+<m£2§1252<€2+1(22 1) €2+2(22 1))>|® (1)l ,

 Ifhy(0) =0 and g¢,(0) = (1 =) forallty =1,...,n, ¢, =1,...,m,and s € (0,1],
we obtain
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1-1
1T(©; x1,x2)| < Ocz—w(l) i

4 2
1 ! q l 2 s+1 o l s+2 / q
1 ! q l 2 s+1 _ 1 s+2 / q
* {25(s+2)|® (x2)l +25<s+1(2 1) -3 ‘® x ’

Theorem 13. Suppose that 1 < n < m, where n,m € N, and assume that hy , gy, : [0,1] —
[0, +00) are continuous functions forall ¢1 =1,2,...,nand b, =1,2,...,m,and © : [x1, x2| —
R be a differentiable function on (x1, x2), such that ©' € L[x1, x2]. If |©’| is an (n, m)—generalized
convex function with respect to D on [x1, x2], then we have

. (x—x1)?* |1 & ) L )
|7—1(®1x1X11XZ)| < 7)(2 — (1’[ élz::l Eél> ‘@ (X)| + <m éZX::l ng> ‘@ (Xl)l
(x2—x)* /
S E; |1O( F, ||® , (24
e ( x el)i ( o @)\ (|, @

where
1 1
Ey, ::/O ohy (0)do, V41 =12,...,n and F, ::/0 0gr,(0)do, Vil =12,...,m

Proof. By using Lemma 2 and the (1, m)-generalized convexity of |@’| with respect to D,

we have
_ 2 1
T )| < S [ gler (o + (1 gy de
(icci_)m/ 0|0 (ex + (1 —0)x2)|deo
(x_Xl) ! !
S S Vi h o' o'( d
<boab z (@ || pzzlggz (o)l |de
d0a 2 ol (s @ )10+ (L 3 su(0))1€/0) | de
X2—X1 JoO ni= ! m =1 ’
(x_?(l / /
_Y=xar Ey, | 1©( F. ||®
op— %Zl | [221 5 |10 (x1)]

+<§2—K Z >|@' <£221F52>|®’(Xz>|]

which ends our proof. [

Corollary 4. We have particular cases from Theorem 13:
* Ifhy(0) =cand g, (0) =1—oforallty =1,2,...,n,and lr = 1,2,...,m, we obtain

a2
2@ 3 1 12)] < MM@'( )+ 10 Gl + M[Zl(ﬂx} 11O ()l

o Ifhy(0) = o and g,,(0) = (1—0)2 forall &1 = 1,2,...,n,and &, = 1,2,...,m
we obtain
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P . (x_X )2 1 ¢ 1 / 1 & 1 /
|T1(®; %, x1, x2)| < ?)1(1 l(” 61221 0 +2>|® ()| + ( Z MM>|® (x1)l

=1

2—x)2(1 & 1 . 1 1 /
+X§_MKnZ£1+2>|®()I+< ZMM>I®(XZ)|1.

=1

o Ifhy(0) =0 and gr,(0) = (1 =) forallty =1,...,n,lp =1,...,m,and s € (0,1],
we obtain

1
(s+1)(s+2)

. {“"“)[m D10’ +10/0xn) ) + 225 (s pjer ()] + 10/ | }

T1(®;x, x1, x2)| <

X2 — X1 X2 — X1

Theorem 14. Suppose that 1 < n < m, where n,m € N, and assume that hy , &, : [0,1] —
[0, +00) are continuous functions forall ¢ = 1,2,...,nand b, =1,2,...,m,and O : [x1, x2| —
R be a differentiable function on (x1, x2) such that ® € L{x1, x2|. If |©’|7 is (n, m)—generalized
convex function with respect to D on [x1, x2|, then for ¢ > 1 and % + % =1, we obtain

==

1
®;/ 7 S - 4
7 (03, x1,12)| (p+1)

(X_Xl & / / %
X{M (n Z: >|® |q+< 6221(%)'@ (X1)|]

+(X2—XK Z H, >|@’ xX)|7+ (;[i Gz2>|G)’(7Cz)|‘7
=1

X2 — X1 01=1

%
}, (25)

Proof. By using Lemma 2, Holder’s inequality and the (1, m)-generalized convexity of
|©’|7 with respect to D, we obtain

where Hy, and Gy, are defined as in Theorem 8.

X — 2 1
|T1(0; %, x1, x2)| < w/o 0|0 (ex + (1 —0)x1)|do

X2 — X1
(x2 —x) /1 :

+ @ (ox+ (1— d
o1 Jo 0|®(ox + (1 —0)x2)|do

<></ o) ([ 0-omra)
£ (o (o)
S(p}rl)]{(zz—_xgl/o (( [121;% >|®’ Iq+< thgzz )IG) X1)|‘7> r
+H[/ol<<i§1hh()>®l |q+< ézzlgfz )I@ Xz>lq>dg]$}

=
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(x—x1 / / %
(e (0w (1 £ 6ot

( wa®>m<%f%)mmﬂ?,
=1

which ends our proof. O

==

:(p—lm>

+(X2—x
X2 — X1

Corollary 5. We have particular cases from Theorem 14:

* Ifhy(0) =cand g, (0) =1—gforallty =1,2,...,n,and lr = 1,2,...,m, we obtain

1 1
1\7 1 P
1T1(0; x, x1,x2)| < <2> ' (p+1> '

(x = x1)% 10 / Lo =% 0y /
x { =AU N1@/ (x) 140 (x1)]7] 7 + 22— [|©' (x)|7 + |©' (x2) |
{m OL 10/ () 1+ 10/ (c0) 1)+ L2 |0/ ()7 + 1/ (1)1
o Ifhy(0) = o and g,(0) = (1—0)2 forall {1 = 1,2,...,n,and {, = 1,2,...,m
we obtain

N

|ﬂ@mmwﬂ§<1 y
_ 2 n m %
ASA G L) ewrs (5 £ a o]
_x2 / m %
+(;inl< 26 +1>|® “(3125 +1> m)l] }

* Ifhy(0) =0 and go,(¢) = (1 —q)* forall by =1,...,n,lp =1,...,m,and s € (0,1],
we obtain

1
1 \7
(P+1>

X {(;zx) (10 (x)]7 + 10/ (x1)7]7 + H (1€ (x)]7 + @' (x2)|]7 }

|-

1
. < -
Ti@x el < (1)

Theorem 15. Suppose that 1 < n < m, where n,m € N, and assume that hy , &, : [0,1] —
[0, +00) are continuous functions forall ¢ = 1,2,...,nand b, =1,2,...,m,and © : [x1, x2| —
R be a differentiable function on (x1,x2), such that © € L[x1, x2|. If |©'|7 is the (n,m)-
generalized convex function with respect to D on [x1, x2], then for g > 1, we have

1—% _ 2 n %
i@ 2) < (3) {%jﬁ“iz%)mmu( z%yum]

51:1 pZ 1
1
(XZ_X [( > / & / §
+ o Z Ep 1O ()17 + | = ), Fp |1©(x2)|7| ¢, (26)
X2 — X1 =1 =1 ’

where Ey, and Fy, are defined as in Theorem 13.

S
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Proof. By using Lemma 2, the well-known power mean inequality and the (7, m)-generalized
convexity of |@'|7 with respect to D, we have

)2

i@ x| < S [ gler (o + (1 o)) lde
—x 2 1

+%/0 0|®"(ex + (1 - 0)x2)|de

1

x—x1)%( [* g 7
< (fe) ([ etera-omorae)

-

= ([ ) (s 0-or)
O L2 B (s B}
+(j§§__22l/0 (( z1211% >®/ |Q+< izﬂlggz >|®’Xz Iq>de }
:G)l}’{mK ZE)|®' |‘7+< ZF52>|®(7C1)|V
(2 % e )orwr (2 £ v o] ).

Corollary 6. We have particular cases from Theorem 15:
* Ifhy(0) =0and g¢,(0) =1—oforall b1 =1,2,...,n,and b, = 1,2,...,m, we obtain

+(X2—x
X2 —X1

which ends our proof. O

IT1(0; x, x1, x2)| <

zf
o {(X) [2|®/( )9+ |®/(X1)|‘7]% + M [2|®/(x)|q + ‘®/(?C2)‘q] % }
X2 — X1 X2 — X1

o Ifhy(0) = o and g,,(0) = (1—0)2 forall {1 = 1,2,...,n,and {, = 1,2,...,m
we obtain
)

<=

N =

ﬂ@mmwmg(
(x—x 1 & 7 1 & 1 . 7
X{erlKnE )W V+< Z@ﬁﬂ%ﬁm)@mwl

_xz , m , %
B |G E ) oo (5 B s o] )

X2—X1
* Ifhy(0) = ¢ and go,(0) = (1 —q)* forall by =1,...,n,lp =1,...,m,and s € (0,1],
we obtain

+
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1

1\"7 1 7
rexnl=(z) (Frers)
X — 2 1 —x 2 1
X {w [(s+ 1)@ (x)|7+ [0 (x1)|] 7 + (;2_)(3 [(s+1)|@ (x) ]9+ @ (x2)|7] 7 }

Theorem 16. Suppose that 1 < n < m, where n,m € N, and assume that hy,, gy, : [0,1] —
[0, +00) are continuous functions forall ¢ = 1,2,...,nand b, =1,2,...,m,and © : [x1, x2| —
R be a differentiable function on (x1, x2), such that © € L{x1, x2|. If |©’| is the (n, m)—generalized
convex function with respect to D on [x1, x2], then we have

|72(0; x1, x2)| < (x2 — x1)

. {iﬁl (4l +a2) = (42 + a) + (B2 +BY) - (B + B) |10/ (an)
L

+ nlufl (e +c?) — (¢ +c®) + (D2 + D) — (DY + DP)] Ww}, -
-

where

5 61

A = [Tho(ode, AP = [ h(@)de,
12 1

BZ) = | oh,(o)de, BE) = [, ohy,(0)de,
; 6

By = , O (@)de, B}, = J; eha(Q)de,

and . )
1 6 2 2
CEZ) ::/0 8, (0)de, Céz) :=/é 8, (0)de,

3 1
6
)= | gn(0)de, CfY = /5 81, (0)do,
6

v 2

1 1
"6 2
Dg) = /0 08¢, (0)de, DZ) = /1 081, (0)do,
6

2 1
3 6 4
DEZ) = /l a8, (0)de, Déz) = /5 081,(0)do,
2 3
forallty =1,2,...,nand 6 =1,2,...,m.

Proof. By using Lemma 3 and the (1, m)—generalized convexity of |@'| with respect to D,
we have

172(0; x1, x2)| < (x2 _Xl){ /0E

1
0— 6‘|®'(QX2 +(1—0)x1)|de

1
+/l
2

5
Q- 6‘!@(@)& +(1- Q)X1)|d£’}



Symmetry 2022, 14, 722

18 of 23

1

< (Xz—X1){/02 H( [2111/1 >|®’ X2 |+< 621862

= (x2 _Xl){

611 fz]

% y (A + L) = (A2 +a)) + (B2 +B) - (B

=1

)9 (x1)]

1@—2\[< > (o >|@’m|+< RE >|@ (1)

4

do

4

W+ B ]1000))

+rlnéi{(c(l)+c( ))_(c§§>+cgj)>+(pg)+D2>)_(D<>+D )}I®’( )|},

=1

which ends our proof. O

Corollary 7. Ifwe take hy, (0) = 0", V61 =1,...,nand g,,(0) = (1—0)2, Vb =1,...,

in Theorem 16, we obtain

|72(0; x1, x2)| < (x2 — x1)

n/ =

m

x {1 y (U +ul) = (U +ul) + (v +vi) = (il + V) 1@ (Gl

e B2 - (0 + (0 + ) (0 o) ot

1 1
2[1-"-1 - 621-‘1-1 4

1 5 l1+1
b +1 o <6> '

1 1
2£1+2 B 65] +2 /7

b=
where . .
..+ @ ._
Uzl =G 1) llg1 : €1+1<
u® e (T LY g
bt /1 +1 6 2041 )7 Th
w.__ 1 yo_ 1
Vfl T 6Z1+2(51 _|_2>’ Vfl T A _|_2(
V(3> — 1 ? b +2 B 1 V(4) —
b b1 +2 6 201+2 |7 Th
lr+1
p 1 [ (5\"T po._ 1
L b+ 6 © e T
. 1 1 1 ) ._
sz T hh+1 <2£2+1 T et )’ Péz =
and

Q(l — 2
b (£2+1 €2+2 fz—l—l 6

<z>”2“ zf”) <

5 ly+1

1 5 {142
l1+2 1_(6> !

5 lr+1 1
6) “an)

1
62t + 1)

1 5 ly+2
B ly+2 (6) !

Ez-‘rl 1 1 lr+2
B Uy +2 (2) !
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Theorem 17. Suppose that 1 < n < m, where n,m € N, and assume that hy,, gy, : [0,1] —
[0, +00) are continuous functions forall ¢ =1,2,...,nand b, =1,2,...,m,and ® : [x1, x2| —

R be a differentiable function on (x1,x2) such that @ € L[x1,x2]. If |©'|1 is the ( m)—
generalized convex function with respect to D on [x1, x2|, then for ¢ > 1 and % + - =1,
we have
1
2 [2PrFl 41\
< _ s -
172(0; x1, x2)| < (x2 — x1) L)Jrl( i ﬂ

K Z Hzl>|® (21" + < Z Gez>® ()l r, (28)

6H=1 tr=1
where Hy, and Gy, are as defined in Theorem 8.

Proof. By using Lemma 3, Holder’s inequality and the (1, m)-generalized convexity of
|©’|7 with respect to D, we have

1

|T2(0; x1, x2)| < (x2 _Xl){ /02 0

1
- gllerten + a - amvlae

; - 2\|@’<m+ (1 _Q)Xl)|dg}
= k=) [(/0% "% pdé’);] (/01|@’(e7cz+ (1 —e)m)!%e)é
<(X2—X1)[< : ) 2”‘1@)%]

[/ (( [121’% >|®’Xz ( f_ >|®’xl)|q>der

g
el (o] [ Lo (3 £

6=1 lo=1

1

117 P 1
dQ) +(/1
2

° %

1
q

7

which ends our proof. [

Corollary 8. We have particular cases from Theorem 17:
* Ifhy(0) =0and g¢,(0) =1—oforall by =1,2,...,n,and b, = 1,2,...,m, we obtain

2 (2’““+1)F[|®’(xl)|‘7+|®’(m)lq i

|72(0; x1, x2)| < (Xz—Xl)[p+1 6P 1 2

o Ifhy(0) = 0" and g,,(0) = (1—0)? forall {1 = 1,2,...,n,and &, = 1,2,...,m
we obtain

1
2 /2Pt p1N]?
T < e |2 (Pt )]

AL e (G £ >!®’X1|V
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* Ifhy(0) = ¢ and g¢,(0) = (1 —q)* forall by =1,...,n,lp =1,...,m,and s € (0,1],
we obtain

2 (2”“+1>F[I®’(X1)Iq+|®’()cz)lq %

172(0; x1, x2)| < (Xz-)(1)[p+1 T p——

Theorem 18. Suppose that 1 < n < m, where n,m € N, and assume that hy , &, - [0,1] —
[0, +00) are continuous functions forall ¢ = 1,2,...,nand b, =1,2,...,m,and © : [x1, x2| —
R be a differentiable function on (x1,x2), such that © € L[x1, x2|. If |©'|1 is the (n,m)-
generalized convex function with respect to D on [x1, x2], then for g > 1, we have

1-1
172(0; x1. x2)| < (x2 Xl)(356) ' (29)

) (- 0) o]
(ié (32) B A?)) © ()7 + (;é (Dé? ) C? ) ) ®’<xl>|ﬂ] i
22 (SAE) _ Bgi))) el (fjwzil (SCE) - DZ”)) |®'<xl>|ﬂ] |
+ [(i (Z_ (Béf) _ 5A6é‘f> ) ) 1© (2|7 + (’ié (Déj) - SC? ) ) |®’(x1>|¢7] %,}’

where Aé ), Bék), Cé ), and D for all k =1,2,3,4 are defined as in Theorem 16.

Proof. By using Lemma 3, the well-known power mean inequality and (n, m)-generalized
convexity |©’|7 with respect to D, we have

1
- 6’!®’(Q7(z +(1—0)x1)|de

1
[72(0; x1,x2)| < (x2 _Xl){ 02 0

-
,le- 6‘|@/(QX2 +(1- Q)xl)\de}
2

) [(/0% Q—é’dg>13’+ (/; Q—z‘d())l;]

0 éM@/(W T Q)Xl)wdQ) "y (/; 0- 2’|®'(QX2 +(1- Q)X1)|qd£’>;}

) [(/0% Q—é’dg>1}’+ (/11 Q—z‘d())l;]

04

2

\(( . e >|®’m |q+< ezzlgzz >|®'m>|q>d4;

e
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e—\(( L) >|® x |q+< L ) )@ xuq)der

(szl)(;;)l_;
(A:) ~ B )>|®’( 2|7+ (;Zi(c?—ljg)))|®’(xl)|q}
o2 e ]
(152_1( B ))IGW ( f_( - ))@’(m)qr
(i[&( ))@’ 12 I“(1£§1(D£)—S?>)|®’<xl>w} }

which ends our proof. [
Corollary 9. Ifwe take by, (0) = 0“1 and g4, (0) = (1 —0)*2 in Theorem 18 forall {1 = 1,2,...,n
and U, = 1,2,...,m, we obtain

+

=
H—/

1
A
2

Y

==

5\
IT2(0; x1, x2)| < (X2 — X1)<36> '

1)
x{ Yoy jega+ | £
h 6 m
1
(2) (2) 7
1 & u p
(n 3 (Véf) : )) @'m)m( (Qé? ¢ ))w(mw]
51:1 1
1 ¢ 5Ué13) (3) ’ 5P(3) '
S LV | 190+ - | 1@ ()l
nflzl (2:]
1
(4) (4) 7
1 - (4)_5u51 / q 1 L (4)_5PZ2 ,
nélz_l(vgl 5 | 1O | Q=g ) Jletar) g

where UZ{), Vg(lk), Pg) and ng{) forall k =1,2,3,4 are as defined in Corollary 7.

- Pzgl) (1) %
) e —Q, | |1@G)
=1

S| =
™=

~

S
NgE

4

| —

3
NgE

+

5. Conclusions

In this article, we studied algebraic properties of a new generic class of functions
called the (1, m)-generalized convex function; based on this, we proposed HH inequalities.
Moreover, we obtained new midpoint-type inequalities of Ostrowski and Simpson based
on our new definition, using well-known integral identities. Finally, we observed that the
new, defined convex function is a powerful type of function used to investigate various
inequalities in the real analysis field.
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