The Sylvester Equation and Kadomtsev–Petviashvili System
Abstract
:1. Introduction
2. The Sylvester Equation and Master Function
2.1. The Sylvester Equation
2.2. Master Function and Some Properties
2.2.1. The Definition of
2.2.2. Similarity Invariance of
2.2.3. Identities of
3. The KP System
3.1. Evolution of M
3.2. Evolution of
3.3. The KP System
3.3.1. The KP Equation
3.3.2. The Modified KP Equation
3.3.3. The Schwarzian KP Equation
3.4. The -Function
4. Reductions
4.1. Reduction to the KdV System
4.2. Reduction to the BSQ System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Exact Solutions to Systems (5), (15), (16) and (17)
- Diagonal matrices:
- Jordan block matrices:
- Skew triangular Toeplitz matrix:
References
- Sylvester, J. Sur l’equation en matrices px=xq. C. R. Acad. Sci. Paris 1884, 99, 115–116. [Google Scholar]
- Lancaster, P.; Tismenetsky, M. The Theory of Matrices, 2nd ed.; Academaic Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Marchenko, V.A. Nonlinear Equations and Operator Algebras; D. Reidel: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Bhatia, R.; Rosenthal, P. How and why to solve the operator equation AX-XB=Y. Bull. Lond. Math. Soc. 1997, 29, 1–21. [Google Scholar] [CrossRef]
- Aden, H.; Carl, B. On realizations of solutions of the KdV equation by determinants on operator ideals. J. Math. Phys. 1996, 37, 1833–1857. [Google Scholar] [CrossRef]
- Schiebold, C. An operator-theoretic approach to the Toda lattice equation. Physica D 1998, 122, 37–61. [Google Scholar] [CrossRef]
- Dimakis, A.; Müller-Hoissen, F. Bidifferential graded algebras and integrable systems. Discr. Cont. Dyn. Syst. Suppl. 2009, 2009, 208–219. [Google Scholar]
- Aktosun, T.; van der Mee, C. Explicit solutions to the Korteweg-de Vries equation on the half line. Inverse Prob. 2006, 22, 2165–2174. [Google Scholar] [CrossRef] [Green Version]
- Fokas, A.S.; Ablowitz, M.J. Linearization of the Korteweg-de Vries and Painlevé II equations. Phys. Rev. Lett. 1981, 47, 1096–1100. [Google Scholar] [CrossRef]
- Nijhoff, F.W.; Quispel, G.R.W.; Capel, H.W. Direct linearization of nonlinear difference-difference equations. Phys. Lett. 1983, 97, 125–128. [Google Scholar] [CrossRef]
- Nijhoff, F.W.; Atkinson, J.; Hietarinta, J. Soliton solutions for ABS lattice equations: I. Cauchy matrix approach. J. Phys. A Math. Theor. 2009, 42, 404005. [Google Scholar] [CrossRef]
- Nijhoff, F.; Atkinson, J. Elliptic N-soliton solutions of ABS lattice equations. Int. Math. Res. Notices 2010, 2010, 3837–3895. [Google Scholar] [CrossRef]
- Zhang, D.J.; Zhao, S.L. Solutions to ABS lattice equations via generalized Cauchy matrix approach. Stud. Appl. Math. 2013, 131, 72–103. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.L.; Zhang, D.J.; Shi, Y. Generalized Cauchy matrix approach for lattice Boussinesq-type equations. Chin. Ann. Math. 2012, 33, 259–270. [Google Scholar] [CrossRef]
- Feng, W.; Zhao, S.L.; Zhang, D.J. Exact solutions to lattice Boussinesq-type equations. J. Nonlinear Math. Phys. 2012, 19, 1250031. [Google Scholar] [CrossRef]
- Schiebold, C. Cauchy-type determinants and integrable systems. Linear Algebra Appl. 2010, 433, 447–475. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.D.; Zhang, D.J.; Zhao, S.L. The Sylvester equation and integrable equations: I. The Korteweg-de Vries system and sine-Gordon equation. J. Nonlinear Math. Phys. 2014, 21, 382–406. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.L. The Sylvester equation and integrable equations: The Ablowitz-Kaup-Newell-Segur system. Rep. Math. Phys. 2018, 82, 241–263. [Google Scholar] [CrossRef]
- Han, W.T.; Li, Y.S. Remarks on the solutions of the Kadomtsev-Petviashvili equation. Phys. Lett. A 2001, 283, 185–194. [Google Scholar] [CrossRef]
- Hietarinta, J.; Joshi, N.; Nijhoff, F.W. Discrete Systems and Integrability; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Feng, W.; Zhao, S.L. Generalized Cauchy matrix approach for lattice KP-type equations. Commun. Nonlinear Sci. Numer. Simulat. 2013, 18, 1652–1664. [Google Scholar] [CrossRef]
- Fu, W.; Nijhoff, F.W. Direct linearising transform for 3D discrete integrable systems: The lattice AKP, BKP and CKP equations. Proc. R. Soc. A 2017, 473, 20160915. [Google Scholar] [CrossRef] [Green Version]
- Nijhoff, F.W.; Capel, H.W.; Wiersma, G.L.; Quispel, G.R.W. Bäcklund transformations and three-dimensional lattice equations. Phys. Lett. A 1984, 105, 267–272. [Google Scholar] [CrossRef]
- Fu, W.; Nijhoff, F.W. Linear integral equations, infinite matrices, and soliton hierarchies. J. Math. Phys. 2018, 59, 71101. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.J.; Zhang, D.J. Cauchy matrix approach to integrable equations with self-consistent sources and the Yajima-Oikawa system. Appl. Math. Lett. 2020, 103, 106165. [Google Scholar] [CrossRef]
- Tian, H.J.; Zhang, D.J. Cauchy matrix structure of the Mel’nikov model of long-short wave interaction. Commun. Theor. Phys. 2020, 72, 125006. [Google Scholar] [CrossRef]
- Li, S.S.; Yi, C.Z.Q.X.X.; Zhang, D.J. Cauchy matrix approach to the SU(2) self-dual Yang-Mills equation. Stud. Appl. Math. 2022. [Google Scholar] [CrossRef]
- Weiss, J. The Painlevé property of partial differential equations II: Bäcklund transformation, Lax pairs, and the Schwarzian derivative. J. Math. Phys. 1983, 24, 1405–1413. [Google Scholar] [CrossRef]
- Yoo-Kong, S.; Nijhoff, F.W. Elliptic (N,N′)-soliton solutions of the lattice Kadomtsev-Petviashvili equation. J. Math. Phys. 2013, 54, 43511. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.J. Notes on solutions in Wronskian form to soliton equations: KdV-type. arXiv 2006, arXiv:nlin.SI/0603008. [Google Scholar]
- Zhang, D.J.; Zhao, S.L.; Sun, Y.Y.; Zhou, J. Solutions to the modified Korteweg-de Vries equation. Rev. Math. Phys. 2014, 26, 14300064. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, W.; Zhao, S. The Sylvester Equation and Kadomtsev–Petviashvili System. Symmetry 2022, 14, 542. https://doi.org/10.3390/sym14030542
Feng W, Zhao S. The Sylvester Equation and Kadomtsev–Petviashvili System. Symmetry. 2022; 14(3):542. https://doi.org/10.3390/sym14030542
Chicago/Turabian StyleFeng, Wei, and Songlin Zhao. 2022. "The Sylvester Equation and Kadomtsev–Petviashvili System" Symmetry 14, no. 3: 542. https://doi.org/10.3390/sym14030542
APA StyleFeng, W., & Zhao, S. (2022). The Sylvester Equation and Kadomtsev–Petviashvili System. Symmetry, 14(3), 542. https://doi.org/10.3390/sym14030542