Frequency UpConversion for Vibration Energy Harvesting: A Review
Abstract
:1. Introduction
2. Energy Conversion Mechanisms
2.1. Piezoelectric Transduction
2.2. Electromagnetic Transduction
2.3. Electrostatic Transduction
3. Frequency UpConversion Principles
3.1. ImpactBased Approach
3.2. PluckingBased Approach
3.3. SnapThroughBased Approach
4. ImpactBased Energy Harvesters
5. PluckingBased Energy Harvesters
5.1. Mechanical Plucking
5.2. Magnetic Plucking
6. SnapThrough Based Energy Harvesters
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
 Zachariah, T.; Adkins, J.; Dutta, P. Browsing the Web of Connectable Things. In Proceedings of the EWSN, Lyon, France, 17–19 February 2020; pp. 49–60. [Google Scholar]
 Raghunathan, V.; Kansal, A.; Hsu, J.; Friedman, J.; Srivastava, M. Design considerations for solar energy harvesting wireless embedded systems. In Proceedings of the IPSN 2005, Fourth International Symposium on Information Processing in Sensor Networks, Boise, ID, USA, 15 April 2005; pp. 457–462. [Google Scholar]
 Lu, X.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Wireless networks with RF energy harvesting: A contemporary survey. IEEE Commun. Surv. Tutor. 2014, 17, 757–789. [Google Scholar] [CrossRef] [Green Version]
 Kishore, R.A.; Priya, S. A review on lowgrade thermal energy harvesting: Materials, methods and devices. Materials 2018, 11, 1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 Wei, C.; Jing, X. A comprehensive review on vibration energy harvesting: Modelling and realization. Renew. Sustain. Energy Rev. 2017, 74, 1–18. [Google Scholar] [CrossRef]
 Harne, R.L.; Zhang, C.; Li, B.; Wang, K. An analytical approach for predicting the energy capture and conversion by impulsivelyexcited bistable vibration energy harvesters. J. Sound Vib. 2016, 373, 205–222. [Google Scholar] [CrossRef]
 Li, X.; Tang, H.; Liang, J.; Tang, L. Exploring the magnetic plucking motion towards a transientmotionpowered IoT sensor node. In Proceedings of the Active and Passive Smart Structures and Integrated Systems XIV, Online, 27 April–9 May 2020; p. 113761U. [Google Scholar]
 Akita, I.; Okazawa, T.; Kurui, Y.; Fujimoto, A.; Asano, T. A feedforward noise reduction technique in capacitive MEMS accelerometer analog frontend for ultralowpower IoT applications. IEEE J. SolidState Circuits 2019, 55, 1599–1609. [Google Scholar] [CrossRef]
 Khalid, S.; Raouf, I.; Khan, A.; Kim, N.; Kim, H.S. A review of humanpowered energy harvesting for smart electronics: Recent progress and challenges. Int. J. Precis. Eng. Manuf. Green Technol. 2019, 6, 821–851. [Google Scholar] [CrossRef]
 Liu, H.; Zhong, J.; Lee, C.; Lee, S.W.; Lin, L. A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Appl. Phys. Rev. 2018, 5, 041306. [Google Scholar] [CrossRef]
 Wang, J.; Geng, L.; Ding, L.; Zhu, H.; Yurchenko, D. The stateoftheart review on energy harvesting from flowinduced vibrations. Appl. Energy 2020, 267, 114902. [Google Scholar] [CrossRef]
 Adkins, J.; Ghena, B.; Dutta, P. SIGNPOST: Enabling CityScale Sensing for Citizens and Scientists. GetMobile Mob. Comput. Commun. 2019, 22, 23–26. [Google Scholar] [CrossRef]
 Yeager, D.J.; Sample, A.P.; Smith, J.R. WISP: A passively powered UHF RFID tag with sensing and computation. In RFID Handbook; CRC Press: Bocraton, FL, USA, 2017; pp. 261–276. [Google Scholar]
 Sigrist, L.; Stricker, N.; Bernath, D.; Beutel, J.; Thiele, L. Thermoelectric energy harvesting from gradients in the Earth surface. IEEE Trans. Ind. Electron. 2019, 67, 9460–9470. [Google Scholar] [CrossRef] [Green Version]
 Roundy, S.; Wright, P.K.; Rabaey, J. A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 2003, 26, 1131–1144. [Google Scholar] [CrossRef]
 Hu, G.; Tang, L.; Banerjee, A.; Das, R. Metastructure with piezoelectric element for simultaneous vibration suppression and energy harvesting. J. Vib. Acoust. 2017, 139. [Google Scholar] [CrossRef]
 Li, X.; Teng, L.; Tang, H.; Chen, J.; Wang, H.; Liu, Y.; Fu, M.; Liang, J. ViPSN: A vibrationpowered iot platform. IEEE Internet Things J. 2020, 8, 1728–1739. [Google Scholar] [CrossRef]
 Wang, J.; Tang, L.; Zhao, L.; Hu, G.; Song, R.; Xu, K. Equivalent circuit representation of a vortexinduced vibrationbased energy harvester using a semiempirical lumped parameter approach. Int. J. Energy Res. 2020, 44, 4516–4528. [Google Scholar] [CrossRef]
 Hu, G.; Tang, L.; Liang, J.; Lan, C.; Das, R. AcousticElastic Metamaterials and Phononic Crystals for Energy Harvesting: A Review. Smart Mater. Struct. 2021, 8, 085025. [Google Scholar] [CrossRef]
 Hu, G.; Tang, L.; Das, R.; Marzocca, P. A twodegreeoffreedom piezoelectric energy harvester with stoppers for achieving enhanced performance. Int. J. Mech. Sci. 2018, 149, 500–507. [Google Scholar] [CrossRef]
 Daqaq, M.F.; Masana, R.; Erturk, A.; Dane Quinn, D. On the role of nonlinearities in vibratory energy harvesting: A critical review and discussion. Appl. Mech. Rev. 2014, 66, 040801. [Google Scholar] [CrossRef]
 Remick, K.; Quinn, D.D.; McFarland, D.M.; Bergman, L.; Vakakis, A. Highfrequency vibration energy harvesting from impulsive excitation utilizing intentional dynamic instability caused by strong nonlinearity. J. Sound Vib. 2016, 370, 259–279. [Google Scholar] [CrossRef] [Green Version]
 Guyomar, D.; Badel, A.; Lefeuvre, E.; Richard, C. Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 584–595. [Google Scholar] [CrossRef] [Green Version]
 Lefeuvre, E.; Badel, A.; Richard, C.; Guyomar, D. Piezoelectric energy harvesting device optimization by synchronous electric charge extraction. J. Intell. Mater. Syst. Struct. 2005, 16, 865–876. [Google Scholar] [CrossRef]
 Lefeuvre, E.; Badel, A.; Richard, C.; Petit, L.; Guyomar, D. A comparison between several vibrationpowered piezoelectric generators for standalone systems. Sens. Actuators A Phys. 2006, 126, 405–416. [Google Scholar] [CrossRef]
 Liang, J.; Liao, W.H. Impedance modeling and analysis for piezoelectric energy harvesting systems. IEEE/ASME Trans. Mechatron. 2011, 17, 1145–1157. [Google Scholar] [CrossRef]
 Sari, I.; Balkan, T.; Kulah, H. A wideband electromagnetic micro power generator for wireless microsystems. In Proceedings of the TRANSDUCERS 20072007 International SolidState Sensors, Actuators and Microsystems Conference, Lyon, France, 10–14 June 2007; pp. 275–278. [Google Scholar]
 Zou, H.X.; Zhao, L.C.; Gao, Q.H.; Zuo, L.; Liu, F.R.; Tan, T.; Wei, K.X.; Zhang, W.M. Mechanical modulations for enhancing energy harvesting: Principles, methods and applications. Appl. Energy 2019, 255, 113871. [Google Scholar] [CrossRef]
 Brennan, M.; Gatti, G. Harvesting energy from timelimited harmonic vibrations: Mechanical considerations. J. Vib. Acoust. 2017, 139, 051019. [Google Scholar] [CrossRef]
 Yang, G.; Stark, B.H.; Hollis, S.J.; Burrow, S.G. Challenges for energy harvesting systems under intermittent excitation. IEEE J. Emerg. Sel. Top. Circuits Syst. 2014, 4, 364–374. [Google Scholar] [CrossRef]
 Roundy, S.; Wright, P.K. A piezoelectric vibration based generator for wireless electronics. Smart Mater. Struct. 2004, 13, 1131. [Google Scholar] [CrossRef] [Green Version]
 Roundy, S.; Leland, E.S.; Baker, J.; Carleton, E.; Reilly, E.; Lai, E.; Otis, B.; Rabaey, J.M.; Wright, P.K.; Sundararajan, V. Improving power output for vibrationbased energy scavengers. IEEE Pervasive Comput. 2005, 4, 28–36. [Google Scholar] [CrossRef]
 Harne, R.L.; Wang, K. A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 2013, 22, 023001. [Google Scholar] [CrossRef]
 Wang, Z.L. Triboelectric nanogenerators as new energy technology for selfpowered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557. [Google Scholar] [CrossRef]
 Khan, F.U. Review of nonresonant vibration based energy harvesters for wireless sensor nodes. J. Renew. Sustain. Energy 2016, 8, 044702. [Google Scholar] [CrossRef]
 Shaikh, F.K.; Zeadally, S. Energy harvesting in wireless sensor networks: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 55, 1041–1054. [Google Scholar] [CrossRef]
 Wang, Z.L. Nanogenerators, selfpowered systems, blue energy, piezotronics and piezophototronics—A recall on the original thoughts for coining these fields. Nano Energy 2018, 54, 477–483. [Google Scholar] [CrossRef]
 Bai, Y.; Jantunen, H.; Juuti, J. Energy harvesting research: The road from single source to multisource. Adv. Mater. 2018, 30, 1707271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 Ahmad, M.M.; Khan, N.M.; Khan, F.U. Review of frequency upconversion vibration energy harvesters using impact and plucking mechanism. Int. J. Energy Res. 2021, 45, 15609–15645. [Google Scholar] [CrossRef]
 Li, Z.; Yan, Z.; Luo, J.; Yang, Z. Performance comparison of electromagnetic energy harvesters based on magnet arrays of alternating polarity and configuration. Energy Convers. Manag. 2019, 179, 132–140. [Google Scholar] [CrossRef]
 Li, Z.; Liu, Y.; Yin, P.; Peng, Y.; Luo, J.; Xie, S.; Pu, H. Constituting abrupt magnetic flux density change for power density improvement in electromagnetic energy harvesting. Int. J. Mech. Sci. 2021, 198, 106363. [Google Scholar] [CrossRef]
 Hu, G.; Zhao, C.; Yang, Y.; Li, X.; Liang, J. Triboelectric energy harvesting using an origamiinspired structure. Appl. Energy 2022, 306, 118037. [Google Scholar] [CrossRef]
 Zhao, C.; Yang, Y.; Upadrashta, D.; Zhao, L. Design, modeling and experimental validation of a lowfrequency cantilever triboelectric energy harvester. Energy 2021, 214, 118885. [Google Scholar] [CrossRef]
 Hu, G.; Tang, L.; Liang, J.; Das, R. Modelling of a cantilevered energy harvester with partial piezoelectric coverage and shunted to practical interface circuits. J. Intell. Mater. Syst. Struct. 2019, 30, 1896–1912. [Google Scholar] [CrossRef]
 Peng, Y.; Xu, Z.; Wang, M.; Li, Z.; Peng, J.; Luo, J.; Xie, S.; Pu, H.; Yang, Z. Investigation of frequencyup conversion effect on the performance improvement of stackbased piezoelectric generators. Renew. Energy 2021, 172, 551–563. [Google Scholar] [CrossRef]
 Meitzler, A.; Tiersten, H.; Warner, A.; Berlincourt, D.; Couqin, G.; Welsh, F., III. 1761987IEEE Standard on Piezoelectricity. Standards Committee of the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society. 1988. Available online: https://docplayer.net/62806764Ieeestandardonpiezoelectricity.html (accessed on 26 December 2021).
 Tao, K.; Tang, L.; Wu, J.; Lye, S.W.; Chang, H.; Miao, J. Investigation of multimodal electretbased MEMS energy harvester with impactinduced nonlinearity. J. Microelectromech. Syst. 2018, 27, 276–288. [Google Scholar] [CrossRef]
 Wu, C.; Wang, A.C.; Ding, W.; Guo, H.; Wang, Z.L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906. [Google Scholar] [CrossRef]
 Li, H.; Tian, C.; Deng, Z.D. Energy harvesting from low frequency applications using piezoelectric materials. Appl. Phys. Rev. 2014, 1, 041301. [Google Scholar] [CrossRef] [Green Version]
 Yang, Y.; Shen, Q.; Jin, J.; Wang, Y.; Qian, W.; Yuan, D. Rotational piezoelectric wind energy harvesting using impactinduced resonance. Appl. Phys. Lett. 2014, 105, 053901. [Google Scholar] [CrossRef]
 Halim, M.A.; Khym, S.; Park, J. Frequency upconverted wide bandwidth piezoelectric energy harvester using mechanical impact. J. Appl. Phys. 2013, 114, 044902. [Google Scholar] [CrossRef]
 Halim, M.A.; Park, J.Y. Piezoelectric energy harvester using impactdriven flexible sidewalls for humanlimb motion. Microsyst. Technol. 2018, 24, 2099–2107. [Google Scholar] [CrossRef]
 Priya, S. Modeling of electric energy harvesting using piezoelectric windmill. Appl. Phys. Lett. 2005, 87, 184101. [Google Scholar] [CrossRef]
 Pozzi, M.; Zhu, M. Plucked piezoelectric bimorphs for kneejoint energy harvesting: Modelling and experimental validation. Smart Mater. Struct. 2011, 20, 055007. [Google Scholar] [CrossRef] [Green Version]
 Tan, Y.; Lu, G.; Cong, M.; Wang, X.; Ren, L. Gathering energy from ultralowfrequency human walking using a doublefrequency upconversion harvester in public squares. Energy Convers. Manag. 2020, 217, 112958. [Google Scholar] [CrossRef]
 Zhao, L.C.; Zou, H.X.; Yan, G.; Liu, F.R.; Tan, T.; Zhang, W.M.; Peng, Z.K.; Meng, G. A waterproof magnetically coupled piezoelectricelectromagnetic hybrid wind energy harvester. Appl. Energy 2019, 239, 735–746. [Google Scholar] [CrossRef]
 Kulah, H.; Najafi, K. Energy scavenging from lowfrequency vibrations by using frequency upconversion for wireless sensor applications. IEEE Sens. J. 2008, 8, 261–268. [Google Scholar] [CrossRef]
 Fan, K.; Chang, J.; Pedrycz, W.; Liu, Z.; Zhu, Y. A nonlinear piezoelectric energy harvester for various mechanical motions. Appl. Phys. Lett. 2015, 106, 223902. [Google Scholar] [CrossRef]
 Kuang, Y.; Ruan, T.; Chew, Z.J.; Zhu, M. Energy harvesting during human walking to power a wireless sensor node. Sens. Actuators A: Phys. 2017, 254, 69–77. [Google Scholar] [CrossRef]
 Ando, B.; Baglio, S.; Marletta, V.; Pistorio, A.; Bulsara, A.R. Performance investigation of a nonlinear energy harvester with random vibrations and subthreshold deterministic signals. IEEE Trans. Instrum. Meas. 2017, 66, 992–1001. [Google Scholar] [CrossRef]
 Dauksevicius, R.; Kleiva, A.; Grigaliunas, V. Analysis of magnetic plucking dynamics in a frequency upconverting piezoelectric energy harvester. Smart Mater. Struct. 2018, 27, 085016. [Google Scholar] [CrossRef]
 Umeda, M.; Nakamura, K.; Ueha, S. Analysis of the transformation of mechanical impact energy to electric energy using piezoelectric vibrator. Jpn. J. Appl. Phys. 1996, 35, 3267. [Google Scholar] [CrossRef]
 Renaud, M.; Fiorini, P.; van Schaijk, R.; Van Hoof, C. Harvesting energy from the motion of human limbs: The design and analysis of an impactbased piezoelectric generator. Smart Mater. Struct. 2009, 18, 035001. [Google Scholar] [CrossRef]
 Yuksek, N.; Feng, Z.; Almasri, M. Broadband electromagnetic power harvester from vibrations via frequency conversion by impact oscillations. Appl. Phys. Lett. 2014, 105, 113902. [Google Scholar] [CrossRef]
 He, X.; Teh, K.S.; Li, S.; Dong, L.; Jiang, S. Modeling and experimental verification of an impactbased piezoelectric vibration energy harvester with a rolling proof mass. Sens. Actuators A Phys. 2017, 259, 171–179. [Google Scholar] [CrossRef]
 Zhang, X.; Gao, S.; Li, D.; Jin, L.; Wu, Q.; Liu, F. Frequency upconverted piezoelectric energy harvester for ultralowfrequency and ultrawidefrequencyrange operation. Appl. Phys. Lett. 2018, 112, 163902. [Google Scholar] [CrossRef]
 Halim, M.A.; Park, J.Y. Theoretical modeling and analysis of mechanical impact driven and frequency upconverted piezoelectric energy harvester for lowfrequency and widebandwidth operation. Sens. Actuators A Phys. 2014, 208, 56–65. [Google Scholar] [CrossRef]
 Janphuang, P.; Lockhart, R.A.; Isarakorn, D.; Henein, S.; Briand, D.; de Rooij, N.F. Harvesting energy from a rotating gear using an AFMlike MEMS piezoelectric frequency upconverting energy harvester. J. Microelectromech. Syst. 2014, 24, 742–754. [Google Scholar] [CrossRef]
 Kathpalia, B.; Tan, D.; Stern, I.; Erturk, A. An experimentally validated model for geometrically nonlinear pluckingbased frequency upconversion in energy harvesting. Smart Mater. Struct. 2017, 27, 015024. [Google Scholar] [CrossRef] [Green Version]
 Fang, S.; Fu, X.; Du, X.; Liao, W.H. A musicboxlike extended rotational plucking energy harvester with multiple piezoelectric cantilevers. Appl. Phys. Lett. 2019, 114, 233902. [Google Scholar] [CrossRef]
 Fu, X.; Liao, W.H. Modeling and analysis of piezoelectric energy harvesting with dynamic plucking mechanism. J. Vib. Acoust. 2019, 141, 031002. [Google Scholar] [CrossRef]
 Fang, S.; Fu, X.; Liao, W.H. Asymmetric plucking bistable energy harvester: Modeling and experimental validation. J. Sound Vib. 2019, 459, 114852. [Google Scholar] [CrossRef]
 Li, X.; Tang, H.; Hu, G.; Zhao, B.; Liang, J. ViPSNpluck: A Transientmotionpowered Motion Detector. IEEE Internet Things J. 2021, 9, 3372–3382. [Google Scholar] [CrossRef]
 Riemer, R.; Shapiro, A. Biomechanical energy harvesting from human motion: Theory, state of the art, design guidelines, and future directions. J. Neuroeng. Rehabil. 2011, 8, 22. [Google Scholar] [CrossRef] [Green Version]
 Pozzi, M.; Aung, M.S.; Zhu, M.; Jones, R.K.; Goulermas, J.Y. The pizzicato kneejoint energy harvester: Characterization with biomechanical data and the effect of backpack load. Smart Mater. Struct. 2012, 21, 075023. [Google Scholar] [CrossRef]
 Kuang, Y.; Zhu, M. Design study of a mechanically plucked piezoelectric energy harvester using validated finite element modelling. Sens. Actuators A Phys. 2017, 263, 510–520. [Google Scholar] [CrossRef]
 Liu, H.; Tay, C.J.; Quan, C.; Kobayashi, T.; Lee, C. A scrapethrough piezoelectric MEMS energy harvester with frequency broadband and upconversion behaviors. Microsyst. Technol. 2011, 17, 1747–1754. [Google Scholar] [CrossRef]
 Liu, H.; Lee, C.; Kobayashi, T.; Tay, C.J.; Quan, C. Piezoelectric MEMSbased wideband energy harvesting systems using a frequencyupconversion cantilever stopper. Sens. Actuators A Phys. 2012, 186, 242–248. [Google Scholar] [CrossRef]
 Gu, L.; Livermore, C. Impactdriven, frequency upconverting coupled vibration energy harvesting device for low frequency operation. Smart Mater. Struct. 2011, 20, 045004. [Google Scholar] [CrossRef]
 Gu, L. Lowfrequency piezoelectric energy harvesting prototype suitable for the MEMS implementation. Microelectron. J. 2011, 42, 277–282. [Google Scholar] [CrossRef]
 Lin, Z.; Zhang, Y. Dynamics of a mechanical frequency upconverted device for wave energy harvesting. J. Sound Vib. 2016, 367, 170–184. [Google Scholar] [CrossRef]
 Dechant, E.; Fedulov, F.; Chashin, D.V.; Fetisov, L.Y.; Fetisov, Y.K.; Shamonin, M. Lowfrequency, broadband vibration energy harvester using coupled oscillators and frequency upconversion by mechanical stoppers. Smart Mater. Struct. 2017, 26, 065021. [Google Scholar] [CrossRef]
 Chen, W.; Mo, J.; Xiang, Z.; Wang, A.; Liu, Q.; Qian, H. A new concept of frequencyexcitationup conversion to improve the yield of linear piezoelectric generators. Sens. Actuators A Phys. 2021, 325, 112712. [Google Scholar] [CrossRef]
 Li, P.; Xu, N.; Gao, C. A MultiMechanisms Composite Frequency UpConversion Energy Harvester. Int. J. Precis. Eng. Manuf. 2020, 21, 1781–1788. [Google Scholar] [CrossRef]
 Sari, I.; Balkan, T.; Külah, H. An electromagnetic micro power generator for lowfrequency environmental vibrations based on the frequency upconversion technique. J. Microelectromech. Syst. 2009, 19, 14–27. [Google Scholar] [CrossRef]
 Galchev, T.; Kim, H.; Najafi, K. Micro power generator for harvesting lowfrequency and nonperiodic vibrations. J. Microelectromech. Syst. 2011, 20, 852–866. [Google Scholar] [CrossRef] [Green Version]
 Galchev, T.; Aktakka, E.E.; Najafi, K. A piezoelectric parametric frequency increased generator for harvesting lowfrequency vibrations. J. Microelectromech. Syst. 2012, 21, 1311–1320. [Google Scholar] [CrossRef]
 Tien, C.M.T.; Goo, N.S. Use of a piezocomposite generating element for harvesting wind energy in an urban region. Aircr. Eng. Aerosp. Technol. 2010, 82, 376–381. [Google Scholar] [CrossRef]
 Luong, H.T.; Goo, N.S. Use of a magnetic force exciter to vibrate a piezocomposite generating element in a smallscale windmill. Smart Mater. Struct. 2012, 21, 025017. [Google Scholar] [CrossRef]
 Wang, J.; Yurchenko, D.; Hu, G.; Zhao, L.; Tang, L.; Yang, Y. Perspectives in flowinduced vibration energy harvesting. Appl. Phys. Lett. 2021, 119, 100502. [Google Scholar] [CrossRef]
 Lu, H.; Zhu, J. A comparative study of microactuators driven by electric and magnetic principles. In Proceedings of the Australasian Universities Power Engineering Conference, Brisbane, Australia, 26–29 September 2004; p. 79. [Google Scholar]
 Kan, J.; Fan, C.; Wang, S.; Zhang, Z.; Wen, J.; Huang, L. Study on a piezowindmill for energy harvesting. Renew. Energy 2016, 97, 210–217. [Google Scholar] [CrossRef]
 Karami, M.A.; Farmer, J.R.; Inman, D.J. Parametrically excited nonlinear piezoelectric compact wind turbine. Renew. Energy 2013, 50, 977–987. [Google Scholar] [CrossRef]
 RezaeiHosseinabadi, N.; Tabesh, A.; Dehghani, R.; Aghili, A. An efficient piezoelectric windmill topology for energy harvesting from lowspeed air flows. IEEE Trans. Ind. Electron. 2014, 62, 3576–3583. [Google Scholar]
 RezaeiHosseinabadi, N.; Tabesh, A.; Dehghani, R. A topology and design optimization method for wideband piezoelectric wind energy harvesters. IEEE Trans. Ind. Electron. 2015, 63, 2165–2173. [Google Scholar] [CrossRef]
 Fu, H.; Yeatman, E.M. A miniaturized piezoelectric turbine with selfregulation for increased air speed range. Appl. Phys. Lett. 2015, 107, 243905. [Google Scholar] [CrossRef] [Green Version]
 Wickenheiser, A.; Garcia, E. Broadband vibrationbased energy harvesting improvement through frequency upconversion by magnetic excitation. Smart Mater. Struct. 2010, 19, 065020. [Google Scholar] [CrossRef]
 Ramezanpour, R.; Nahvi, H.; ZiaeiRad, S. Electromechanical behavior of a pendulumbased piezoelectric frequency upconverting energy harvester. J. Sound Vib. 2016, 370, 280–305. [Google Scholar] [CrossRef]
 Shu, Y.; Wang, W.; Chang, Y. Electrically rectified piezoelectric energy harvesting induced by rotary magnetic plucking. Smart Mater. Struct. 2018, 27, 125006. [Google Scholar] [CrossRef]
 Xue, T.; Roundy, S. On magnetic plucking configurations for frequency upconverting mechanical energy harvesters. Sens. Actuators A Phys. 2017, 253, 101–111. [Google Scholar] [CrossRef] [Green Version]
 Fu, H.; Zhou, S.; Yeatman, E.M. Exploring coupled electromechanical nonlinearities for broadband energy harvesting from lowfrequency rotational sources. Smart Mater. Struct. 2019, 28, 075001. [Google Scholar] [CrossRef]
 Pillatsch, P.; Yeatman, E.M.; Holmes, A.S. A piezoelectric frequency upconverting energy harvester with rotating proof mass for human body applications. Sens. Actuators A Phys. 2014, 206, 178–185. [Google Scholar] [CrossRef]
 Pillatsch, P.; Yeatman, E.; Holmes, A. Magnetic plucking of piezoelectric beams for frequency upconverting energy harvesters. Smart Mater. Struct. 2013, 23, 025009. [Google Scholar] [CrossRef]
 Pillatsch, P.; Yeatman, E.M.; Holmes, A.S.; Wright, P.K. Wireless power transfer system for a human motion energy harvester. Sens. Actuators A Phys. 2016, 244, 77–85. [Google Scholar] [CrossRef] [Green Version]
 Fu, H.; Yeatman, E.M. A methodology for lowspeed broadband rotational energy harvesting using piezoelectric transduction and frequency upconversion. Energy 2017, 125, 152–161. [Google Scholar] [CrossRef] [Green Version]
 Fu, H.; Yeatman, E.M. Effective piezoelectric energy harvesting using beam plucking and a synchronized switch harvesting circuit. Smart Mater. Struct. 2018, 27, 084003. [Google Scholar] [CrossRef] [Green Version]
 Fu, H.; Yeatman, E.M. Rotational energy harvesting using bistability and frequency upconversion for lowpower sensing applications: Theoretical modelling and experimental validation. Mech. Syst. Signal Processing 2019, 125, 229–244. [Google Scholar] [CrossRef]
 Kuang, Y.; Yang, Z.; Zhu, M. Design and characterisation of a piezoelectric kneejoint energy harvester with frequency upconversion through magnetic plucking. Smart Mater. Struct. 2016, 25, 085029. [Google Scholar] [CrossRef]
 Pillatsch, P.; Yeatman, E.; Holmes, A. A scalable piezoelectric impulseexcited energy harvester for human body excitation. Smart Mater. Struct. 2012, 21, 115018. [Google Scholar] [CrossRef]
 Fan, K.; Chang, J.; Chao, F.; Pedrycz, W. Design and development of a multipurpose piezoelectric energy harvester. Energy Convers. Manag. 2015, 96, 430–439. [Google Scholar] [CrossRef]
 Jiang, H.; Kiziroglou, M.E.; Yates, D.C.; Yeatman, E.M. A motionpowered piezoelectric pulse generator for wireless sensing via FM transmission. IEEE Internet Things J. 2014, 2, 5–13. [Google Scholar] [CrossRef]
 Chung, T.K.; Wang, C.M.; Yeh, P.C.; Liu, T.W.; Tseng, C.Y.; Chen, C.C. A threeaxial frequencytunable piezoelectric energy harvester using a magneticforce configuration. IEEE Sens. J. 2014, 14, 3152–3163. [Google Scholar] [CrossRef] [Green Version]
 Lo, Y.; Chen, C.; Shu, Y.; Lumentut, M. Broadband piezoelectric energy harvesting induced by mixed resonant modes under magnetic plucking. Smart Mater. Struct. 2021, 30, 105026. [Google Scholar] [CrossRef]
 Fakeih, E.; Almansouri, A.S.; Kosel, J.; Younis, M.I.; Salama, K.N. A Wideband Magnetic Frequency UpConverter Energy Harvester. Adv. Eng. Mater. 2021, 23, 2001364. [Google Scholar] [CrossRef]
 Jiang, W.A.; Chen, L.Q. Snapthrough piezoelectric energy harvesting. J. Sound Vib. 2014, 333, 4314–4325. [Google Scholar] [CrossRef]
 Jung, S.M.; Yun, K.S. Energyharvesting device with mechanical frequencyup conversion mechanism for increased power efficiency and wideband operation. Appl. Phys. Lett. 2010, 96, 111906. [Google Scholar] [CrossRef]
 Speciale, A.; Ardito, R.; Baù, M.; Ferrari, M.; Ferrari, V.; Frangi, A.A. Snapthrough buckling mechanism for frequencyup conversion in piezoelectric energy harvesting. Appl. Sci. 2020, 10, 3614. [Google Scholar] [CrossRef]
 Panigrahi, S.R.; Bernard, B.P.; Feeny, B.F.; Mann, B.P.; Diaz, A.R. Snapthrough twinkling energy generation through frequency upconversion. J. Sound Vib. 2017, 399, 216–227. [Google Scholar] [CrossRef] [Green Version]
 Han, D.; Yun, K.S. Piezoelectric energy harvester using mechanical frequency up conversion for operation at lowlevel accelerations and lowfrequency vibration. Microsyst. Technol. 2015, 21, 1669–1676. [Google Scholar] [CrossRef]
 Chamanian, S.; Zangabad, R.P.; Zarbakhsh, P.; Bahrami, M.; Khodaei, M. Wideband capacitive energy harvester based on mechanical frequencyup conversion. In Proceedings of the 2012 IEEE Sensors Applications Symposium Proceedings, Brescia, Italy, 7–9 February 2012; pp. 1–4. [Google Scholar]
 Xie, Z.; Xiong, J.; Zhang, D.; Wang, T.; Shao, Y.; Huang, W. Design and experimental investigation of a piezoelectric rotation energy harvester using bistable and frequency upconversion mechanisms. Appl. Sci. 2018, 8, 1418. [Google Scholar] [CrossRef] [Green Version]
Mechanisms  Methodologies  Frequency Ranges  Representative Designs  References  Applications *  Features 

Impact  Mechanical impact  1–50 Hz  Yang et al. [50] Halim et al. [51] Halim et al. [52] 

 
Plucking  Mechanical plucking  10–50 Hz  Priya et al. [53] Pozzi et al. [54] Tan et al. [55] 

 
Magnetic plucking  10–100 Hz  Zhao et al. [56] Kulah et al. [57] Fan et al. [58] Kuang et al. [59] 
 
Snapthrough  1–30 Hz  Ando et al. [60] 


Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Hu, G.; Guo, Z.; Wang, J.; Yang, Y.; Liang, J. Frequency UpConversion for Vibration Energy Harvesting: A Review. Symmetry 2022, 14, 631. https://doi.org/10.3390/sym14030631
Li X, Hu G, Guo Z, Wang J, Yang Y, Liang J. Frequency UpConversion for Vibration Energy Harvesting: A Review. Symmetry. 2022; 14(3):631. https://doi.org/10.3390/sym14030631
Chicago/Turabian StyleLi, Xin, Guobiao Hu, Zhenkun Guo, Junlei Wang, Yaowen Yang, and Junrui Liang. 2022. "Frequency UpConversion for Vibration Energy Harvesting: A Review" Symmetry 14, no. 3: 631. https://doi.org/10.3390/sym14030631