q-Analogue of a New Subclass of Harmonic Univalent Functions Associated with Subordination
Abstract
1. Introduction
2. Main Results
3. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Durege, H. Elements of the Theory of Functions of a Complex Variable with Especial Reference to the Methods of Riemann; Norwood Press: Ellistown, UK, 1896. [Google Scholar]
- Pierpont, J. Galois’ Theory of Algebraic Equations. Part II Irrational Resolv. Ann. Math. 1900, 2, 22–56. [Google Scholar] [CrossRef]
- Cayley, A. Obligations of Mathematics to Philosophy, and to Questions of Common Life—II. Science 1883, 36, 502–504. [Google Scholar] [CrossRef] [PubMed]
- Waldo, C.A. The relation of mathematics to engineering. Science 1904, 19, 321–330. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jeans, J. The Mathematical Theory of Electricity and Magnetism; Cambridge University Press: Cambridge, UK, 1908. [Google Scholar]
- Belokolos, E.D.; Bobenko, A.I.; Enolskii, V.Z.; Its, A.R.; Matveev, V.B. Algebro-Geometric Approach to Nonlinear Integrable Equations; Springer: New York, NY, USA, 1994. [Google Scholar]
- Fokas, A.S.; Sung, L.Y. Generalized Fourier transforms, their nonlinearization and the imaging of the brain. Not. Am. Math. Soc. 2005, 52, 1178–1192. [Google Scholar]
- Crowdy, D. Geometric function theory: A modern view of a classical subject. Nonlinearity 2008, 21, T205. [Google Scholar] [CrossRef]
- Jimbo, M.A. q-analogue of U(g[(N+1)), Hecke algebra, and the Yang-Baxter equation. Lett. Math. Phys. 1986, 11, 247–252. [Google Scholar] [CrossRef]
- Moak, D.S. The q-analogue of stirling’s formula. Rocky Mt. J. Math. 1984, 14, 403–413. [Google Scholar] [CrossRef]
- Moak, D.S. The q-analogue of the Laguerre polynomials. J. Math. Anal. Appl. 1981, 81, 20–47. [Google Scholar] [CrossRef]
- Cătaş, A.; Lupaş, A.A. Some Subordination Results for Atangana-Baleanu Fractional Integral Operator Involving Bessel Functions. Symmetry 2022, 14, 358. [Google Scholar] [CrossRef]
- Altınkaya, Ş.; Yalçın, S.; Çakmak, S. A Subclass of Bi-Univalent Functions Based on the Faber Polynomial Expansions and the Fibonacci Numbers. Mathematics 2019, 7, 160. [Google Scholar] [CrossRef]
- Atshan, W.G.; Rahman, I.A.R.; Lupaş, A.A. Some Results of New Subclasses for Bi-Univalent Functions Using Quasi-Subordination. Symmetry 2021, 13, 1653. [Google Scholar] [CrossRef]
- Buti, R.H. Properties of a Class of Univalent Functions defined by Integral Operator. Basrah J. Sci. A 2016, 34, 45–50. [Google Scholar]
- Akgül, A. Second-order differential subordinations on a class of analytic functions defined by Rafid-operator. Ukrains’ Kyi Mat. Zhurnal 2018, 70, 587–598. [Google Scholar] [CrossRef]
- Clunie, J.; Sheil-Small, T. Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A I Math. 1984, 9, 3–25. [Google Scholar] [CrossRef]
- Aral, A.; Agarwal, R.; Gupta, V. Applications of q-Calculus in Operator Theory; Springer: New York, NY, USA, 2013. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Merkes, E.; Steyr, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Ahuja, O.P.; Çetinkaya, A.; Polatoğlu, Y. Bieberbach-de Branges and Fekete-Szegö inequalities for certain families of q-convex and q-close-to-convex functions. J. Comput. Anal. Appl. 2019, 26, 639–649. [Google Scholar]
- Seoudy, T.M.; Aouf, M.K. Coefficient estimates of new classes of q-starlike and q-convex functions of complex order. J. Math. Inequal. 2016, 10, 135–145. [Google Scholar] [CrossRef]
- Ahuja, O.P.; Çetinkaya, A.; Polatoğlu, Y. Harmonic Univalent Convex Functions Using A Quantum Calculus Approach. Acta Univ. Apulensis 2019, 58, 67–81. [Google Scholar]
- Jahangiri, J.M. Harmonic Univalent Functions Defined By q-Calculus Operators. Int. J. Math. Anal. Appl. 2018, 5, 39–43. [Google Scholar]
- Çakmak, S.; Yalçın, S.; Altınkaya, Ş. A new subclass of starlike harmonic functions defined by subordination. Al-Qadisiyah J. Pure Sci. 2020, 25, 36–39. [Google Scholar]
- Öztürk, M.; Yalçın, S.; Yamankaradeniz, M. Convex subclass of harmonic starlike functions. Appl. Math. Comput. 2004, 154, 449–459. [Google Scholar] [CrossRef]
- Yalçın, S.; Bayram, H. Some Properties on q-Starlike Harmonic Functions Defined by Subordination. Appl. Anal. Optim. 2020, 4, 299–308. [Google Scholar]
- Dziok, J. Classes of harmonic functions defined by subordination. Abstr. Appl. Anal. 2015, 2015, 756928. [Google Scholar] [CrossRef]
- Ahuja, O.P.; Çetinkaya, A. Connecting Quantum calculus and Harmonic Starlike functions. Filomat 2020, 34, 1431–1441. [Google Scholar] [CrossRef]
- Jahangiri, J.M. Harmonic functions starlike in the unit disk. J. Math. Anal. Appl. 1999, 235, 470–477. [Google Scholar] [CrossRef]
- Silverman, H. Harmonic univalent functions with negative coefficients. J. Math. Anal. Appl. 1998, 220, 283–289. [Google Scholar] [CrossRef]
- Silverman, H.; Silvia, E.M. Subclasses of harmonic univalent functions. N. Z. J. Math. 1999, 28, 275–284. [Google Scholar]
- Öztürk, M.; Yalçın, S. On univalent harmonic functions. J. Inequal. Pure Appl. Math. 2002, 3–4, 61. [Google Scholar]
- Dziok, J. On Janowski harmonic functions. J. Appl. Anal. 2015, 21, 99–107. [Google Scholar] [CrossRef]
- Dziok, J. Classes of harmonic functions associated with Ruscheweyh derivatives. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Mat. 2019, 113, 1315–1329. [Google Scholar] [CrossRef]
- Dziok, J.; Jahangiri, J.M.; Silverman, H. Harmonic functions with varying coefficients. J. Inequal. Appl. 2016, 2016, 139. [Google Scholar] [CrossRef]
- Dziok, J.; Yalçın, S.; Altınkaya, Ş. Subclasses of Harmonic Univalent Functions Associated with Generalized Ruscheweyh Operator. Publ. L’institut Math. Nouv. Ser. Tome 2019, 106, 19–28. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayram, H. q-Analogue of a New Subclass of Harmonic Univalent Functions Associated with Subordination. Symmetry 2022, 14, 708. https://doi.org/10.3390/sym14040708
Bayram H. q-Analogue of a New Subclass of Harmonic Univalent Functions Associated with Subordination. Symmetry. 2022; 14(4):708. https://doi.org/10.3390/sym14040708
Chicago/Turabian StyleBayram, Hasan. 2022. "q-Analogue of a New Subclass of Harmonic Univalent Functions Associated with Subordination" Symmetry 14, no. 4: 708. https://doi.org/10.3390/sym14040708
APA StyleBayram, H. (2022). q-Analogue of a New Subclass of Harmonic Univalent Functions Associated with Subordination. Symmetry, 14(4), 708. https://doi.org/10.3390/sym14040708