An Eccentric Binary Blackhole in Post-Newtonian Theory
Abstract
1. Introduction
2. Basic Structure of the PN Model
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Diving below the Spin-down Limit: Constraints on Gravitational Waves from the Energetic Young Pulsar PSR J0537-6910. Astrophys. J. Lett. 2021, 913, L27. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adya, V.B.; Affeldt, C.; Agathos, M.; et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Relativ. 2020, 23, 3. [Google Scholar] [CrossRef] [PubMed]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Search for Transient Gravitational-wave Signals Associated with Magnetar Bursts during Advanced LIGO’s Second Observing Run. Astrophys. J. 2019, 874, 163. [Google Scholar] [CrossRef]
- LSC Instrument Authors. Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO. Phys. Rev. D 2018, 97, 082002. [Google Scholar] [CrossRef]
- Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith, P.; Allen, B.; Allen, J.; Amin, R.; Anderson, S.B.; Anderson, W.G.; et al. Upper Limits on a Stochastic Background of Gravitational Waves. Phys. Rev. Lett. 2005, 95, 221101. [Google Scholar] [CrossRef]
- Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith, P.; Allen, B.; Amin, R.; Anderson, S.B.; Anderson, W.G.; Araya, M.; et al. Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory. Astrophys. J. 2007, 659, 918. [Google Scholar] [CrossRef]
- Abbott, B.; Abbott, R.; Acernese, F.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Alshourbagy, M.; Amin, R.; Anderson, S.; et al. An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature 2009, 460, 990–994. [Google Scholar]
- Abadie, J.; Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; et al. Upper limits on a stochastic gravitational-wave background using LIGO and Virgo interferometers at 600–1000 Hz. Phys. Rev. D 2012, 85, 122001. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef]
- Abbott, B.P.; Bloemen, S.; Canizares, P.; Falcke, H.; Fender, R.P.; Ghosh, S.; Groot, P.; Hinderer, T.; Hörel, J.R.; Jonker, P.G.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar] [CrossRef]
- Grishchuk, L.P. Amplification of gravitational waves in an istropic universe. Sov. Phys. JETP 1974, 67, 825–838. [Google Scholar]
- Starobinskii, A.A. Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 1979, 30, 682–685. [Google Scholar]
- Barnaby, N.; Pajer, E.; Peloso, M. Gauge field production in axion inflation: Consequences for monodromy, non-Gaussianity in the CMB, and gravitational waves at interferometers. Phys. Rev. D 2012, 85, 023525. [Google Scholar] [CrossRef]
- Caldwell, R.R.; Allen, B. Cosmological constraints on cosmic-string gravitational radiation. Phys. Rev. D 1992, 45, 3447. [Google Scholar] [CrossRef] [PubMed]
- Damour, T.; Vilenkin, A. Gravitational Wave Bursts from Cosmic Strings. Phys. Rev. Lett. 2000, 85, 3761. [Google Scholar] [CrossRef]
- Siemens, X.; Mandic, V.; Creighton, J. Gravitational-Wave Stochastic Background from Cosmic Strings. Phys. Rev. Lett. 2007, 98, 111101. [Google Scholar] [CrossRef]
- Regimbau, T.; de Freitas Pacheco, J.A. Stochastic background from coalescence of neutron star- neutron star binaries. Astrophys. J. 2006, 642, 455. [Google Scholar] [CrossRef][Green Version]
- Regimbau, T. The astrophysical gravitational wave stochastic background. Res. Astron. Astrophys. 2011, 11, 369. [Google Scholar] [CrossRef]
- Rosado, P.A. Gravitational wave background from binary systems. Phys. Rev. D 2011, 84, 084004. [Google Scholar] [CrossRef]
- Wu, C.; Mandic, V.; Regimbau, T. Accessibility of the gravitational-wave background due to binary coalescences to second and third generation gravitational-wave detectors. Phys. Rev. D 2012, 85, 104024. [Google Scholar] [CrossRef]
- Frieben, J.; Rezzolla, L. Equilibrium models of relativistic stars with a toroidal magnetic field. Mon. Not. R. Astron. Soc. 2012, 427, 3402. [Google Scholar] [CrossRef]
- Ciolfi, R.; Rezzolla, L. Twisted-torus configurations with large toroidal magnetic fields in relativistic stars. Mon. Not. R. Astron. Soc. Lett. 2013, 435, L43. [Google Scholar] [CrossRef]
- Wu, C.; Mandik, V. Accessibility of the stochastic gravitational wave background from magnetars to the interferometric gravitational wave detectors. Phys. Rev. D 2013, 87, 042002. [Google Scholar] [CrossRef]
- Cheng, Q.; Yu, Y.; Zheng, X. Stochastic gravitational wave background from magnetic deformation of newly born magnetars. Mon. Not. R. Astron. Soc. 2015, 454, 2299–2304. [Google Scholar] [CrossRef][Green Version]
- Chowdhury, S.R.; Khlopov, M. The Stochastic Gravitational Wave Background from Magnetars. Universe 2021, 7, 381. [Google Scholar] [CrossRef]
- Owen, B.J.; Lindblom, L.; Cutler, C.; Schutz, B.F.; Vecchio, A.; Andersson, N. Gravitational waves from hot young rapidly rotating neutron stars. Phys. Rev. D 1998, 58, 084020. [Google Scholar] [CrossRef]
- Howell, E.; Regimbau, T.; Corsi, A.; Coward, C.; Burman, R. Gravitational wave background from sub-luminous GRBs: Prospects for second- and third-generation detectors. Mon. Not. R. Astron. Soc. 2011, 410, 2123. [Google Scholar] [CrossRef]
- Ferrari, V.; Matarrese, S. Schneider, Stochastic background of gravitational waves generated by a cosmological population of young, rapidly rotating neutron stars. Mon. Not. R. Astron. Soc. 1999, 303, 258. [Google Scholar] [CrossRef]
- Rodriguez, C.L.; Amaro-Seoane, P.; Chatterjee, S.; Rasio, F.A. Post–Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. Phys. Rev. Lett. 2018, 120, 151101. [Google Scholar] [CrossRef]
- Gayathri, V.; Healy, J.; Lange, J.; O’Brien, B.; Szczepanczyk, M.; Bartos, I.; Campanelli, M.; Klimenko, S.; Lousto, C.; O’Shaughnessy, R. GW190521 as a Highly Eccentric Black Hole Merger. arXiv 2015, arXiv:2009.05461. [Google Scholar]
- Nitz, A.H.; Lenon, A.; Brown, D.A. Search for Eccentric Binary Neutron Star Mergers in the First and Second Observing Runs of Advanced LIGO. Astrophys. J. 2020, 890, 1. [Google Scholar] [CrossRef]
- Romero-Shaw, I.M.; Lasky, P.D.; Thrane, E. Searching for eccentricity: Signatures of dynamical formation in the first gravitational-wave transient catalogue of LIGO and Virgo. Mon. Not. R. Astron. Soc. 2019, 490, 5210. [Google Scholar] [CrossRef]
- Romero-Shaw, I.M.; Lasky, P.D.; Thrane, E.; Bustillo, J.C. GW190521: Orbital Eccentricity and Signatures of Dynamical Formation in a Binary Black Hole Merger Signal. Astrophys. J. Lett. 2020, 903, L5. [Google Scholar] [CrossRef]
- Downing, J.M.B.; Benacquista, M.J.; Giersz, M.; Spurzem, R. Compact binaries in star clusters—I. Black hole binaries inside globular clusters. Mon. Not. R. Astron. Soc. 2010, 407, 1946. [Google Scholar] [CrossRef]
- Downing, J.M.B.; Benacquista, M.J.; Giersz, M.; Spurzem, R. Compact binaries in star clusters—II. Escapers and detection rates. Mon. Not. R. Astron. Soc. 2011, 416, 133. [Google Scholar] [CrossRef]
- Rodriguez, C.L.; Chatterjee, S.; Rasio, F.A. Binary black hole mergers from globular clusters: Masses, merger rates, and the impact of stellar evolution. Phys. Rev. D 2018, 93, 084029. [Google Scholar] [CrossRef]
- Banerjee, S. Stellar-mass black holes in young massive and open stellar clusters and their role in gravitational-wave generation. Mon. Not. R. Astron. Soc. 2017, 467, 524. [Google Scholar] [CrossRef]
- Belczynski, K.; Dominik, M.; Bulik, T.; O’Shaughnessy, R.; Fryer, C.; Holz, D.E. The effect of metallicity on the detection prospects for gravitational waves. Astrophys. J. Lett. 2010, 715, L138. [Google Scholar] [CrossRef]
- Mandel, I.; De Mink, S.E. Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries. Mon. Not. R. Astron. Soc. 2016, 458, 2634. [Google Scholar] [CrossRef]
- De Mink, S.E.; Mandel, I. The chemically homogeneous evolutionary channel for binary black hole mergers: Rates and properties of gravitational-wave events detectable by advanced LIGO. Mon. Not. R. Astron. Soc. 2016, 460, 3545. [Google Scholar] [CrossRef]
- Tanay, S.; Haney, M.; Gopakumar, A. Frequency and time-domain inspiral templates for comparable mass compact binaries in eccentric orbits. Phys. Rev. D 2016, 93, 064031. [Google Scholar] [CrossRef]
- Huerta, E.A.; Kumar, P.; McWilliams, S.T.; O’Shaughnessy, R.; Yunes, N. Accurate and efficient waveforms for compact binaries on eccentric orbits. Phys. Rev. D 2014, 90, 084016. [Google Scholar] [CrossRef]
- Boyle, M.; Hemberger, D.; Iozzo, D.A.; Lovelace, G.; Ossokine, S.; Pfeiffer, H.P.; Scheel, M.A.; Stein, L.C.; Woodford, C.J.; Zimmerman, A.B.; et al. The SXS collaboration catalog of binary black hole simulations. Class. Quantum. Gravit. 2019, 36, 195006. [Google Scholar] [CrossRef]
- Kinugawa, T.; Nakamura, T.; Nakano, H. Chirp mass and spin of binary black holes from first star remnants. Mon. Not. R. Astron. Soc. 2020, 498, 3946. [Google Scholar] [CrossRef]
- Ossowski, M. Chirp mass–distance distributions of the sources of gravitational waves. arXiv 2021, arXiv:2105.10516. [Google Scholar] [CrossRef]
- Bose, N.; Pai, A. Effective chirp mass in the inspiral frequency evolution of the nonspinning eccentric compact binar. Phys. Rev. D 2021, 104, 124021. [Google Scholar] [CrossRef]
- Pani, P. Advanced methods in black-hole perturbation theory. Int. J. Mod. Phys. A 2013, 28, 1340018. [Google Scholar] [CrossRef]
- Kamaretsos, I.; Hannam, M.; Sathyaprakash, B.S. Is Black-Hole Ringdown a Memory of Its Progenitor? Phys. Rev. Lett. 2012, 109, 141102. [Google Scholar] [CrossRef]
- Hughes, S.A.; Apte, A.; Khanna, G.; Lim, H. Learning about Black Hole Binaries from their Ringdown Spectra. Phys. Rev. Lett. 2019, 123, 161101. [Google Scholar] [CrossRef]
- Detweiler, S. Black holes and gravitational waves. III—The resonant frequencies of rotating holes. Res. Astrophys. J. 1980, 239, 292. [Google Scholar] [CrossRef]
- Kamaretsos, I.; Hannam, M.; Husa, S.; Sathyaprakash, B.S. Black-hole hair loss: Learning about binary progenitors from ringdown signals. Phys. Rev. D 2012, 85, 024018. [Google Scholar] [CrossRef]
- Bhagwat, S.; Pacilio, C. Merger-ringdown consistency: A new test of strong gravity using deep learning. Phys. Rev. D 2021, 104, 124021. [Google Scholar] [CrossRef]
- Hinder, I.; Herrmann, F.; Laguna, P.; Shoemaker, D. Comparisons of eccentric binary black hole simulations with post-Newtonian models. Phys. Rev. D 2010, 82, 024033. [Google Scholar] [CrossRef]
- Hinder, I.; Kidder, L.; Pfeiffer, P. An eccentric binary black hole inspiral-merger-ringdown gravitational waveform model from numerical relativity and post-Newtonian theory. Phys. Rev. D 2018, 98, 044015. [Google Scholar] [CrossRef]
- Arun, K.G.; Blanchet, L.; Iyer, B.; Qusailah, M.S. Tail effects in the third post-Newtonian gravitational wave energy flux of compact binaries in quasi-elliptical orbits. Phys. Rev. D 2008, 77, 064034. [Google Scholar] [CrossRef]
- Tessmer, M.; Schäfer, G. Eccentric motion of spinning compact binaries. Phys. Rev. D 2014, 89, 104055. [Google Scholar] [CrossRef]
- Arun, K.G.; Blanchet, L.; Iyer, B.; Qusailah, M.S. Inspiralling compact binaries in quasi-elliptical orbits: The complete third post-Newtonian energy flux. Phys. Rev. D 2008, 77, 064035. [Google Scholar] [CrossRef]
- Arun, K.G.; Blanchet, L.; Iyer, B.; Sinha, S. Third post-Newtonian angular momentum flux and the secular evolution of orbital elements for inspiralling compact binaries in quasi-elliptical orbits. Phys. Rev. D 2009, 80, 124018. [Google Scholar] [CrossRef]
- Gopakumar, A.; Schäfer, G. Gravitational wave phasing for spinning compact binaries in inspiraling eccentric orbits. Phys. Rev. D 2011, 84, 124007. [Google Scholar] [CrossRef]
- Huerta, E.A.; Moore, C.J.; Kumar, P.; George, D.; Chua, A.J.; Haas, R.; Wessel, E.; Johnson, D.; Glennon, D.; Rebei, A.; et al. Eccentric, nonspinning, inspiral, Gaussian-process merger approximant for the detection and characterization of eccentric binary black hole mergers. Phys. Rev. D 2017, 95, 024038. [Google Scholar] [CrossRef]
- Kelly, B.J.; Baker, J.G.; Boggs, W.D.; McWilliams, S.T.; Centrella, J. Mergers of black-hole binaries with aligned spins: Waveform characteristics. Phys. Rev. D 2011, 84, 084009. [Google Scholar] [CrossRef]
- Available online: https://data.black-holes.org/waveforms/catalog.html (accessed on 18 November 2021).
- Husa, S.; Hannam, M.; González, J.A.; Sperhake, U.; Brügmann, B. Reducing eccentricity in black-hole binary evolutions with initial parameters from post-Newtonian inspiral. Phys. Rev. D 2008, 77, 044037. [Google Scholar] [CrossRef]
- Peters, P.C. Gravitational radiation and the motion of two point masses. Phys. Rev. D 1964, 136, B1224. [Google Scholar] [CrossRef]
- Islam, T.; Varma, V.; Lodman, J.; Field, S.E.; Khanna, G.; Scheel, M.A.; Pfeiffer, H.P.; Gerosa, D.; Kidder, L.E. Eccentric binary black hole surrogate models for the gravitational waveform and remnant properties: Comparable mass, nonspinning case. Phys. Rev. D 2021, 103, 064022. [Google Scholar] [CrossRef]
- Damour, T.; Gopakumar, A.; Iyer, B.R. Phasing of gravitational waves from inspiralling eccentric binaries. Phys. Rev. D 2004, 70, 064028. [Google Scholar] [CrossRef]
- Königsdörffer, C.; Gopakumar, A. Phasing of gravitational waves from inspiralling eccentric binaries at the third-and-a-half post-Newtonian order. Phys. Rev. D 2006, 73, 124012. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, S.R.; Khlopov, M. An Eccentric Binary Blackhole in Post-Newtonian Theory. Symmetry 2022, 14, 510. https://doi.org/10.3390/sym14030510
Chowdhury SR, Khlopov M. An Eccentric Binary Blackhole in Post-Newtonian Theory. Symmetry. 2022; 14(3):510. https://doi.org/10.3390/sym14030510
Chicago/Turabian StyleChowdhury, Sourav Roy, and Maxim Khlopov. 2022. "An Eccentric Binary Blackhole in Post-Newtonian Theory" Symmetry 14, no. 3: 510. https://doi.org/10.3390/sym14030510
APA StyleChowdhury, S. R., & Khlopov, M. (2022). An Eccentric Binary Blackhole in Post-Newtonian Theory. Symmetry, 14(3), 510. https://doi.org/10.3390/sym14030510