A Study of Continuous Dependence and Symmetric Properties of Double Diffusive Convection: Forchheimer Model
Abstract
:1. Introduction
2. Governing Equations
3. A Priori Estimates
4. Continuous Dependence on
5. Convergence to the Constant Viscosity Solution
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Straughan, B. Stability and Wave Motion in Porous Media. In Applied Mathematical Sciences; Springer: New York, NY, USA, 2008; Volume 165. [Google Scholar]
- Hirsch, M.W.; Smale, S. Differential Equations, Dynamical Systems, and Linear Algebra; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Knops, R.J.; Payne, L.E. Continuous data dependence for the equations of classical elastodynamics. Proc. Camb. Phil. Soc. 1969, 66, 481–491. [Google Scholar] [CrossRef]
- Knops, R.J.; Payne, L.E. Improved estimates for continuous data dependence in linear elastodynamics. Proc. Camb. Phil. Soc. 1988, 103, 535–559. [Google Scholar] [CrossRef]
- Payne, L.E. On stabilizing ill-posed problems against errors in geometry and modeling. In Inverse and Ill-Posed Problems; Engel, H., Groetsch, C.W., Eds.; Academic Press: New York, NY, USA, 1987; pp. 399–416. [Google Scholar]
- Payne, L.E. On geometric and modeling perturbations in partial differential equation. In Proceedings of the LMS Symposium on Non-Classical Continuum Mechanics, Cambridge, UK, 2–12 July 1987; Cambridge University Press: Cambridge, UK, 1987; pp. 108–128. [Google Scholar]
- Payne, L.E. Continuous dependence on geometry with applications in continuum mechanics. In Continuum Mechanics and Its Applications; Graham, G.A.C., Malik, S.K., Eds.; Hemisphere Publ. Co.: Washington, DC, USA, 1989; pp. 877–890. [Google Scholar]
- Aulisa, E.; Bloshanskaya, L.; Hoang, L.; Ibragimov, A. Analysis of generalized Forchheimer flows of compressible fluids in porous media. J. Math. Phys. 2009, 500, 102–103. [Google Scholar] [CrossRef] [Green Version]
- Ciarletta, M.; Straughan, B.; Tibullo, V. Modelling boundary and nonlinear effects in porous media flow. Nonlinear Anal. Real World Appl. 2011, 12, 2839–2843. [Google Scholar] [CrossRef]
- Hoang, L.; Ibragimov, A. Structural stability of generalized Forchheimer equations for compressible fluids in porous media. Nonlinearity 2011, 24, 1–41. [Google Scholar] [CrossRef]
- Liu, Y. Convergence and continuous dependence for the Brinkman-Forchheimer equations. Math. Comput. Modell. 2009, 49, 1401–1415. [Google Scholar] [CrossRef]
- Liu, Y.; Du, Y.; Lin, C. Convergence results for Forchheimer’s equations for fluid flow in porous media. J. Math. Fluid Mech. 2010, 12, 576–593. [Google Scholar] [CrossRef]
- Liu, Y.; Du, Y.; Lin, C. Convergence and continuous dependence results for the Brinkman equations. Appl. Math. Comput. 2010, 215, 4443–4455. [Google Scholar] [CrossRef]
- Meften, G.A.; Ali, A.H.; Yaseen, M.T. Continuous Dependence for Thermal Convection in a Forchheimer-Brinkman Model with Variable Viscosity. AIP Conf. Proc. 2021; in press. [Google Scholar]
- Meften, G.A.; Ali, A.H. Continuous dependence for double diffusive convection in a Brinkman model with variable viscosity. Acta Univ. Sapientiae Math. 2022; in press. [Google Scholar]
- Abed Meften, G.; Ali, A.H.; Al-Ghafri, K.S.; Awrejcewicz, J.; Bazighifan, O. Nonlinear Stability and Linear Instability of Double-Diffusive Convection in a Rotating with LTNE Effects and Symmetric Properties: Brinkmann-Forchheimer Model. Symmetry 2022, 14, 565. [Google Scholar] [CrossRef]
- Meften, G.A. Conditional and unconditional stability for double diffusive convection when the viscosity has a maximum. Appl. Math. Comput. 2021, 392, 125694. [Google Scholar] [CrossRef]
- Straughan, B. Continuous dependence on the heat source in resonant porous penetrative convection. Stud. Appl. Math. 2011, 127, 302–314. [Google Scholar] [CrossRef]
- Gentile, M.; Straughan, B. Structural stability in resonant penetrative convection in a Forchheimer porous material. Nonlinear Anal. Real World Appl. 2013, 14, 397–401. [Google Scholar] [CrossRef]
- McKay, G.; Straughan, B. A nonlinear analysis of convection near the density maximum. Acta Mech. 1992, 95, 9–28. [Google Scholar] [CrossRef]
- Straughan, B. The Energy Method, Stability, and Nonlinear Convection. In Applied Mathematical Sciences, 2nd ed.; Springer: New York, NY, USA, 2004; Volume 91. [Google Scholar]
- Forchheimer, P. Wasserbewegung durch Boden. Z. Vereines Dtsch. Ingnieure 1901, 50, 1781–1788. [Google Scholar]
- Nield, D.A.; Bejan, A. Convection in Porous Media, 4th ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
- Néel, M.C. Convection forcée en milieux poreux: Écart à la loi de Darcy. C. R. Acad. Sci. Paris Sér. IIb 1998, 326, 615–620. [Google Scholar]
- Richter, F.M.; Nataf, H.C.; Daly, S.F. Heat transfer and horizontally averaged temperature of convection with large viscosity variations. J. Fluid Mech. 1978, 89, 553–560. [Google Scholar] [CrossRef]
- Rossby, H.T. A study of Bénard convection with and without rotation. J. Fluid Mech. 1969, 36, 309–335. [Google Scholar] [CrossRef]
- Weast, R.C. Handbook of Chemistry and Physics, 69th ed.; C.R.C. Press: Boca Raton, FL, USA, 1988. [Google Scholar]
- Tippelskirch, H. Über Konvektionszellen, insbesondere im flüssigen Schwefel. Beiträge Phys. Atmos. 1956, 29, 37–54. [Google Scholar]
- Palm, E. On the tendency towards hexagonal cells in steady convection. J. Fluid Mech. 1960, 8, 183–192. [Google Scholar] [CrossRef]
- Palm, E.; Ellingsen, T.; Gjevik, B. On the occurrence of cellular motion in Bdnard convection. J. Fluid Mech. 1967, 30, 651–661. [Google Scholar] [CrossRef]
- Alzahrani, A.K. Importance of Darcy—Forchheimer porous medium in 3D convective flow of carbon nanotubes. Phys. Lett. A 2018, 382, 2938–2943. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Zeeshan, A.; Ellahi, R.; Shit, G.C. Mathematical modeling of heat and mass transfer effects on MHD peristaltic propulsion of two-phase flow through a Darcy-Brinkman-Forchheimer porous medium. Adv. Powder Technol. 2018, 29, 1189–1197. [Google Scholar] [CrossRef]
- Burger, R.; Méndez, P.E.; Ruiz-Baier, R. On H(div)-conforming Methods for Double-diffusion Equations in Porous Media. Siam J. Numer. Anal. 2019, 57, 1318–1343. [Google Scholar] [CrossRef] [Green Version]
- Faulkner, J.; Hu, B.X.; Kish, S.; Hua, F. Laboratory analog and numerical study of groundwater flow and solute transport in a karst aquifer with conduit and matrix domains. J. Contam. Hydrol. 2009, 110, 34–44. [Google Scholar] [CrossRef]
- Zhuang, Y.J.; Yu, H.Z.; Zhu, Q.Y. A thermal non-equilibrium model for 3D double diffusive convection of power-law fluids with chemical reaction in the porous medium. Int. J. Heat Mass Transf. 2017, 115, 670–694. [Google Scholar] [CrossRef]
- Shi, J.; Luo, S. Convergence Results for the Double-Diffusion Perturbation Equations. Symmetry 2022, 14, 67. [Google Scholar] [CrossRef]
- Payne, L.E.; Song, J.C.; Straughan, B. Continuous dependence and convergence results for Brinkman and Forchheimer models with variable viscosity. Proc. R. Soc. Lond. Ser. A 1999, 455, 2173–2190. [Google Scholar] [CrossRef] [Green Version]
- Payne, L.E.; Straughan, B. Analysis of the boundary condition at the interface between a viscous fluid and a porous medium and related modelling questions. J. Math. Pures Appl. 1998, 77, 317–354. [Google Scholar] [CrossRef] [Green Version]
- Payne, L.E.; Weinberger, H.F. New bounds for solutions of second-order elliptic partial differential equations. Pac. J. Math. 1958, 8, 551–573. [Google Scholar] [CrossRef] [Green Version]
Symbol | Definition |
---|---|
Velocity | |
T | Temperature |
p | Pressure |
C | Concentration |
A constant | |
A positive constant (viscosity coefficient) | |
r | A positive integer |
a and b | Forchheimer coefficients |
and | Vectors for incorporating the gravity field |
A unit outward vector | |
h, k, , and | Maps |
V | A bounded domain in |
A kinetic viscosity | |
and | Positive constants |
A boundary of the domain V | |
q | A non-zero eigenvalue |
A solution to the Neumann problem with data f | |
A space of admissible functions | |
The volume of the domain V | |
∇ | The gradient |
The surface gradient over the boundary | |
Laplace operator | |
The surface measure of | |
norm | |
norm | |
Inner product | |
The balance of mass equation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.H.; Meften, G.A.; Bazighifan, O.; Iqbal, M.; Elaskar, S.; Awrejcewicz, J. A Study of Continuous Dependence and Symmetric Properties of Double Diffusive Convection: Forchheimer Model. Symmetry 2022, 14, 682. https://doi.org/10.3390/sym14040682
Ali AH, Meften GA, Bazighifan O, Iqbal M, Elaskar S, Awrejcewicz J. A Study of Continuous Dependence and Symmetric Properties of Double Diffusive Convection: Forchheimer Model. Symmetry. 2022; 14(4):682. https://doi.org/10.3390/sym14040682
Chicago/Turabian StyleAli, Ali Hasan, Ghazi Abed Meften, Omar Bazighifan, Mehak Iqbal, Sergio Elaskar, and Jan Awrejcewicz. 2022. "A Study of Continuous Dependence and Symmetric Properties of Double Diffusive Convection: Forchheimer Model" Symmetry 14, no. 4: 682. https://doi.org/10.3390/sym14040682
APA StyleAli, A. H., Meften, G. A., Bazighifan, O., Iqbal, M., Elaskar, S., & Awrejcewicz, J. (2022). A Study of Continuous Dependence and Symmetric Properties of Double Diffusive Convection: Forchheimer Model. Symmetry, 14(4), 682. https://doi.org/10.3390/sym14040682